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This letter addresses the problem of designing the transition probabil-
ities of a finite Markov chain (the policy) in order to minimize the ex-
pected cost for reaching a destination node from a source node while
maintaining a fixed level of entropy spread throughout the network
(the exploration). It is motivated by the following scenario. Suppose
you have to route agents through a network in some optimal way, for
instance, by minimizing the total travel cost—nothing particular up to
now—you could use a standard shortest-path algorithm. Suppose, how-
ever, that you want to avoid pure deterministic routing policies in order,
for instance, to allow some continual exploration of the network, avoid
congestion, or avoid complete predictability of your routing strategy. In
other words, you want to introduce some randomness or unpredictability
in the routing policy (i.e., the routing policy is randomized). This prob-
lem, which will be called the randomized shortest-path problem (RSP), is
investigated in this work. The global level of randomness of the routing
policy is quantified by the expected Shannon entropy spread through-
out the network and is provided a priori by the designer. Then, neces-
sary conditions to compute the optimal randomized policy—minimizing
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the expected routing cost—are derived. Iterating these necessary condi-
tions, reminiscent of Bellman’s value iteration equations, allows com-
puting an optimal policy, that is, a set of transition probabilities in each
node. Interestingly and surprisingly enough, this first model, while for-
mulated in a totally different framework, is equivalent to Akamatsu’s
model (1996), appearing in transportation science, for a special choice
of the entropy constraint. We therefore revisit Akamatsu’s model by re-
casting it into a sum-over-paths statistical physics formalism allowing
easy derivation of all the quantities of interest in an elegant, unified way.
For instance, it is shown that the unique optimal policy can be obtained
by solving a simple linear system of equations. This second model is
therefore more convincing because of its computational efficiency and
soundness. Finally, simulation results obtained on simple, illustrative
examples show that the models behave as expected.

1 Introduction

Algorithms for finding the shortest path in a network are currently used
in a wide range of application areas, including transportation networks,
medical imaging, wide-area network routing, and artificial intelligence, to
name a few. Many extensions of the basic shortest-path algorithms have
been proposed, still extending their application range (see, e.g., Bertsekas,
1998, 2000; Carre, 1979; Christofides, 1975; Jungnickel, 2004). In particu-
lar, many important applications developed in artificial intelligence, ma-
chine learning, pattern recognition, bioinformatics, and data mining, such
as speech recognition (dynamic time warping or the Viterbi algorithm
(Jelinek, 1997; Rabiner & Juang, 1993), sequence alignment (Durbin,
Eddy, Krogh, & Mitchison, 1998; Gusfield, 1997), Markov decision pro-
cesses (Bather, 2000; Puterman, 1994), routing in data networks (Bertsekas
& Gallager, 1992), social network analysis (betweenness centrality; see
Wasserman & Faust, 1994), game playing (minimax algorithms; see, e.g.,
Adelson-Velsky, Arlazarov, & Donskoy, 1988), planning (Ghallab, Nau,
& Traverso, 2004; LaValle, 2006), neurocomputing (Bertsekas & Tsitsiklis,
1996), and reinforcement learning (Sutton & Barto, 1998; Powell, 2007) rely
on one way or another on variants of shortest-path algorithms.

This work aims to introduce a related problem, which we call the ran-
domized shortest-path problem (RSP), in the framework of a single source
and a single destination. It can be described informally as follows. Sup-
pose we have to find the path of minimum length from a source node to
a destination node in a network, where the length of a path is the sum
of the costs of the arcs on the path. Usually shortest-path algorithms pro-
vide pure deterministic routing policies: when standing in a given node
k, we just follow the arc adjacent to k on the shortest path. In this letter,
we investigate the possibility of randomizing the routing policy: the agents
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could follow different paths according to some probability distribution. Of
course, one may wonder why randomization should be introduced. For
most problems, there is no advantage at all; however, there are some cir-
cumstances where randomization could eventually prove useful:! If the environment is changing over time (nonstationary), the system

could benefit from randomization or continual exploration. Indeed,
without exploration, the agents are routed exclusively along the best
path—without exploring alternative paths. They would therefore not
be aware of the changes occurring in the network, for instance, some
alternative path becoming shorter. For both models introduced in this
letter, the structure of the network is supposed to be known, while the
costs may change over time.! Introducing randomness could be beneficial per se. Consider, for
instance, the situation where an agent has to reach a given goal
without being intercepted by some opponent. A deterministic
shortest-path policy would make its behavior totally predictable; on
the contrary, randomness introduces unpredictability and therefore
renders interception more difficult. Randomization has proven use-
ful for exactly this reason in game theory.! When there are multiple destination nodes (or goals), introducing
randomness allows the performance of some load balancing, by ex-
ploiting the goal nodes in parallel.! Randomization also allows spreading the traffic on multiple paths,
therefore reducing the danger of congestion. Indeed, when a random-
ized strategy is followed, the goods are routed along multiple paths
and are therefore spread over the network.! One may want to use a dissimilarity measure between two nodes
that accounts for not only the shortest path, but also for all the other
paths, with longer paths being penalized with respect to short ones,
therefore considering that nodes connected by many short paths are
closer than nodes connected by, for instance, only one short path (as
in Fouss, Pirotte, Renders, & Saerens, 2007).! In some application areas, such as sequence alignment, computing a
similarity measure accounting for all paths could eventually provide
better results than relying on the best path. This is a subject for further
work.

For all these reasons, we decided to investigate randomized shortest-
path problems. We thus define a randomized shortest-path problem as a
shortest-path problem to which an exploration constraint (e.g., an entropy con-
straint) is added in order to obtain optimal randomized policies (also called
stochastic policies), and therefore continual exploration.

Mathematically, randomization corresponds to the association of a prob-
ability distribution on the set of admissible arcs to follow in each node
(choice randomization). If no randomization is present, the agents are
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routed on the shortest path (the optimal choice) with probability one; only
the best policy is exploited. Randomization appears when this probability
distribution is no more peaked on the best choice: the agent is willing to
sacrifice efficiency for exploration.

In this framework, we propose measuring the randomness associated to
a given node by the (Shannon) entropy (see, e.g., Cover & Thomas, 2006;
Kapur & Kesavan, 1992; Shannon, 1948) of the probability distribution on
the set of admissible arcs to follow (transition probabilities) in this node.
This entropy value captures the degree of randomness linked to the node.
When the entropy is zero, there is no uncertainty, while when the entropy
is maximal, a blind choice, with equal probability of following any arc, is
performed.

Then, in a first model, we restate the randomized shortest-path problem
as a global optimization problem: define the best randomized policy (the
set of transition probabilities in each node) that minimizes the expected
cumulated cost from the source node to the destination node while
maintaining a fixed degree of randomness. This problem leads to a set
of nonlinear equations defining necessary conditions of optimality. These
equations, reminiscent of Bellman’s equations, can be solved by iterating
them until convergence. They provide a policy (the transition probabilities)
that minimizes the expected cost from the initial node to the destination
node, for a given degree of randomness. Interestingly enough, when the
global degree of randomness is zero, the nonlinear equations reduce to
Bellman’s equations for finding the shortest path from the initial node to
the destination node.

Then a second model, inspired by Akamatsu (1996) in transportation
science (see section 1.1) will be studied and, while formulated in a totally
different framework, will be shown to solve the same problem more effi-
ciently for a special—but natural—choice of the entropy constraint. In par-
ticular, by recasting the problem into a statistical physics framework, it is
shown that the randomized policy can be computed efficiently by solving
a simple linear system of equations.

1.1 Related Work. The idea of quantifying the uncertainty linked to
each node by entropy was introduced by Achbany, Fouss, Yen, Pirotte, and
Saerens (2006, 2008) in the context of reinforcement learning and was in-
spired by the entropy rate of an ergodic Markov chain defined in informa-
tion theory (see, e.g., Cover & Thomas, 2006). The main difference between
this previous work is the fact that in this work, we fix the global entropy
spread in the network instead of fixing the local entropy defined at each
node in Achbany et al. (2006, 2008). While this difference seems a priori in-
significant, it appears that constraining the global entropy spread into the
network is more natural and more involved. Clearly, the nodes that need
a large spread are difficult to determine in advance, and the model has to
distribute the entropy by optimizing it globally all over the network. More
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precisely, in this work, the global degree of randomness associated with the
entire network is quantified by a weighted sum of the individual entropies
associated with each node.

With the exception of this previous work (Achbany et al., 2006, 2008), to
our knowledge, optimal randomized strategies, while popular, for instance
in game theory (see, e.g., Osborne, 2004), and Markov games (Littman,
1994), have not been exploited in the context of shortest-path problems,
with one noticeable exception, the work of Akamatsu (1996). Indeed,
Akamatsu designed a randomized policy for routing traffic in transporta-
tion networks. In transportation science, randomized strategies are called
stochastic traffic assignments, and within this context, Akamatsu’s model is
the model of reference. It provides a probability distribution of following
an arc at any node of the network. More precisely, Akamatsu proposed to
design the transition probabilities matrix in such a way that long paths to
the destination are penalized. He therefore puts a Boltzmann distribution,
depending on the length of the path, on the infinite set of paths, includ-
ing paths containing cycles. He shows that this model results in a transi-
tion probabilities matrix that can be computed from the network by matrix
inversion.

Surprisingly enough, his model solves randomized shortest-path prob-
lems, for a special choice of the entropy constraint, as shown in section 6.
Indeed, Akamatsu did not notice that his algorithm solves a shortest-path
problem. He simply proposed to weigh the paths in a heuristic way, with-
out trying to optimize the total expected travel cost. In a second paper,
Akamatsu (1997) proved that the total entropy spread in the network is
a strictly concave function with respect to the arc flows and provided an
interpretation of his model in terms of a different concept, the “expected
minimum cost,” also called “maximum utility,” which plays an important
role in random utility theory. This letter therefore provides a new interpre-
tation for Akamatsu’s model, as well as a new perspective, based on statis-
tical physics, that allows us to derive the main results in a unified way.

Let us finally mention some interesting papers related to the present
work. Nesterov (2007) introduces the notions of characteristic and potential
functions of directed graphs and studies their properties. He applies his
model to stochastic equilibrium traffic assignment problems. His frame-
work is related to our work here, although the relationships are not evident.
We plan to investigate the links between the two models in further work.
On the other hand, the entropy of the paths (or trajectories) connecting an
initial and an absorbing destination node of an absorbing Markov chain
was studied by Ekroot and Cover (1993). These authors provided formulas
for computing the entropy needed to reach the destination node. Tahbaz
and Jadbabaie (2006) introduced a one-parameter family of algorithms
that, as our algorithm, recovers both the Bellman-Ford procedure for
finding shortest paths and the iterative algorithm for computing the aver-
age first-passage time. However, it was based on heuristic grounds, not on
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a well-defined cost function to optimize. Moreover, it does not provide a
randomized policy. In another context, Todorov (2006) studied a family of
Markov decision problems that are linearly solvable, that is, for which a so-
lution can be computed by solving a matrix eigenvector problem. In order
to make this possible, Todorov assumes a special form for the control of the
transition probabilities, which recasts the problem of finding the policy into
an eigenvector problem. Boyd, Diaconis, and Xiao (2004) design a Markov
chain that has the fastest mixing properties, and Sun, Boyd, Xiao, and
Diaconis (2006) discuss its continuous-time counterpart. In a completely
different framework, uninformed random walks, based on maximizing
long-term entropy (Delvenne, 2005; Tomlin, 2003), have recently been pro-
posed as an alternative of the standard PageRank algorithm. Finally, notice
that some authors tackled the problem of designing ergodic (nonabsorb-
ing) Markov or semi-Markov chains in a maximum entropy framework
(see, e.g., Girardin, 2004; Girardin & Limnios, 2004, and the references
there). This work is based on ergodic Markov chains, while our letter deals
with absorbing Markov chains and randomized shortest-path problems.

1.2 Contributions and Organization of the Letter. In brief, this work
has four contributions! Randomized shortest-path problems are introduced and necessary

conditions for solving them are derived (first model) for special
choices of the entropy constraint. This may be considered a first step
toward a more systematic treatment of such problems.! The links between this first model and Akamatsu’s stochastic traf-
fic assignment model are studied; in particular, the two models are
shown to be equivalent for a special choice of the entropy constraint.
Thus, the randomized shortest-path model presented in this letter
provides a new interpretation for Akamatsu’s model: it is optimal
in the sense that it minimizes the expected cost for a fixed entropy
spread in the network.! Akamatsu’s model (1996) is revisited in a unified statistical physics
formalism, which allows easily computing all the quantities of in-
terest, in particular, the policy. It involves introducing a probability
distribution on the infinite set of paths connecting the two nodes.! It is shown that the optimal policy for Akamatsu’s model can be
obtained efficiently by solving a simple linear system of equations,
which Akamatsu did not notice. This model therefore provides an
alternative way of finding shortest paths in a network by solving a
linear system of equations.

Since this work is somewhat theoretical, we also mention a few potential
applications of randomized shortest paths (RSP) in artificial intelligence,
machine learning, pattern recognition, bioinformatics, and data mining:
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! Routing and planning when the environment is changing. Reinforcement
learning and Markov decision algorithms based on the RSP could be
designed and studied.! Using mixed, randomized, strategies based on the RSP instead of the usual
minimax in game playing. In a two-person game, it is unrealistic to
assume that the opponent is completely rational, as minimax does.
Therefore, it could be interesting to model the opponent’s behavior
by an RSP strategy instead of a pure minimax one, which leads to
mixed minimax strategies.! Computing dissimilarities between nodes of a weighted, directed graph. The
expected cost for reaching one node from another node defines a dis-
similarity measure between nodes of the graph, ranging from the
shortest path to the average first-passage time distance, depending
on the amount of entropy spread in the network. This idea was re-
cently developed by Yen, Mantrach, Shimbo, and Saerens (2008) as
an application of the models introduced in this letter. This fact can
be exploited in data-mining applications such as recommender sys-
tems (see, e.g., Saerens, Fouss, Yen, & Dupont, 2004; Fouss et al.,
2007). Indeed, random-walk or electrical-based proximity measures
between nodes of a graph are becoming popular alternatives to
the standard shortest-path distance (see Fouss et al., 2007; Klein &
Randic, 1993; Nadler, Lafon, Coifman, & Kevrekidis, 2006; Qiu &
Hancock, 2007; Saerens et al., 2004).! Computing dissimilarities between strings or sequences. Instead of using
the Viterbi algorithm on a lattice for computing the dissimilarity be-
tween two sequences, one could use the RSP algorithm, which will
account for all the alignments between the two sequences instead of
the single shortest one.

Of course, we do not know a priori if any of these applications of the RSP
would be beneficial; this should essentially be considered propositions for
further work. Moreover, we have to stress that the work presented here is
not focused on any specific application area; rather, its main purpose is to
study RSP problems and propose some general techniques to tackle them.

Section 2 introduces the notations, the randomized shortest-path prob-
lem, and the way we manage randomness. In section 3, the necessary con-
ditions of optimality are derived. Section 4 describes an iterative procedure
for computing the randomized policy. Section 5 restates Akamatsu’s model
in a statistical physics formalism and derives the main theoretical results
obtained through this model. Section 7 shows that the first model intro-
duced in section 3 is equivalent to Akamatsu’s model in that it solves the
same problem. Section 7 examines some computational issues, in particu-
lar, the case where the graph is acyclic. Section 8 shows some simulation
examples, and section 9 presents the conclusion.
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2 Statement of the Problem and Notations

For simplicity, this letter is focused on what is called deterministic shortest-
path problems, as defined, for instance, by Bertsekas (2000).1 Consider
a weighted directed graph or network, G, with a set of n nodes V (or
vertices) and a set of arcs E (or edges). To each arc linking node k and node
k ′, we associate a number ckk ′ representing the immediate cost of following
this arc. This cost can be positive (penalty), negative (reward), or zero,
provided that no cycle exists whose total cost is negative (Christofides,
1975). In particular, this implies that if the graph is undirected, all costs
are nonnegative. It is assumed that the whole network environment is
known.

The choice to follow an arc from node k will be made according to a
probability distribution (transition probabilities) defined on the set S(k)
of neighboring nodes (successors S) that can be reached from node k.
These transition probabilities, defined on each node k, will be denoted as
p(k ′ | k) = pkk ′ with k ′ ∈ S(k). Furthermore, P will be the matrix containing
the transition probabilities pkk ′ as elements. If there is no arc between k
and k ′, we simply consider that ckk ′ takes a large value, denoted by ∞; in
this case, the corresponding transition probability is set to zero, pkk ′ = 0.
The main difference between randomized and standard deterministic
shortest-path problems resides in the fact that we will impose randomized
choices. Randomization is introduced in order to guarantee a predefined
degree of randomness that will be quantified by the Shannon entropy of
the probability distributions. Randomized choices are common in a variety
of fields, for instance, game theory (called mixed strategies in this context;
see, e.g., Osborne, 2004), computer sciences (Motwani & Raghavan, 1995),
Markov games (Littman, 1994), or decision sciences (Raiffa, 1970).

Moreover, like Bertsekas (2000), we assume there is a special cost-free
destination or goal node d ; once the system has reached that node, it
remains there at no further cost. Thus, node d has no outgoing link except
eventually d itself. In order to simplify the notations, we further assume in
this work that we cannot return to the initial node k0; that is, node k0 has no
incoming link (no predecessor). If this is not the case, just add a new initial
node pointing to the previous one with zero cost. Finally, we will consider
a problem structure such that termination is inevitable. Thus, the horizon
is in effect finite, but its length is random, and it depends on the policy
being used. The conditions for which this is true are, basically, related to
the fact that the destination node can be reached in a finite number of steps
from any potential initial node (for a rigorous treatment, see Bertsekas,
2000, or Bertsekas & Tsitsiklis, 1996).

1Notice that in this work, paths may contain cycles. Paths containing cycles are also
commonly called walks in the literature.
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The overall goal will be to determine the set of probability distributions
π ≡ {p(k ′ | k); k, k ′ = 1, 2, . . . , n}, contained in the transition probabilities
matrix P, and called the choice probabilities or the policy, that minimizes

vπ (k0) = Eπ

{ ∞∑

t=0

cstst+1 | s0 = k0

}

, (2.1)

where st is a random variable containing the label of the node reached at
time step t and vπ (k0) is the total expected cost accumulated over an infinite
horizon, when starting from the initial (or source) node k0, and following
policy π . The expectation is taken with respect to the transition probabili-
ties associated with the nodes.

Thus, the main objective is to design a randomized policy minimiz-
ing the expected cost-to-go, equation 2.1, subject to an entropy constraint
controlling the total randomness spread in the network, and therefore the
exploration rate. In other words, we are looking for an optimal policy,
π∗ = argminπ [vπ (k0)] or, equivalently, an optimal transition probabilities
matrix P∗ subject to an entropy constraint. Stated differently, the problem
is to design an optimal finite, first-order Markov chain minimizing the ex-
pected cost needed to reach a destination state from an initial state, while
fixing the entropy spread in the chain.

2.1 Total Expected Cost and Markov Chains. Remember that the
essence of the problem is to reach the destination node s = d with minimal
expected cost. Once the set of transition probabilities, π , is fixed, this prob-
lem can be represented as a first-order finite Markov chain where each node
is a state. The destination state is then considered as absorbing with no out-
going link. In this framework, the problem of computing the expected cost
(see equation 2.1) from any state k is closely related to the computation of
the “average first-passage time” in the associated Markov chain (Kemeny
& Snell, 1976; Norris, 1997). The average first-passage time is the average
number of steps a random walker starting from the initial state k0 will take
in order to reach destination state d for the first time. By first-step analysis
(see, e.g., Taylor & Karlin, 1998), one can easily show that once the transi-
tion probabilities are fixed, the total expected cost vπ (k) can be computed
through the following equations:






vπ (k) =
∑

k ′∈S(k)

pkk ′ [ckk ′ + vπ (k ′)], for k '= d

vπ (d) = 0, for destination state d
, (2.2)

where the sum is taken on the successor nodes of k, S(k). These equations
can be iterated in order to find the expected costs; a closed-form solution
will be derived later and necessitates introducing of the fundamental ma-
trix of the Markov chain.
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Let us now renumber the states in order to have state k0 in the first posi-
tion (index 1) and state d in the last position (index n). After this reordering,
the formula can be put in matrix form:

v = diag(PCT) + Pv, (2.3)

where diag(M) is a column vector containing the elements on the diagonal
of matrix M, v is a n-dimensional column vector containing the expected
costs-to-go, vπ (k), for each of the (n − 1) first states, and a 0 as the last (nth)
element, while C is the matrix containing the immediate costs ckk ′ (with
cnn = 0). Of course, the superscript T denotes the matrix transpose.

From this Markov chain, one can also compute the expected number of
visits to each state in the following way (Kemeny & Snell, 1976; Norris,
1997). First, observe that the states of the Markov chain can be divided
into two families: the transient states, k ∈ {1, . . . , n − 1} and one absorbing
state, n. The transition probabilities matrix P can therefore be rewritten in
partitioned form,

P =
[

Q r
0T 1

]

, (2.4)

where Q is the (n − 1) × (n − 1) substochastic matrix of transition probabil-
ities among the transient states, r is an (n − 1) × 1 column vector represent-
ing the transition probabilities from transient states to the absorbing state
n, and 0 is an (n − 1) × 1 column vector full of 0’s. It is well known that the
probability distribution of finding a random walker, starting from state 1 at
t = 0, in any state at time step t, is provided by vector x(t) = (PT)te1, where
x(t) is an n × 1 column vector with components xi (t) corresponding to the
probability that the random walker is in state s = i at time step t and e1 is
a n × 1 column vector containing a 1 as the first element and 0’s otherwise.
When the analysis is focused on the transient states only, the correspond-
ing probability of finding the random walker in any transient state at time
step t is x̃(t) = (QT)t̃e1, where x̃(t) and ẽ1 are (n − 1) × 1 column vectors
obtained from x(t) and e1 by removing the last (nth) element.

Therefore, the expected number of visits to each transient state, when
starting from state 1 at time t = 0, is provided by

n =
∞∑

t=0

x̃(t) =
∞∑

t=0

(QT)t̃e1 = (I − QT)−1̃e1 = NT̃e1. (2.5)

The matrix N = (I − Q)−1 is usually called the fundamental matrix of the
Markov chain (Kemeny & Snell, 1976; Norris, 1997). Its elements ni j = [N]i j
correspond to the expected number of times the process is in transient state
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j if it is initiated in state i . Thus, the column vector n contains the expected
number of visits to each transient state, when starting from state 1.

In section A.1 in the appendix, we show that the expected costs v can be
expressed in closed form in terms of the fundamental matrix N. Indeed, by
partitioning the cost matrix C, containing the immediate costs ckk ′ , as

C =
[

D s
∞∞∞T 0

]

, (2.6)

equation 2.3 can be solved in terms of v and reexpressed as (see section A.1)

ṽ = N diag(QDT + rsT), (2.7)

where ṽ is a (n − 1) × 1 column vector containing the (n − 1) first elements
of v (the nth element being trivially equal to 0). These relationships will be
useful later when deriving the necessary conditions of optimality.

2.2 Controlling Randomness by Fixing the Entropy Spread in the Net-
work. Now that we have introduced the problem, we will explain how we
manage the exploration. In each state k '= n, we compute the Shannon en-
tropy (Cover & Thomas, 2006; Kapur & Kesavan, 1992; Shannon, 1948) of
the transition probabilities:

hk = −
∑

k ′∈S(k)

pkk ′ log pkk ′ , with k '= n. (2.8)

In matrix form, equation 2.8 becomes

h = −diag(Q(log Q)T), (2.9)

where the logarithm is taken elementwise. h is an (n − 1) × 1 column vec-
tor containing the hk for each transient state (for the last, absorbing, state
n, the entropy is trivially equal to 0). Thus, hk measures the uncertainty
about the choice in state k. It is equal to zero when there is no uncertainty
at all (pkk ′ reduces to a Kronecker delta); it is equal to log(mk), where mk
is the number of admissible choices (outdegree) at node k, in the case of
maximum uncertainty (pkk ′ = 1/mk ; a uniform distribution). Increasing the
entropy increases randomness; a maximum entropy aims to a completely
random choice since the next state is chosen completely at random, with a
uniform distribution, without taking the costs into account.

The global (weighted) entropy H, measuring the degree of randomness
spread in the whole network, is simply defined as the sum of the individual



2374 M. Saerens, Y. Achbany, F. Fouss, and L. Yen

entropy values in each state hk , weighted by some factor uk :

H =
n−1∑

k=1

ukhk = −
n−1∑

k=1

uk
∑

k ′∈S(k)

pkk ′ log pkk ′ . (2.10)

The factors uk weigh the contribution of each node to the global entropy
and could depend on the transition probabilities. This quantity is similar
to the entropy rate defined for stationary (or ergodic) Markov chains, in
which case the weights uk are equal to the stationary distribution of the
Markov chain (see, e.g., Shannon, 1948; Cover & Thomas, 2006). The main
difference here is that we are dealing with absorbing Markov chains, which
are therefore not ergodic.

The next step is to set the global entropy H to a predefined value, say,
H = H0, therefore fixing the global randomness occurring in the network,
and to compute the optimal transition probabilities, minimizing the total
expected cost, vπ (1).

3 Optimal Routing Policy Under Entropy Constraint

We now turn to the problem of determining an optimal policy under a
global entropy constraint. More precisely, we seek the set of transition prob-
abilities, π ≡ {pkk ′ }, for which the expected cost vπ (see equation 2.1) from
initial state 1 to destination state n is minimal while fixing the global en-
tropy in the network, H, to a constant value. It can be formulated as a con-
strained optimization problem involving a Lagrange function: minimize
vπ (see equation 2.1) subject to the constraint H = H0 (H being given by
equation 2.10). In other words, we seek P∗ = arg minP[vπ ] (see equation 2.1)
subject to the constraint

∑n−1
k=1 ukhk = H0.

In section A.2 in the appendix, we derive the form of the optimal transi-
tion probabilities distribution within state k, which appears to be a multi-
nomial logit, or Boltzmann, distribution:

pkk ′ =
exp

[
− nk

η uk
(ckk ′+v(k ′))+ 1

uk

∑
l '=n(∂ul/∂pkk ′ )hl

]

∑
l ′∈S(k) exp

[
− nk

η uk
(ckl ′+v(l ′))+ 1

uk

∑
l '=n(∂ul/∂pkl ′ )hl

] , for k '= n,

(3.1)

where nk is the kth element of n (containing as entries the first row of the
fundamental matrix N—see equation 2.5) and v(k) is the minimum ex-
pected cost computed thanks to equation 2.7. The parameter η > 0 con-
trols the entropy: the larger η, the larger the entropy. Notice that η could
be found from the relationship H0 = −

∑n−1
k=1uk

∑
k ′∈S(k) pkk ′ log pkk ′ by us-

ing, for instance, a bisection algorithm (the relation between η and H is



Randomized Shortest-Path Problems 2375

monotonically decreasing, all other parameters being fixed), but this is not
needed since η can be provided by the user in place of H0. In the sequel, it
will therefore be assumed that the user provides the value of the parameter
η instead of H0.

3.1 Fixing the Expected Entropy Spread in the Network. By looking
to equation 3.1, we observe that when a constant weight uk = 1 is assumed,
the entropy is preferably spread on the states that are seldom visited (hav-
ing a small nk). This behavior is intuitively not very appealing since the
global entropy does not properly reflect the amount of randomness in this
case. Therefore, a convenient choice would be to weigh the entropy related
to each node, hk , by the expected number of visits to this node, that is, to
set uk = nk ,

H =
n−1∑

k=1

nkhk = −
n−1∑

k=1

nk
∑

k ′∈S(k)

pkk ′ log pkk ′ . (3.2)

Interestingly enough, this particular choice will be shown to be similar
to Akamatsu’s model, which will be introduced in section 5. The global
entropy H can be interpreted as the expected total entropy spread in the
network for a random walker traveling from node 1 to node n. We finally
have to compute the second term

∑
l '=n(∂ul/∂pkk ′ )hl =

∑
l '=n(∂nl/∂pkk ′ )hl in

equation 3.1, which is done in section A.3 in the appendix:

∑

l '=n

(∂nl/∂pkk ′ )hl = nk ẽT
k ′ Nh = nk

∑

l '=n

nk ′l hl , (3.3)

where nk ′l is element (k ′, l) of matrix N and ẽk is an (n − 1) × 1 column vec-
tor full of 0’s except its kth entry containing a 1. Let us rewrite equation 3.1
by setting uk = nk , and using equation 3.3,

pkk ′ =
exp

[
− 1

η
(ckk ′ + v(k ′)) + κk ′

]

∑
l ′∈S(k) exp

[
− 1

η
(ckl ′ + v(l ′)) + κl ′

] , with k '= n

where






κk ′ =
∑

l '=n

nk ′l hl , for k ′ '= n

κn = 0, for destination state n
.

(3.4)

Notice that the second term in the exponential of the numerator of equa-
tion 3.4, κk ′ , can be interpreted as the expected entropy when starting from
state k ′. On the other hand, the first term in the exponential, (ckk ′ + v(k ′)),
corresponds to the expected cost when deciding to jump to node k ′ from
node k. This term is weighted by 1/η and is counterbalancing the expected
entropy. η plays the role of a temperature. When the global entropy H is
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small, that is, η is small as well, the first term in the exponential dominates
the second one, which can be neglected in this special case. Moreover,
when η → 0, the largest pkk ′ will dominate the other terms in the exponen-
tial of equation 3.4 and κk ′ → 0, with the result that the computation of
the expected cost, equation 2.2, reduces to Bellman’s equations for finding
the shortest path from the initial state to the destination state in this
case.

Equations 2.7 and 3.4 are thus the necessary optimality conditions.
The parameter η is supposed to be provided a priori by the user, ac-
cording to the desired degree of randomness he or she is willing to
concede: in this work, no attempt has been made to optimize or estimate
it. This would, however, be an interesting research topic for further
work.

3.2 Fixing the Expected Entropy per Visit. Yet another sensible choice
would be to fix the expected entropy per visit,

H =
∑n−1

k=1nkhk
∑n−1

l=1 nl
= −

∑n−1

k=1
πk
∑

k ′∈S(k)
pkk ′ log pkk ′ , (3.5)

where πk = nk/
∑n

l=1nl . Some calculus, similar to the previous computation,
shows that the resulting necessary conditions are

pkk ′ =
exp

[
− 1

η
(ckk ′ + v(k ′)) + κk ′

]

∑
l ′∈S(k) exp

[
− 1

η
(ckl ′ + v(l ′)) + κl ′

] , with k '= n

where






κk ′=
∑

l '=n

nk ′l hl−




∑

l '=n

nk ′l








∑

l ′ '=n

πl ′ hl ′



, for k ′ '= n

κn = 0, for destination state n

.

(3.6)

Other choices are, of course, possible, depending on the problem at
hand.

3.3 Using a Reference A Priori Policy by Fixing the Küllback Diver-
gence. In this section, we show that we could start from a reference, a
priori, policy, denoted by pref

kk ′ , and fix the Küllback divergence J (see, e.g.,
Kapur & Kesavan, 1992) between this reference policy and the policy we
are seeking. Thus, we define jk as

jk =
∑

k ′∈S(k)

pkk ′ log
pkk ′

pref
kk ′

(3.7)
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and J as

J =
n−1∑

k=1

uk jk =
n−1∑

k=1

uk
∑

k ′∈S(k)

pkk ′ log
pkk ′

pref
kk ′

. (3.8)

By proceeding as in the previous section, we easily obtain

pkk ′ =
pref

kk ′ exp
[
− nk

η uk
(ckk ′+v(k ′))+ 1

uk

∑
l '=n(∂ul/∂pkk ′ ) jl

]

∑
l ′∈S(k) pref

kl ′ exp
[
− nk

η uk
(ckl ′+v(l ′))+ 1

uk

∑
l '=n(∂ul/∂pkl ′ ) jl

] , for k '=n.

(3.9)

This time, a sensible choice could be to weigh the entropy related to
each node, hk , by the expected number of visits to this node when using
the reference policy, nref

k ; that is, to set uk = nref
k . This leads to the following

necessary conditions:

pkk ′ =
pref

kk ′ exp
[
− nk

η nref
k

(ckk ′ + v(k ′))
]

∑
l ′∈S(k) pref

kl ′ exp
[
− nk

η nref
k

(ckl ′ + v(l ′))
] , for k '= n. (3.10)

4 Computation of the Optimal Policy

Equations 2.7 and 3.4 suggest a simple iterative procedure, similar to the
well-known value-iteration algorithm, for the computation of the policy.
This first, iterative, algorithm computes the optimal policy while maintain-
ing the expected entropy spread in the network. It will be used in all our
experiments:

Algorithm 1
Computation of the optimal policy while maintaining the expected entropy
spread in the network: a first, iterative, algorithm.
Input:

• Node 1 is the initial node while node n is the destination node. The
absorbing node n can be reached from any other node of the network.
• η > 0: the parameter controling the degree of exploration.

• C =
[

D s
∞∞∞T 0

]
: the n × n cost matrix; node n is the destination node.

1. Initialize P ←
[

Q r
0T 1

]
, for instance, by setting pkk ′ = 1

mk
(k '= n) where

mk is the outdegree of node k.
2. repeat
3. if matrix (I − Q) is not of full rank then
4. return Error: the fundamental matrix is not invertible.
5. end if
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6. h ← −diag(Q(logQ)T) {see equation 2.9}.
7. Solve (I − Q)κ̃κκ = h with respect to κ̃κκ {see equation 3.4}.

8. κκκ ←
[

κ̃κκ
0

]

9. Solve (I − Q)̃v = diag(QDT + rsT) with respect to ṽ
{see equation 2.7}.

10. v ←
[

ṽ
0

]

11.





pkk ′ ←

exp
[
− 1

η
(ckk ′ + v(k ′)) + κk ′

]

∑
l ′∈S(k) exp

[
− 1

η
(ckl ′ + v(l ′)) + κl ′

] , for all k '= n, k ′

pnk ′ = δnk ′ , for destination node n
{see equation 3.4}.

12. until convergence of P.

13. return the policy P of the form
[

Q r
0T 1

]
: the transition probabilities

matrix containing the elements pkk ′ .

Notice that instead of computing the fundamental matrix, we prefer to
solve two linear systems of equations at each iteration.

The algorithm is obtained by performing a block coordinate descent on
the following Lagrange function:

£= v(1) +
∑

k '=n

λk



v(k) −
∑

k ′∈S(k)

pkk ′ (ckk ′ + v(k ′))





+ λn[v(n) − 0] +
∑

k '=n

µk




∑

k ′∈S(k)

pkk ′ − 1





+ η




∑

k '=n

nk
∑

k ′∈S(k)

pkk ′ log pkk ′ + H0





+
∑

k ′ '=n

φk ′



nk ′ −
∑

k '=n

pkk ′ nk − δ1k ′



 , (4.1)

which is identical to the Lagrange function defined in section A.2, equa-
tion A.4, except that the formula for computing the expected number of
passages, nk , is made explicit, so that the nk can now be considered as inde-
pendent variables. Indeed, n = NTe1, from which we deduce n = QTn + e1
and thus nk ′ =

∑
k '=n pkk ′ nk − δ1k ′ . Notice also that the η parameter related

to the temperature is fixed a priori (it is not considered as a variable) and is
provided by the user. The necessary conditions of optimality are the same
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as for the previous formulation detailed in section A.2 and displayed in
equation 3.4.

Setting the partial derivative of £ in terms of µk and pkk ′ equal to zero
while fixing all the other parameters provides the update equations for the
transition probabilities matrix P, which is uniquely attained. On the other
hand, setting the partial derivative in terms of the other parameters (except
η, considered as fixed) equal to zero provides the reestimation equations for
the expected costs v and the expected entropies κκκ (we easily find φk = ηκk),
which are both uniquely attained provided the matrix (I − Q) is invert-
ible. These two steps are iterated until convergence (see algorithm 1). It is
known that a block coordinate descent algorithm converges to a stationary
point (a local minimum) for continuously differentiable objective functions
provided the individual minimum for each block of variables is uniquely
attained (see, e.g., Bertsekas, 1999), which is indeed the case. Moreover, we
show in section 6 that the second model (Akamatsu’s model) solves the
same optimization problem whose solution is shown to be unique in this
new formalism. Based on this fact, we provide in section 6.3 an informal
proof showing that the stationary point obtained by algorithm 1 must be a
global minimum.

Computationally, it is very demanding since it requires, in addition to
being iterative, either the computation of the fundamental matrix, N =
(I − Q)−1, or the solution of two linear systems of equations at each iter-
ation. Section 5 introduces a much more efficient procedure to determine
the optimal policy, which is therefore recommended instead of algorithm 1.
However, in changing environments, one could initialize the policy thanks
to the procedure introduced in section 5 and then rely on local iterative
updating rules such as algorithm 1.

On the other hand, the decision for quantifying randomness by the ex-
pected entropy spread through the network is also questionable; alterna-
tive solutions are also conceivable, such as other measures of entropy (see
Kapur & Kesavan, 1992) or simply taking the sum of the variances of the
transition probabilities over all the nodes.

5 Randomized Shortest Paths Based on Akamatsu’s Model

In this section, we introduce Akamatsu’s model (Akamatsu, 1996; referred
to as the second model) and restate it into a sum-over-paths statistical-
physics formalism (see, e.g., Jaynes, 1957; Reichl, 1998; Schrödinger, 1952),
allowing us to compute the quantities of interest in a unified way. This ap-
proach can therefore be considered as a kind of discrete counterpart of the
well-known continuous-time path integral introduced by Feynman (1948).

5.1 A Statistical-Physics Framework for Akamatsu’s Model. The idea
behind this second model is to define a Markov chain for which each path
℘r from the initial state to the destination state has a probability of being
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followed proportional to exp[−θ E(℘r )], where E(℘r ) = Er is the total cost
associated with the r th path, and referred to as the energy associated to that
path. In other words, short paths are favored, and long paths are penalized.
The parameter θ is supposed to be provided a priori by the user, according
to the desired degree of randomness he is willing to concede.

As for the first model (see equation 2.1), we consider that the total cost
associated with a path is additive, that is,

E(℘r ) =
t f∑

t=0

cstst+1 , (5.1)

where s0 = k0 is the initial state and st f = d is the destination state. Here, we
assume that ℘r is a valid path from the initial state to the destination state,
that is, all cstst+1 '= ∞ along that path and all st '= d , except the last state, st f ,
which is equal to d , st f = d . Remember also that the destination state d is
made absorbing so that an infinite cost is associated with each transition
from this state. In other words, once the random walker has reached this
state, he disappears with no additional cost. The probability of following
the path ℘r is thus

P(℘r ) = exp[−θ E(℘r )]∑∞
r=1 exp[−θ E(℘r )]

. (5.2)

The set of all paths connecting the starting state k0 and the destination state
d (appearing only once on the path—node d is absorbing), on which the
probability distribution, equation 5.2, is defined, will be denoted by R.

Let us now show that all the quantities of interest can be computed
from a quantity, Z =

∑∞
r=1 exp[−θ E(℘r )], the denominator of equation 5.2,

which corresponds to the partition function in statistical physics (see, e.g.,
Jaynes, 1957; Reichl, 1998; Schrödinger, 1952) or Markov random fields
(Rue & Held, 2005). The main point is that the partition function can eas-
ily be computed from the immediate cost matrix C (see the next section).
We further define the free energy F as F = − 1

θ
log(Z) = −T log(Z), where

T = 1/θ is the temperature of the system.
Let us first compute the expected energy or cost needed to reach the

destination state from the initial state in terms of the partition function:

E = ∂(− log(Z))
∂θ

=
∑∞

r=1 exp [−θ E(℘r )] E(℘r )∑∞
r ′=1 exp [−θ E(℘r ′ )]

=
∞∑

r=1

P(℘r )E(℘r ).

(5.3)
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Moreover, it can easily be shown (Jaynes, 1957) that the moment m > 1
of the energy can be found by

E{(E − E)m} = (−1)m ∂m

∂θm (log(Z)), (5.4)

where E{.} is the expectation operator.
Now, the expected number of passages through the link k → k ′ can also

be easily computed:

ηkk ′ =
∂ F
∂ckk ′

= 1
θ

∂(− log(Z))
∂ckk ′

=
∞∑

r=1

exp [−θ E(℘r )]
Z

δ(r; k, k ′)

=
∞∑

r=1

P(℘r )δ(r; k, k ′), (5.5)

where δ(r; k, k ′) denotes the number of times the link k → k ′ is present in
path number r , ℘r , and thus the number of times the link is traversed.
The conditional probability of following the link k → k ′, that is, the transi-
tion probability pkk ′ if the resulting Markov process is a first-order Markov
chain, is then provided by

pkk ′ =
∑∞

r=1P(℘r )δ(r; k, k ′)∑n
l=1

∑∞
r=1P(℘r )δ(r; k, l)

= ηkk ′∑n
l=1ηkl

. (5.6)

On the other hand, the expected number of passages in state k is

nk =
n∑

l=1

ηlk, (5.7)

which corresponds to the expected number of incoming visits. Notice that
the expected number of visits to state k was simply denoted by nk (without
a overline) in section 3.

The total entropy spread in the network can be computed as well. First,
define the entropy H of the paths ℘r ∈ R as (Ekroot & Cover, 1993)

H =−
∞∑

r=1

P(℘r ) log P(℘r )

=−
∞∑

r=1

exp [−E(℘r )/T]
Z

log
(

exp [−E(℘r )/T]
Z

)
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= −
∞∑

r=1

exp [−E(℘r )/T]
Z

(
− E(℘r )

T
− logZ

)

= logZ + 1
T

∞∑

r=1

E(℘r )
exp [−E(℘r )/T]

Z
= logZ + E

T
. (5.8)

The entropy H can also be found by

H = −∂ F
∂T

= logZ + T
Z

∂Z
∂T

= logZ +
∞∑

r=1

E(℘r )
T

exp [−E(℘r )/T]
Z

= logZ + E
T

, (5.9)

which is indeed the same as equation 5.8.

5.2 Computation of the Partition Function Z . By following Aka-
matsu’s argument (Akamatsu, 1996), let us now show how Z can be com-
puted from the cost matrix. We start from the immediate cost matrix, C,
from which we build a new matrix, W, which simply contains the expo-
nentials of the costs ci j , that is, of the elements of C,

W = exp[−θC], (5.10)

where the exponential is taken elementwise. Now, we easily observe
that element (k0, d) of the matrix Wt (W to the power t) is [Wt]k0d =∑

r∈R(t) exp [−θ E(℘r )] where R(t) is the set of paths connecting the initial
node k0 to the destination node d in exactly t transition steps. Consequently,
the partition function is

Z =
∞∑

t=1

∑

r∈R(t)

exp [−θ E(℘r )] =
[ ∞∑

t=1

Wt

]

k0d

, (5.11)

which converges if the spectral radius of W, ρ(W), is less than 1 and de-
pends on the parameter θ . We will therefore assume in the sequel that
ρ(W) < 1. Since the matrix W contains only nonnegative elements, a suf-
ficient condition for ρ(W) < 1 is that all its row sums are less than 1, which
can always be achieved for a sufficiently large value of θ (see equation 5.10)
and thus a sufficiently low entropy. Indeed, it is well known that the spec-
tral radius of a real square matrix is always smaller than or equal to its
maximum absolute row sum norm (see, e.g., Bronson, 1989).
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More generally, element k of the dth column of the matrix
∑∞

t=1Wt cor-
responds to the partition function when starting from an initial state k. We
are therefore interested in the dth column of this matrix.

Computing this infinite series for the problem at hand is relatively easy.
By reordering the states in such a way that the initial state corresponds to
the first state (state 1) and the destination state to the last state (state n), the
matrix W takes the following form:

W =
[

Qw rw

0T 0

]

. (5.12)

Indeed, the elements of the last row are set to exp [−θ ∞] = 0 (cnk ′ =
∞); we do not allow any transition from the last (nth) absorbing state and
therefore put a 0 on every entry of this last row. Computing the series of
powers of W provides

∞∑

t=1

Wt = (I − W)−1 − I. (5.13)

Thus, assuming that the initial and the destination states are different
(n '= 1), Z can be computed thanks to

Z = [(I − W)−1 − I]1n = eT
1 [(I − W)−1 − I]en

= eT
1 (I − W)−1en = [Z]1n = z1n, (5.14)

where we posed Z = (I − W)−1 = I + W + W2 + · · ·. Notice that since the
last row of W is 0T, so are the powers of W, so that znn = 1. Matrix Z will
be called the fundamental matrix by analogy with the theory of absorbing
Markov chains (see the definition of matrix N after equation 2.5). Notice
that if the cost matrix C is symmetric (undirected network), since it is as-
sumed that ρ(W) < 1, the matrix (I − W) is positive definite.

5.3 Computation of the Main Quantities. We now have to compute
the derivatives of Z (assuming a paths’ probability distribution defined by
equation 5.2) in terms of θ and ckk ′ in order to obtain the different quantities
of interest (see equations 5.3 to 5.8), which is done in section A.4 in the
appendix. For the expected energy or cost, we obtain

E = ∂(− logZ)
∂θ

= −
eT

1 ZW′
θ Zen

z1n
, (5.15)
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where the matrix W′
θ contains the elements [W′

θ ]i j = −ci j exp[−θci j ]. The
expected number of transitions through the link k → k ′ is

ηkk ′ = ∂ F
∂ckk ′

= z1k zk ′n exp [−θckk ′ ]
z1n

, with k '= n. (5.16)

The expected number of passages through state k is

nk = z1k zkn

z1n
, with k '= n. (5.17)

Notice that the expected number of passages through state k was simply
denoted by nk (without a overline) in section 3. The transition probabilities
(see equation 5.6) are provided by

pkk ′ = zk ′n

zkn
exp [−θckk ′ ] , with k '= n. (5.18)

And finally, the entropy spread in the network is

H = −∂ F
∂T

= logZ + E
T

= log z1n + θ E . (5.19)

6 Links Between Akamatsu’s Model and the First Randomized
Shortest-Path Model

This section shows that Akamatsu’s model presented in section 5 and
the randomized shortest-path model constrained by the expected entropy
spread in the network (see section 3.1) are in fact equivalent. By equiva-
lent, we mean that both formulations solve the same constrained optimiza-
tion problem, namely, respectively, (1) the two objective functions (see sec-
tion 6.1) and (2) the two constraints on the entropy spread in the network
(see section 6.2) refer to the same quantities. Thus, both models minimize
the same objective function, subject to the same entropy equality constraint,
with respect to either the transition probabilities (first model; see section 3)
or the paths probabilities (second model; see section 6.3). The first model
thus computes an optimal set of transition probabilities, while the second
one computes an optimal set of paths probabilities. Indeed, in section 6.3,
it is shown that the optimal policy, that is, the optimal paths probability
distribution, is a Boltzmann distribution, as assumed in Akamatsu’s model
(see equation 5.2).

6.1 Equivalence of the Objective Function. As objective function,
the first model minimizes the expected cost expressed as vπ (1) =
Eπ {

∑∞
t=0 cstst+1 |s0 = k0} (see equation 2.1), the value of this expected cost be-

ing provided by the recurrence relation of equation 2.2. We show in this
section that the cost functions and the expectation operators are equivalent
in both formulations (first and second model).
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Since the cost of remaining in the absorbing destination state is zero
and the energy of a trajectory in the second model (Akamatsu) is defined
as E(℘r ) =

∑t f
t=0cstst+1 (see equation 5.1), the expected cost vπ (see equa-

tion 1.1) can be reexpressed in terms of the paths probability distribution:

vπ (1) = Eπ

{ ∞∑

t=0

cstst+1 | s0 = k0

}

= Eπ

{ t f∑

t=0

cstst+1 | s0 = k0

}

= Eπ

{
E(℘r )

}
, ℘r starting in k0 and ending in d

=
∞∑

r=1

Pr(℘r )E(℘r ), ℘r ∈ R, (6.1)

where, from the (first-order) Markov property,

Pr(℘r ) =
∏

k,k ′

(pkk ′ )δ(r;k,k ′) , (6.2)

is the probability of a trajectory ℘r ∈ R in the formalism of the first model.
Remember that δ(r; k, k ′) corresponds to the number of times the link
k → k ′ is present in path number r , ℘r . We thus end up in equation 6.1 with
the expected energy, as defined in equation 5.3, provided Pr(℘r ) = P(℘r )
(where P(℘r ) is given by equation 5.2), which is shown in the next para-
graph. Notice that it is assumed here that the model is a first-order Markov
chain. It will be shown in section 6.3 that the second (Akamatsu’s) model
minimizes the expected cost of equation 6.1.

Let us now prove that the probability of a path is equivalent in both
formulations, that is, Pr(℘r ) = P(℘r ) when equation 5.18 is true and consid-
ering a first-order Markov chain. A similar proof was already provided by
Akamatsu (1996) in his formulation of the problem. We have

Pr(℘r ) =
∏

k,k ′

(pkk ′ )δ(r;k,k ′)

=
∏

k,k ′

[
zk ′n

zkn
exp [−θckk ′ ]

]δ(r;k,k ′)

=
∏

k,k ′ [zk ′n]δ(r;k,k ′)

∏
k,k ′ [zkn]δ(r;k,k ′)

∏

k,k ′

[
exp [−θckk ′ ]

]δ(r;k,k ′)

= znn

z1n
exp

[

−θ
∑

k,k ′

ckk ′δ(r; k, k ′)

]

= 1
Z

exp [−θ E(℘r )] = P(℘r ), (6.3)
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where we used equation 5.18 as well as E(℘r ) =
∑

k,k ′ ckk ′δ(r; k, k ′), znn = 1
and z1n = Z . This shows that the paths probability distribution, equa-
tion 5.2, corresponds to (can be generated by) a first-order Markov chain.
This is, however, not true in general for arbitrary paths distributions since
higher-order Markov chains also lead to paths probability distributions on
R, but not necessarily of the form 5.2. Thus, the objective function—the
expected cost-to-go—is equivalent in both models.

6.2 Equivalence of the Entropy Concept. We now show that the two
definitions of entropy, namely equations 3.2 and 5.8, express the same
quantity. In a second paper, Akamatsu (1997) proved that the entropy de-
fined by equation 5.8 can be decomposed into the sum of two terms: a link-
based and a node-based term. Here, we adapt his proof, as well as the work
on the entropy rate of a Markov chain (Cover & Thomas, 2006), in order to
show the equivalence between the entropy concepts. We easily find

H = −
∞∑

r=1

P(℘r ) log P(℘r )

= −
∞∑

r=1

P(℘r ) log

[
∏

k,k ′

(pkk ′ )δ(r;k,k ′)

]

= −
∞∑

r=1

P(℘r )
n∑

k,k ′=1

δ(r; k, k ′) log pkk ′

= −
n∑

k,k ′=1

[ ∞∑

r=1

P(℘r )δ(r; k, k ′)

]

log pkk ′

= −
n∑

k,k ′=1

[ηkk ′ ] log pkk ′ = −
n∑

k,k ′=1

nk pkk ′ log pkk ′

= −
n−1∑

k=1

nk

n∑

k ′=1

pkk ′ log pkk ′ . (6.4)

Notice that we used ηkk ′ = nk pkk ′ as well as the definitions introduced
in section 5.1. We also needed 0 log 0 = 0 and 00 = 1. Now, equation 6.4
is exactly the entropy defined in equation 3.2. Thus, the two notions of
entropy are equivalent.

6.3 Equivalence of the Optimization Problems. We now restate the
problem of finding the optimal policy in the second, sum-over-paths,
framework. The policy in this second model corresponds to the set of paths
probabilities instead of the set of transition probabilities in the first model.
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The objective is then to find the set of paths probabilities, {P(℘r )} (the
paths probability distribution), minimizing E =

∑∞
r=1P(℘r )E(℘r ) subject

to the constraint −
∑∞

r=1P(℘r ) logP(℘r ) = H0. By defining the Lagrange
function,

£=
∞∑

r=1

P(℘r )E(℘r ) + λ

[ ∞∑

r=1

P(℘r ) log P(℘r ) + H0

]

+µ

[ ∞∑

r=1

P(℘r ) − 1

]

, (6.5)

we, not surprisingly, find the Boltzmann distribution,

P(℘r ) = exp [−θ E(℘r )]∑∞
r=1 exp [−θ E(℘r )]

= 1
Z

exp [−θ E(℘r )] , (6.6)

with θ = 1/λ, as expected. This Boltzmann distribution corresponds to a
unique, global minimum, and it is clear that there is no other stationary
point. Actually equation 6.6 corresponds exactly to the paths probability
distribution that was assumed in Akamatsu’s model (see equation 5.2).
Notice that if the constraint involves Küllback-Leibler’s divergence with
respect to a reference policy, as in section 3.3, instead of the Shannon
entropy, the whole framework remains valid (see Yen et al., 2008, for a
derivation of the main quantities in this context).

Let us now recapitulate the arguments. For the first model, the
optimal transition probabilities pkk ′ are directly found by minimizing
the objective function provided by equation 2.1, subject to an entropy
constraint (see equation 2.10). For the second (sum-over-paths) model,
the optimal paths probabilities P(℘r ) are found instead by minimizing
the objective function of equation 5.3, subject to the entropy constraint
H0 = −

∑∞
r=1 P(℘r ) log P(℘r ). The solution for this second formulation

is unique and corresponds to the Boltzmann distribution (see equa-
tion 6.6); moreover, there is no other stationary point. Therefore, this
paths probability distribution induces a directed flow (average num-
ber of passages) passing through each arc, given by equation 5.16.
This arc flow is also unique provided that ρ(W) < 1. In the case of
a near-zero entropy, if there exist several shortest paths between the
initial and the destination node, according to equation 6.6, the traffic
is distributed equally (with uniform probability) over these shortest
paths.

The transition probabilities are simply obtained by dividing the arc flow
by the total outgoing flow out of the node (see equations 5.6, 5.18). Con-
sequently, the second, sum-over-paths, model induces unique transition
probabilities and thus a unique first-order Markov model. The parameter
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1/η in the first model (see equation 3.4) plays exactly the same role as the
parameter θ in the sum-over-paths model (see equation 5.2).

Stated differently, the first model computes optimal transition probabil-
ities while the second (Akamatsu’s) model computes optimal paths prob-
abilities. Since, for a first-order Markov chain, paths probabilities can be
deduced from transition probabilities (see equation 6.2) and vice versa
(see equation 5.6), both formulations are equivalent. This shows that Aka-
matsu’s model presented in section 5 and the randomized shortest-path
model developed in section 3.1 solve the same problem by two alternative
ways.

Furthermore, let us now return to the first model and show heuristically
that the set of transition probabilities, π∗ = {p∗

kk ′ }, obtained by algorithm 1
and being a stationary point of vπ (1), corresponds to a global minimum,
at least when ρ(W) < 1. First, denote as P1 the set of paths probability dis-
tributions that are equivalent to first-order Markov chains (by equivalent,
we mean that they can be computed from a first-order Markov chain by
equation 6.2). The set P1 is a restriction of the complete, unrestricted set
containing all the paths probability distributions, denoted by P (including
also those generated by higher-order Markov chains). Now, it is clear from
the above discussion (see equation 6.3) that the global minimum of E
in terms of the P(℘r ) belonging to the complete set P , and provided by
equation 6.6, also belongs to P1. Since the objective function admits only
one stationary point (the global minimum) in P , and P1 is a restriction of
P , this global optimum is also the unique stationary point within P1 (see
the discussion following equation 6.6). Furthermore, we already know
that π∗ is a stationary point of vπ (1) (see section 4). The corresponding
paths probabilities, {P∗(℘r )}, obtained from π∗ by equation 6.2, must also
be a stationary point of E among the restricted set P1 as the two objective
functions are equivalent. Since there is no stationary value other than the
global minimum, {P∗(℘r )} must be a global minimum, and so does π∗.
This reasoning is, however, not a rigorous, formal proof since most of the
arguments are rather heuristic and the support of the paths probability
distributions is infinite in the second model. A rigorous treatment of the
properties of the solution provided by algorithm 1 is outside the scope of
this work.

Note finally that the problem can also be restated as a maximum entropy
problem as introduced by Jaynes (1957): maximize the entropy spread in
the network while maintaining a given expected cost.

7 Some Computational Issues When Computing Akamatsu’s Model
for Large Cyclic and Acyclic Networks

7.1 Computational Issues. When dealing with large graphs, the in-
version of (I − W) can be a serious issue. However, by examining equa-
tions 5.15 to 5.19, we immedialy notice that only ZTe1 = z1 and Zen = zn
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need to be computed. These two quantities can be found by solving the
linear systems of equations,

(I − W)Tz1 = e1 and (I − W)zn = en. (7.1)

Notice that these equations could also be solved iteratively by the up-
dating equations z1 ← WTz1 + e1 and zn ← Wzn + en since we assume
ρ(W) < 1.

In other words, the column vector z1 = (row1(Z))T contains the elements
of the first row of matrix Z, while the column vector zn = coln(Z) contains
the elements of the last column of Z. These linear systems of equations
can be solved efficiently, especially when the matrix W is sparse (Davis,
2006), which is often the case. Remember also that for undirected graphs,
the matrix (I − W) is positive definite.

Elementwise, these last equations yield






z11 = 1

z1k ′ =
∑

k∈P(k ′)

exp[−θckk ′ ]z1k (7.2)

and





znn = 1

zkn =
∑

k ′∈S(k)

exp[−θckk ′ ]zk ′n, (7.3)

where, as before, P(k ′) is the set of predecessors of node k ′ and S(k) is the
set of successors of node k. Equations 7.2 and 7.3 actually provide an in-
tuitive interpretation of the forward and backward variables z1k , zkn when
the maximum row sum of both matrices W and WT is less than 1. Con-
sider a special random walk defined by the transition probabilities matrix
W with absorbing state n. Since W is substochastic, the random walker has
a nonzero probability of disappearing at each time step. In this case, the val-
ues zkn in equation 7.3 can be interpreted as the probability of reaching node
n for a random walker starting in node k (see, e.g., Kemeny & Snell, 1976).
In a symmetric way, the transition probabilities matrix WT also defines a
random walk, with absorbing state 1 this time, and a similar interpretation
for the z1k values can be developed.

Moreover, there is an interesting similarity between equations 5.16 and
7.2–7.3 and the forward and backward procedure for computing the for-
ward and backward variables when estimating transition probabilities of
a hidden Markov model (Jelinek, 1997; Rabiner & Juang, 1993). These
equations are also similar to the estimation equation obtained for condi-
tional random fields (Lafferty, McCallum, & Pereira, 2001). Our results are,
however, more general since in our case, the graph contains cycles. The
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algorithm is also quite similar in spirit to the ant colony optimization algo-
rithm (Dorigo & Stutzle, 2004), where the amount of pheronome dropped
at each node k is represented by zkn.

Consequently, we obtain the algorithm displayed in algorithm 2, allow-
ing computation of the transition probabilities matrix P. Remember that
we assume that the user supplies the parameter θ in place of the entropy
value H0:

Algorithm 2
Computation of the optimal policy while maintaining the expected entropy
spread in the network: a second, more efficient, algorithm inspired by Aka-
matsu’s model.
Input:

• Node 1 is the initial node while node n is the destination node. The
absorbing node n can be reached from any other node of the network.
• θ > 0: the parameter controlling the degree of exploration.

• C =
[

D s
∞∞∞T ∞

]
: the n × n cost matrix.

1. W = exp [−θC] {Elementwise exponential; see equation 5.10}
2. if ρ(W) ≥ 1 then
3. return Error: the spectral radius is greater than one.
4. end if
5. Solve (I − W)zn = en with respect to zn. The elements of zn are zkn.
{see equation 7.1}

6. Compute

{
pkk ′ = zk ′n

zkn
exp [−θckk ′] , for all k '= n, k ′

pnk ′ = δnk ′ , for destination node n
{see equation 5.18}

7. return the policy P of the form
[

Q r
0T 1

]
: the transition probabilities

matrix containing the elements pkk ′ .

7.2 Dealing with Acyclic Networks. We now show that the computa-
tion of the optimal policy is greatly simplified when dealing with acyclic
networks or lattices. An acyclic network is a network for which there is no
cycle, that is, one can never return to the same node. An interesting pro-
cedure allowing simplification of a network with one source node and one
destination node in order to obtain an acyclic network has been proposed
by Dial (1971).

It is clear that if the graph is directed and acyclic, the matrix (I − W)
is upper triangular, and the matrix (I − W)T is lower triangular after
reordering the nodes according to a topological ordering (the topological
ordering or sorting of a directed acyclic graph is a linear ordering of its
nodes in which each node comes before all nodes to which it has outgoing
edges; see, e.g., Sedgewick, 1990). In this special case, the linear equations
defined in equations 7.1 can easily be solved by simple backsubstitution.
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Figure 1: First network used in our simulations. The immediate costs are indi-
cated on the arcs.

For instance, equations 7.2 and 7.3 provide recurrence relations that can be
solved in a forward and a backward pass since the predecessors of node
k come before k, while the successors of k come after k, once the nodes
have been reordered. This leads to an algorithm closely related in spirit to
dynamic programming or the forward and backward algorithm in hidden
Markov models.

8 Simulation Results

We illustrate the procedures for solving the randomized shortest-path
problem on three simple networks. For all networks, the algorithm detailed
in section 4 (see algorithm 1) was iterated until convergence of the transi-
tion probabilities. We also used Akamatsu’s model, as detailed in section 5
(see algorithm 2), which provides exactly the same results, as expected.

8.1 First Experiment. Our first experiment is performed on the simple
network shown in Figure 1. The network is composed of only four nodes
connected by arcs of different weights, representing costs. For this simple
network, we easily observe that the average time needed to reach destina-
tion node 4 can be made arbitrarily large by increasing the probability of
jumping from node 2 to node 3.

Figure 2 displays the average cost to reach destination node 4 when
starting from initial node 1, in terms of global entropy H spread in the
network. We clearly observe the increase in average cost when the entropy
is increased.

For illustration purposes, Figure 3 shows the resulting Markov chains
after convergence of the algorithm, including the transition probabilities
(pkk ′ ) and the average cost (v(1)), for four different values of the global en-
tropy H (= 0.5, 1.0, 1.5, 2.0).

8.2 Second Experiment. The second experiment is performed on the
network shown in Figure 4. It is composed of eight nodes connected by
edges of different weights, representing costs.
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Figure 2: Average cost, v(1), to reach destination node 4 when starting from
initial node 1, in terms of global entropy H spread in the network.

Figure 3: Resulting Markov chains together with the transition probabilities
and the average cost, for four different values of the global entropy.
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Figure 4: Second network used in our simulations. The immediate costs are
indicated on the arcs.

Figure 5: Average cost, v(1), to reach destination node 8 when starting from
initial node 1, in terms of global entropy H spread in the network.

As for the previous experiment, we display the average cost to reach
destination node 8 when starting from initial node 1, in function of global
entropy H spread in the network in Figure 5.

Figure 6 shows the resulting Markov chains after convergence of the
algorithm for four different values of the global entropy.

8.3 Third Experiment. The third experiment is performed on a 40 × 30
grid. It aims to reach a goal node, located in the lower right corner, from an
initial node, located in the upper left corner. An obstacle is placed on the
grid so that the agents have to walk around in order to avoid it. The agent
is allowed to move to a neighboring node, and a cost of 1 unit is incurred
at each move.
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Figure 6: Resulting Markov chains together with the transition probabilities
and the average cost for four values of the global entropy.

The resulting expected number of passages through every cell of the
grid for three values of θ , provided by equation 5.17, is shown in Figure 7.

9 Conclusion

This work presented a preliminary study of the randomized shortest-path
problem as well as two procedures for solving it.

The first one is similar to the value-iteration method for solving Markov
decision processes and is iterative. Its main drawback is that it is computa-
tionally demanding since it relies on iterative algorithms and necessitates
the solution of two linear systems of equations at each iteration. On the
other hand, it exploits the sparseness of the network and relies on an itera-
tive scheme, which can be useful when continual adaptation is needed, for
instance, in changing environments.

The second procedure was originally introduced by Akamatsu in
the framework of transportation networks. Based on Akamatsu’s ideas
and by revisiting the problem from a statistical physics perspective,
we show that randomized shortest-path problems can be computed ef-
ficiently by solving a simple linear system of equations. This still is
not very efficient in comparison with state-of-the-art algorithms solving
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Figure 7: Expected number of passages through every cell of the grid, for three
values of the parameter θ , and thus decreasing entropies. The agents, starting
from the upper left corner, have to reach the lower right corner. An obstacle is
placed in the center of the grid so that the agents have to walk around in order
to avoid it.

single-source, single-destination, shortest-path problems, since solving
a system of linear equations is O(n3), where n is the number of un-
knowns. However, for some sparse graphs having a special structure, this
method could eventually prove useful; this will be investigated in further
work.

Further work will be devoted to the analysis of the algorithm and the
design of other procedures, differing in the definition of the global entropy
quantifying the randomness in the network. We also plan to tackle Markov
decision processes, as well as multiple-sources multiple-destinations prob-
lems, with this approach. Furthermore, since submission of this letter,
we have exploited the randomized shortest-path distance as a dissimi-
larity measure between nodes for nodes clustering or betweenness com-
putation (Yen et al., 2008). A covariance measure between nodes could
also be defined within the same sum-over-paths framework: two nodes
would be considered as correlated if they often co-occur on the same
path.

A further application would be to design randomized edit distances or
kernel-based sequence alignment procedures accounting for all editing and
alignment paths. Yet another application would be to extend some of the re-
sults to the so-called semiring framework (Carre, 1979; Gondran & Minoux,
1984; Mohri, 2002). Finally, we also plan to investigate the links between
our proposed models and the recent work of Nesterov (2007).

Appendix: Proof of the Main Results

A.1 Computation of the Expected Cost-to-Go in Terms of the Funda-
mental Matrix. Let us start from equation 2.3, which is restated here:

v = diag(PCT) + Pv.
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Thus, we have
[

ṽ
0

]

= diag

([
Q r
0T 1

][
DT ∞∞∞
sT 0

])

+
[

Q r
0T 1

][
ṽ
0

]

, (A.1)

from which we easily deduce

ṽ = diag(QDT + rsT) + Qṽ. (A.2)

Isolating ṽ provides us with the required result:

ṽ = (I − Q)−1 diag(QDT + rsT)

= N diag(QDT + rsT), (A.3)

where N = (I − Q)−1. This equation expresses the expected cost-to-go in
terms of the fundamental matrix N, the transition probabilities, and the
cost matrix.

A.2 Determination of the Optimal Policy. The goal here is to deter-
mine the set of transition probabilities π ≡ {pkk ′ ; k = 1, 2, . . . , (n − 1); k ′ =
2, . . . , n} that minimizes the expected cost, when starting from state 1 and
subject to the entropy constraint (see equation 2.10). We therefore introduce
the following Lagrange function, taking all the constraints into account,
namely the equations computing the mean expected cost at each node (see
equation 2.2; parameters λk), the sum-to-zero constraints for the transition
probabilities at each node (parameters µk), and the entropy constraint (see
equation 2.10, parameter η),

£= v(1) +
∑

k '=n

λk



v(k) −
∑

k ′∈S(k)

pkk ′ (ckk ′ + v(k ′))





+ λn[v(n) − 0] +
∑

k '=n

µk




∑

k ′∈S(k)

pkk ′ − 1





+ η




∑

k '=n

uk
∑

k ′∈S(k)

pkk ′ log pkk ′ + H0



 . (A.4)

Strictly speaking, a constraint guaranteeing the positivity of the transi-
tion probabilities should be introduced as well, but this is not necessary
since the resulting transition probabilities will automatically be positive.
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Differentiating this Lagrange function in terms of the transition proba-
bilities, ∂£/∂pll ′ , and equating to zero gives

−λl (cll ′ + v(l
′
)) + µl + η ul (log pll ′ + 1) − η

∑

k '=n

(∂uk/∂pll ′ )hk = 0, (A.5)

where hk = −
∑

k ′∈S(k) pkk ′ log pkk ′ . Extracting log pll ′ from this equation pro-
vides

η ul log pll ′ = −µl − η ul + λl (cll ′ + v(l ′)) + η
∑

k '=n

(∂uk/∂pll ′ )hk . (A.6)

Exponentiating this last equation yields

pll ′ = exp
[−µl − η ul

η ul

]
exp

[
λl (cll ′ + v(l ′)) + η

∑
k '=n(∂uk/∂pll ′ )hk

η ul

]

.

(A.7)

Summing the equation over l ′ ∈ S(l) and observing that the probabilities
sum to one allows us to compute the first factor of the right-hand side:

exp
[−µl − η ul

η ul

]

=




∑

l ′∈S(l)

exp

[
λl (cll ′ + v(l ′)) + η

∑
k '=n(∂uk/∂pll ′ )hk

η ul

]


−1

. (A.8)

By replacing equation A.8 in equation A.7 and defining θk = −λk , we
finally obtain

pkk ′ =
exp

[
− θk

η uk
(ckk ′ + v(k ′)) + 1

uk

∑
l '=n(∂ul/∂pkk ′ )hl

]

∑
l ′∈S(k) exp

[
− θk

η uk
(ckl ′ + v(l ′)) + 1

uk

∑
l '=n(∂ul/∂pkl ′ )hl

] . (A.9)

Now, differentiating £ in terms of the expected costs, ∂£/∂v(l), l '= 1,
and equating to zero allows us to compute the Lagrange multipliers λl ,

λl =
∑

k∈P(l)

pklλk, for l '= 1, (A.10)

P(l) being the set of nodes from which node l is accessible in one step (the
predecessors of l). For the initial state, we obtain (recall that we assumed in
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section 2 that the initial state has no predecessor)

λ1 = −1. (A.11)

Defining θk = −λk provides





θl =
∑

k∈P(l)

pkl θk, for l '= 1

θ1 = 1, for initial state 1
. (A.12)

Rewriting equation A.12 in matrix form gives θ = PTθ + e1. Therefore,
when considering only the transient states, θ̃ = QTθ̃ + ẽ1. In other words,
we have

θ̃ = (I − QT)−1̃e1. (A.13)

By comparing equation A.13 with equation 2.5, we easily observe that
the Lagrange parameters vector θ̃ simply corresponds to the expected num-
ber of visits to each transient state before reaching the absorbing state—in
other words, θ̃ = n in equation A.9.

Finally, expressing the fact that the policy has a fixed entropy,

−
∑

k '=n

uk
∑

k ′∈S(k)

pkk ′ log pkk ′ = H0, (A.14)

allows us to compute the value of η in terms of H0.

A.3 Computation of
∑

l !=n(∂nl/∂ pkk′ )hl. Let us first compute∑
l '=n(∂nl/∂pkk ′ )hl for k, k ′ '= n. We have

∑

l '=n

(∂nl/∂pkk ′ )hl = ∂nT

∂pkk ′
h

= ∂(NT̃e1)T

∂pkk ′
h

= ẽT
1

∂N
∂pkk ′

h, (A.15)

where we used n = NT̃e1 (see equation 2.5).
But since N = (I − Q)−1,

∂N
∂pkk ′

= ∂(I − Q)−1

∂pkk ′

=−(I − Q)−1 ∂(I − Q)
∂pkk ′

(I − Q)−1
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= N
∂Q
∂qkk ′

N

= Nẽk ẽT
k ′ N, (A.16)

where we used the standard formula for matrix differentiation, dM−1 =
−M−1(dM)M−1 (see, e.g., Harville, 1997). Replacing equation A.16 in A.15
provides

∑

l '=n

(∂nl/∂pkk ′ )hl = ẽT
1 Nẽk ẽT

k ′ Nh

= nT̃ek ẽT
k ′ Nh

= nk ẽT
k ′ Nh

= nk
∑

l '=n

nk ′l hl , (A.17)

which is the required result.
Now, when k ′ = n (absorbing node), since the nl do not depend ex-

plicitely on the pkn (nl only depends on Q), ∂nl/∂pkn = 0 and thus∑
l '=n(∂nl/∂pkn)hl = 0.

A.4 Computation of the Derivatives of the Partition Function Z .
Notice first that in this section, we assume k '= n and n '= 1 (n is the des-
tination, absorbing, state). Remember that the partition function is Z =
[(I − W)−1]1n. First, we have to compute E :

E = ∂(− logZ)
∂θ

= −
∂θ

[
eT

1 (I − W)−1en
]

eT
1 (I − W)−1en

= −
eT

1 ∂θ (I − W)−1en

eT
1 (I − W)−1en

. (A.18)

Let us compute ∂θ (I − W)−1. By setting Z = (I − W)−1 and denoting ele-
ment i , j of Z by zi j , we obtain

∂θ (I − W)−1 =−Z(∂θ (I − W))Z

= Z(∂θ W)Z

= ZW′
θ Z, (A.19)

where the matrix W′
θ = ∂W/∂θ contains the elements [W′

θ ]i j =
−ci j exp[−θci j ]. Therefore, the expected cost needed for reaching state n
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from state 1, E , is

E = −
eT

1 ZW′
θ Zen

eT
1 Zen

= −
eT

1 ZW′
θ Zen

z1n
. (A.20)

We now turn to the computation of ηkk ′ . We easily find

ηkk ′ =
∂ F
∂ckk ′

= − 1
θ

∂ log(Z)
∂ckk ′

=− 1
θ

∂ckk′

[
eT

1 (I − W)−1en
]

eT
1 (I − W)−1en

=− 1
θ

eT
1 ∂ckk′ (I − W)−1en

eT
1 (I − W)−1en

=− 1
θ

eT
1 ∂ckk′ Zen

eT
1 Zen

= − 1
θ

eT
1 (∂ckk′ Z)en

z1n
. (A.21)

Let us compute ∂ckk′ Z = ∂ckk′ (I − W)−1:

∂ckk′ (I − W)−1 = −Z(∂ckk′ (I − W))Z

= Z(∂ckk′ W)Z

= −θ exp [−θckk ′ ] ZekeT
k ′ Z. (A.22)

Thus, ηkk ′ is given by

ηkk ′ = exp [−θckk ′ ]
eT

1 ZekeT
k ′ Zen

z1n
= z1k zk ′n exp [−θckk ′ ]

z1n
.

The expected number of passages through state k ′ is given by

nk ′ = zk ′n

z1n

n∑

k=1

z1k exp [−θckk ′ ] = z1k ′ zk ′n

z1n
, (A.23)

where we used z1k ′ =
∑n

k=1z1k exp [−θckk ′ ], which directly follows from
equation 7.2.

The transition probabilities are

pkk ′ = ηkk ′

nk
= zk ′n

zkn
exp [−θckk ′ ] , (A.24)
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which corresponds exactly to the result of Akamatsu, derived in a com-
pletely different way (see Akamatsu, 1996).

Finally, the formula for the entropy has already been derived at the end
of section 5.1; see equations 5.8 and 5.9.
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