
System Verification and Validation Plan for
BeamBending

Team Drasil
Jason Balaci

February 17, 2023

1 Revision History

Date Version Notes
Feb 12 0.0 Format template.
Feb 13 0.1 Preliminary work, read through and fill-

ing in easy spots.
Feb 14 0.2 Preliminary copy of “general information”

section.
Feb 14 0.3 Preliminary copy of “plan” section.
Feb 14 0.4 Preliminary dubious “system” (unit)

tests.
Feb 16 0.5 I guess the system tests weren’t as du-

bious as I thought! Cleaning up as per
in-class feedback (E, I, zeroes)

Feb 17 0.6 Complete draft.

i

reviewer
Pencil

Contents
1 Revision History i

2 Symbols, Abbreviations, and Acronyms iv

3 General Information 1
3.1 Summary . 1
3.2 Objectives . 1
3.3 Relevant Documentation . 1

4 Plan 3
4.1 Verification and Validation Team 3
4.2 SRS Verification Plan . 4
4.3 Design Verification Plan . 4
4.4 Verification and Validation Plan Verification Plan 5
4.5 Implementation Verification Plan 5
4.6 Automated Testing and Verification Tools 6
4.7 Software Validation Plan . 6

5 System Test Description 7
5.1 Tests for Functional Requirements 7

5.1.1 Testing Inputs Are Outputted Accurately 7
5.1.2 Testing BVP Solver 7
5.1.3 Testing Outputs with Non-trivial Inputs 9

5.2 Tests for Nonfunctional Requirements 9
5.3 Traceability Between Test Cases and Requirements 9

6 Unit Test Description 11

7 Appendix 13
7.1 Symbolic Parameters . 13
7.2 Usability Survey Questions . 13

ii

List of Tables
1 Table of VnV Roles . 3
2 Table of VnV Teammates . 3
3 Simple, Automatic, Tests . 8
4 Tracing Tests to Requirements 10

iii

2 Symbols, Abbreviations, and Acronyms
The Symbols, Abbreviations, and Acronyms in this document builds upon
those from BeamBending’s related SRS document [1].

Symbol Description

CAS Computing and Software department (McMaster University)
SRS Software Requirements Specification
T Test
VnV Verification and Validation

iv

reviewer
Pencil

3 General Information
This document describes the plan of action related to the Verification and
Validation (VnV) of the Beam Bending analysis program (BeamBending).
This VnV plan will describe a plan of action for validating that the Software
Requirements Specification (SRS) [1] for BeamBending satisfies stakeholders,
and verifying that a supposedly conforming software does indeed accurately
satisfy the requirements.

3.1 Summary
The BeamBending Software Requirements Specification (SRS) [1] describes
the requirements of a hypothetical program that analyzes beam deflection
under imposed, distributed loads on a simply-supported beam.

3.2 Objectives
The objective of this document is to outline a plan of action for:

1. auditing a continuously developed SRS document [2] for logical consis-
tency,

2. validating said SRS satisfies stakeholder requirements, and

3. verifying that a produced software artifact conforms everything laid
out in the SRS document (including, but not limited to, the func-
tional and nonfunctional requirements), through both transparent and
opaque testing.

In doing this, we hope to build confidence in the coherence of software
requirements, and correctness and conformance of a software to said specifi-
cations.

3.3 Relevant Documentation
As we intend to build (generate) the software with Drasil, the only relevant
documentation is that which is originally manually built, including:

1. the SRS document [1], and

1

reviewer
Pencil

reviewer
Pencil

2. this VnV plan.

When the BeamBending program is re-created in Drasil, we may think of
that as a sort of “documentation” that we can to the above list.

2

reviewer
Pencil

4 Plan
The “whole” Verification and Validation plan for BeamBending consists of
multiple sub-plans. Notably, it has a designated team (with sub-teams) who
will be executing the related sub-plans stipulated in this document. Team
members will take responsibility for various aspects of verification and vali-
dation.

4.1 Verification and Validation Team
Roles (Table 1) are assigned to each team member (Table 2), dictating the
minimum responsibilities each member has for each related project.

Table 1: Table of VnV Roles

Role Description/responsibilities
Supervisor Manager of all review committees, and dis-

tinguished reviewer and domain expert.
Domain Expert Reviewer with considerable knowledge on un-

derlying domains.
Author Writer.

Reviewer Ensures documents are logically coherent
and well-formed.

Verifier Assures Drasil encoding of SRS accurately
re-creates the manually created SRS.

Validator Assures SRS satisfies stakeholder require-
ments.

VnV-er Verifier ∪ Validator.

Table 2: Table of VnV Teammates

Assignee Project Role(s)
Dr. Smith ∗1 Supervisor.

1∗: match all.

3

Jason Balaci ∗ Author.
Sam Crawford ∗ Domain Expert, Reviewer, and VnV-er.

Mina Mahdipour SRS Reviewer.
Deesha Patel VnV Reviewer.

Maryam Valian Drasil Reviewer & VnV-er.
Class of CAS 741 ∗ ∗

4.2 SRS Verification Plan
In addition to checking that BeamBending’s Software Requirements Specifi-
cation (SRS) conforms to Dr. Smith’s provided SRS checklist, we will have:

1. a designated reviewing committee with a supervisor,

2. a public presentation with a reviewing audience,

3. built the project in Drasil, where we can build automated consistency
checks and generate certain aspects of the document to avoid error,

4. at least one external reviewer (Dr. Jacques Carette of the Drasil project)
when the whole BeamBending project is sent to the main Drasil repos-
itory for merging, and finally,

5. regular updates and sporadic reviews by current and future Drasil team
members and onlookers (assuming the project is merged as an official
case study of Drasil).

4.3 Design Verification Plan
The software design does not need verification as the design of the software
will be based on Drasil’s existing software family generator [3]. However, in
order to build the Boundary Value Problem (BVP) in Drasil, we will need
to extend Drasil to generate BVP solving methods2. The onus of Drasil’s
validation is up to the Drasil team3.

2This will be done and assumed as “trusted” when accepted into Drasil’s main code-
base [3].

3Including, but not limited to, Dr. Spencer Smith, Sam Crawford, and Jason Balaci.

4

reviewer
Pencil

reviewer
Pencil

4.4 Verification and Validation Plan Verification Plan
To assure that the Verification and Validation Plan adequately tests both
the SRS document and the relevant software, we will largely assume the
“many eyes” hypothesis [4] with many “eyes” of different skill-sets and aca-
demic backgrounds (see Table 2). Each team member should test that this
document conforms to the general VnV Checklist document [5].

4.5 Implementation Verification Plan
A proof of concept should be built and manually tested. When the project
is re-created in Drasil, the generated software artifacts should be similar
to the proof of concept, up to code style and organization. The generated
software artifacts should be tested against the manually created artifacts if
non-trivial or significant differences exist. Additionally, as Drasil does not
yet generate unit tests4, the unit tests will be ported over to the generated
software artifacts.

By re-writing the SRS with Drasil, the software implementation will be
generated. We have faith in the Drasil work, and so, the “Implementation
Verification Plan” is largely a “Solution Validation Plan” with an extra set of
requirements for the configuration of Drasil’s code generator. The solution
proposed in the SRS is to be validated by peer review, code walkthrough,
external audit, audit by assigned reviewers (see Table 1), and audit by the
supervisor (Dr. Smith). The configuration requirements for Drasil’s code
generator are as follows:

1. generate code:

(a) in Python,
(b) with full code comment coverage5, and
(c) “full” modularity6,

4But Sam might fix this for us!
5The ratio of the number of well-documented “code” components to the number of

“code” components, where a code component is defined as any logical component of a
codebase (such as functions, data types, classes, etc.).

6The generated software artifact should be broken up into multiple logically grouped
software artifacts.

5

reviewer
Pencil

2. generate a Makefile with all common usage types (e.g., build, run, deps)
as targets,

3. generate basic usage documentation, and

4. generate SRS artifacts from the same pool of knowledge used to build
the previous two components.

4.6 Automated Testing and Verification Tools
The reference code implementation and final generated code artifacts will be
tested (along with code coverage) using pytest [6] to automatically test the
code against a series of unit tests (see Section 6). Continuous integration
will be used to assure that changes to the SRS encoding in Drasil does not
change against the well-tested artifacts7. The Python code will be aggres-
sively formatted with Black [7].

4.7 Software Validation Plan
As the problem described in the SRS is similar to beam deflection problems
commonly found in engineering textbooks (such as [8]), we will assume a
potential stakeholder is a writer of one of said textbooks. Dr. Spencer Smith
will also be an assumed stakeholder in the project as he suggested this project
to the author. Input, output, and theory-based inspection will primarily be
done to ensure that that information contained in the SRS and the software
satisfies stakeholders.

7These are captured in the “stable” folder in Drasil’s code repository, where “stable”
artifacts remain manually tested.

6

reviewer
Pencil

5 System Test Description

5.1 Tests for Functional Requirements
The tests for functional requirements may be split up into 3 categories, as
follows:

1. testing that inputs match the understood inputs (R2 [1]),

2. testing that the BVP solver functions as expected, and

3. testing that the whole program accurately follows the instance models
as described in the SRS (R3 [1]).

5.1.1 Testing Inputs Are Outputted Accurately

Throughout the next two categories of testing the functional requirements,
we will have tests on the program, and each test should be additionally au-
tomatically checked that the re-iterated outputs match the intended inputs.

5.1.2 Testing BVP Solver

All of the tests for testing the BVP solver (Table 3) are done automatically
with a trivially “empty” initial state (e.g., the program is not started and
has been provided no inputs yet), and trivial inputs other than the BVPs
themselves. The focus of this section is to test the BVP solver. The inputs
should be provided as appropriate and the expected output should be printed.
Each test will observe ∀x : R . x ∈ (0, LB) ⇒ (y(x) ≈ε ya(x)) (with pytest
using samples or symbolic equivalence, depending on solution). The expected
outputs are confirmed using WolframAlpha [9].

7

reviewer
Pencil

reviewer
Pencil

Table 3: Simple, Automatic, Tests

Inputs OutputsID
wB(x) EB IB ya(x)

Control

T1BVP 0 1 1 0 WolframAlpha
T2BVP 1 1 1 x

24
(x3 − 20x2 + 1E3) WolframAlpha

T3BVP −1 1 1 − x
24
(x3 − 20x2 + 1E3) WolframAlpha

T4BVP x 1 1 x
360

(3x4 − 1E3x3 + 7E4) WolframAlpha
T5BVP −x 1 1 − x

360
(3x4 − 1E3x3 + 7E4) WolframAlpha

T6BVP 8E4x3 1 1 2E4x
21

(x6 − 7E4x2 + 6E6) WolframAlpha
T7BVP 8E4x2 1 1 2E3x

9
(x5 − 5E3x4 + 4E5) WolframAlpha

T8BVP 8E5 sin (xπ
L
) 1 1 1

3π4 (4E4L2x(π2(x2 − 100)− 6L2) sin (10π
L
) + 60L2 sin (xπ

L
)) WolframAlpha

T9BVP 8E5 sin (2xπ
L
) 1 1 1

3π4 (5E3L2x(2π2(x2 − 100)− 3L2) sin (20π
L
) + 30L2 sin (2xπ

L
)) WolframAlpha

8

https://www.wolframalpha.com/input?i=%5B%2F%2Fmath%3Asolve+y%27%27%27%27%3D0%2Cy%280%29%3D0%2Cy%2810%29%3D0%2Cy%27%27%280%29%3D0%2Cy%27%27%2810%29%3D0%2F%2F%5D
https://www.wolframalpha.com/input?i=%5B%2F%2Fmath%3Asolve+y%27%27%27%27%3D1%2Cy%280%29%3D0%2Cy%2810%29%3D0%2Cy%27%27%280%29%3D0%2Cy%27%27%2810%29%3D0%2F%2F%5D
https://www.wolframalpha.com/input?i=%5B%2F%2Fmath%3Asolve+y%27%27%27%27%3D-1%2Cy%280%29%3D0%2Cy%2810%29%3D0%2Cy%27%27%280%29%3D0%2Cy%27%27%2810%29%3D0%2F%2F%5D
https://www.wolframalpha.com/input?i=%5B%2F%2Fmath%3Asolve+y%27%27%27%27%3Dx%2Cy%280%29%3D0%2Cy%2810%29%3D0%2Cy%27%27%280%29%3D0%2Cy%27%27%2810%29%3D0%2F%2F%5D
https://www.wolframalpha.com/input?i=%5B%2F%2Fmath%3Asolve+y%27%27%27%27%3D-x%2Cy%280%29%3D0%2Cy%2810%29%3D0%2Cy%27%27%280%29%3D0%2Cy%27%27%2810%29%3D0%2F%2F%5D
https://www.wolframalpha.com/input?i=%5B%2F%2Fmath%3Asolve+y%27%27%27%27%3D80000x%5E3%2Cy%280%29%3D0%2Cy%2810%29%3D0%2Cy%27%27%280%29%3D0%2Cy%27%27%2810%29%3D0%2F%2F%5D
https://www.wolframalpha.com/input?i=%5B%2F%2Fmath%3Asolve+y%27%27%27%27%3D80000x%5E2%2Cy%280%29%3D0%2Cy%2810%29%3D0%2Cy%27%27%280%29%3D0%2Cy%27%27%2810%29%3D0%2F%2F%5D
https://www.wolframalpha.com/input?i=%5B%2F%2Fmath%3Asolve+y%27%27%27%27%3D800000*sin%28%28x%2FL%29*pi%29%2Cy%280%29%3D0%2Cy%2810%29%3D0%2Cy%27%27%280%29%3D0%2Cy%27%27%2810%29%3D0%2F%2F%5D
https://www.wolframalpha.com/input?i=%5B%2F%2Fmath%3Asolve+y%27%27%27%27%3D800000*sin%28%282x%2FL%29*pi%29%2Cy%280%29%3D0%2Cy%2810%29%3D0%2Cy%27%27%280%29%3D0%2Cy%27%27%2810%29%3D0%2F%2F%5D
reviewer
Pencil

5.1.3 Testing Outputs with Non-trivial Inputs

All of the tests from Table 3 should be performed again8 with non-trivial
EBs and IBs (e.g., not 1). Since numeric scaling isn’t very consequential to
the output, we will omit for brevity. WolframAlpha may be similarly used
as a control.

5.2 Tests for Nonfunctional Requirements
The nonfunctional requirements are relatively uncomplicated to audit, mostly
because of the usage of Drasil:

TNFR1 Accuracy is satisfied primarily through the tests of the functional
requirements having a low tolerance9,

TNFR2 Usability is strongly tied to Drasil’s ability to generate code that can
output data10,

TNFR3 Maintainability is satisfied through being constructed in Drasil, where
changes in information have rippling effects and re-generation allows
us to update everything to accomodate changes,

TNFR4 Portability is satisfied because we aim to generate Python code, but
also because all of Drasil’s supported output languages are supported
on the 3 major personal operating systems.

5.3 Traceability Between Test Cases and Requirements
The following table traces the test cases as shown in the earlier sections back
to the functional and nonfunctional requirements11.

8Note: referencing here will be done with the BVP subscript removed, T∗.
9As this software is purely educational, accepting a higher tolerance is fine too.

10Unfortunately, list-like functionality remains limited, but will be improved. Also note
that “usability” was defined in the SRS document. Specifically, we will not be testing for
accessibility nor any other facet as this software is meant to be an intermediate program
used for calculation, not visualization.

11Note that ∗ is used to quantify over each individual test case as it is redundant to
have identical rows for the tests that are each intended to test the same concepts.

9

reviewer
Pencil

Table 4: Tracing Tests to Requirements

R1 R2 R3 NFR1 NFR2 NFR3 NFR4
T∗BVP X X
T∗ X X X

TNFR1 X X X X
TNFR2 X
TNFR3 X
TNFR4 X

10

6 Unit Test Description
As no software design documents will be constructed for Team Drasil’s projects,
we will bootstrap the Drasil-generated software artifacts for testing. This
section will be filled in once we have Drasil generating code.

11

reviewer
Pencil

References
[1] Jason Balaci. “Beam Bending: examining a beam bending under load”.

In: CAS 741 (Winter 2023) (2023). Ed. by Sam. Crawford, Dr. Spencer
Smith, and Class of CAS 741 (Winter 2023) (cit. on pp. iv, 1, 7, 13).

[2] David L. Parnas and P.C. Clements. “A Rational Design Process: How
and Why to Fake it”. In: IEEE Transactions on Software Engineering
12.2 (1986-02), pp. 251–257 (cit. on p. 1).

[3] The Drasil Team. Drasil. 2023-01. url: https://github.com/JacquesCarette/
Drasil (cit. on p. 4).

[4] Thomas Caraco, Steven Martindale, and H Ronald Pulliam. “Avian time
budgets and distance to cover”. In: The Auk 97.4 (1980), pp. 872–875
(cit. on p. 5).

[5] Spencer Smith. capTemplate. As at git blob #92517. 2023. url: https:
//github.com/smiths/capTemplate/ (cit. on p. 5).

[6] Holger Krekel et al. PyTest. 2004. url: https://docs.pytest.org/en/7.2.
x/ (cit. on p. 6).

[7] Łukasz Langa et al. Black: The uncompromising code formatter. 2018.
url: https://black.readthedocs.io/en/stable/index.html (cit. on p. 6).

[8] Ferdinand P. Beer and E. Russell Johnston Jr. Mechanics of Materials.
McGraw-Hill Ryerson, 1981 (cit. on p. 6).

[9] Wolfram Research Inc. Wolfram Alpha. Accessed on Feb. 17th, 2023.
2023. url: https://www.wolframalpha.com (cit. on p. 7).

12

https://github.com/JacquesCarette/Drasil
https://github.com/JacquesCarette/Drasil
https://github.com/smiths/capTemplate/
https://github.com/smiths/capTemplate/
https://docs.pytest.org/en/7.2.x/
https://docs.pytest.org/en/7.2.x/
https://black.readthedocs.io/en/stable/index.html
https://www.wolframalpha.com
reviewer
Pencil

7 Appendix

7.1 Symbolic Parameters
In addition to the symbolic parameters from the SRS document [1], we will
add ε, where ε = 10−3 (m), for usage as a tolerance for equivalence.

7.2 Usability Survey Questions
As the project will rely on Drasil to build the software from the requirement
description, any and all “usability” and/or “accessibility” concerns should be
directed towards the Drasil team as BeamBending will only use their basic
(stable) public-facing tooling.

13

reviewer
Pencil

	Revision History
	Symbols, Abbreviations, and Acronyms
	General Information
	Summary
	Objectives
	Relevant Documentation

	Plan
	Verification and Validation Team
	SRS Verification Plan
	Design Verification Plan
	Verification and Validation Plan Verification Plan
	Implementation Verification Plan
	Automated Testing and Verification Tools
	Software Validation Plan

	System Test Description
	Tests for Functional Requirements
	Testing Inputs Are Outputted Accurately
	Testing BVP Solver
	Testing Outputs with Non-trivial Inputs

	Tests for Nonfunctional Requirements
	Traceability Between Test Cases and Requirements

	Unit Test Description
	Appendix
	Symbolic Parameters
	Usability Survey Questions

