
Dear reader, this is part of the literature review from my thesis, the
course was cancelled in my year but my supervisor was kind enough to sign
me up for the literature review part of the course as I write my thesis. If
you feel like only reviewing ~1500 words which I believe is the limit, then
you can stop at Section 3.

1 Damage Identification

Methods of damage identification that monitor changes in civil infrastructure
include methods based on modal properties, methods based on a model-
updating procedure, probabilistic approaches e.g. using Bayes theorem, and
pattern recognition approaches such as artificial neural networks.

A significant amount of the early research into damage identification
of civil infrastructure is based on modal properties, attempting to detect
damage by classifying changes in natural frequency or mode shape.

Damage was applied to the I-40 bridge, a 130m girder bridge over the
RIO Grande river, before it’s demolition, and data recorded from ambient
vibration tests. The damage was intended to simulate fatigue cracking and
was inflicted with torch cuts in a girder. In the fourth and most severe
damage state the web of the girder contained a 6 foot cut and the flange was
completely cut through. In [1] it is noted that changes in dynamic properties
were only observed in the fourth damage state. Furthermore, changes of
similar magnitude were observed from repeated ambient vibration tests on
the undamaged structure.

In [2] introduced the use of the curvature of mode shapes which is ob-
tained by differentiating the displacement mode shape twice. Changes in the
curvature of the mode shape are localized to the damage and furthermore
the absolute difference of the curvature mode shapes of the damaged and
undamaged structures increase with damage severity [3]. However the [2]
study was on a computer model of a beam, and did not consider robustness
to noise.

In [4] changes in mode shapes, from the same I-40 experimental data,
were shown to be statistically different from the undamaged state for all dam-
age states, however the analysis could not discriminate whether the source of
the change was structural damage. The damage in the fourth damage state
was localized, however at this point the bridge was sagging by 2cm at the
damage location, and according [5] the bridge would have collapsed under a
live load.

In [6] changes in natural frequency and mode shapes from numerical
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simulations are used to determine the location and the extent of damage on
a rigid frame and then to assess the safety of the structure. However this
paper highlights two issues common in the literature. Modal parameters
corresponding to a baseline or “healthy” state are required, and robustness to
noise is not addressed in the work. The requirement of “baseline” data is not
a fatal flaw and could be addressed in a number of ways: 1) the baseline state
comes from sensor measurements taken for newly built structures, 2) existing
structures could be monitored for any changes after sensor installation, not
knowing whether the structure was already damaged or not, 3) a FEM is
used to generate an approximation of the baseline state. The robustness to
noise is a more crucial problem because civil structures will be subjected
to environmental factors such as temperature changes. The work [6] simply
states “the existence of noise in the data processing should be addressed”.

The 64m concrete Dogna bridge in Italy was built in 1978 and suffered
from a strong flood in 2003. In 2008, prior to demolition, an experimental
campaign was carried out where six damage configurations were applied to
the bridge in the form of notches cut with a hydraulic saw. In [7] changes in
modal curvature were succesfully used to identify the location of the damage.
However the dynamic tests were all carried out under similar environmental
conditions, thus the robustness to noise was not investigated.

In concrete structures with reinforcing steel bars, the bar are tensioned
such that the concrete remains in compression. Once the steel bars have
corroded and failed the concrete bridge is liable to collapse. However the
stiffness of the bridge is mostly contributed by the concrete, the corrosion of
the steel has little influence on the dynamics, until the steel bars and bridge
have failed [8].

In [9] a model-updating approach is applied which minimizes the dif-
ference in mode shapes. This approach was validated on the Z24 highway
bridge in Switzerland, which is a 58m pre-stressed concrete bridge. The
damage scenario considered was the lowering of one of the supporting piers
(originally at a height of 44m) by 95mm. In this study only a single dam-
age scenario was considered and environmental effects such as temperature
which could represent a false positive damage scenario were not considered.

Model-updating approaches compare measurement data with responses
from an analytical model and attempt to minimize the difference by updat-
ing model parameters. One problem with optimization algorithms used to
update model parameters is that they may find a local rather than a global
optimum. Evolutionary algorithms are good candidates for such problems
and in [10] the particle swarm optimization algorithm is used as a model-
updating approach using vibration data. The approach was experimentally
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verified against data from a 129m railway viaduct.
Health monitoring based on an analytical model imposes a challenge

because an analytical model is required and the necessary data for building
an analytical model is not always available. This is because civil infrastucture
is not always built precisely to the original design, due to changes in orders
or due to on-site construction constraints. Moreover, in the case of concrete,
uniform material properties are not guaranteed.

A Bayesian probabilistic approach was applied in a laboratory test to a
reinforced-concrete bridge column [11], this method compared the relative
damage probabilites of different damage events based on data from vibration
tests. The method has the potential advantage of not requiring an accurate
analytical model, yet the study was only on a single column of a bridge and
it was a laboratory experiment that did not account for environmental noise.

2 Machine Learning

Machine learning based approaches map inputs to outputs based on previ-
ously given input-output pairs, known as training data. Supervised learning
methods require the existence of data corresponding to damage states, which
is unlikely in the case of civil infrastructure. Unsupervised learning methods
classify data into clusters without pre-existing labels. One-class classifica-
tion is a form of outlier detection that can be considered a special case of
supervised-learning, where only one class of training data is present in the
training data.

In [12] a number of damage identification experiments were applied that
attempted to identify damage on an aircraft wing. The study showed damage
localization and assessment to be possible with machine learning methods
however the experiments were in a controlled laboratory setting without any
environmental factors present. In the same paper it is argued that “damage
prediction cannot be addressed by machine learning methods in general”.

In [5] a FEM of the 214m Clifton suspension bridge in Bristol, England is
used to generate data corresponding to healthy and damaged states, namely
damage to the girders. Environmental factors were considered by heating
one side of the model by 30 ◦C. In order to generalize the classification
problem, data was generated by simulating a vehicle moving at 3 different
speeds. The vehicle was simulated using 2 concentrated loads, one per axle.
Features were extracted from simulated vibration data and given as input
to two unsupervised neural networks. The better-performing of the two was
DIGNET [13] with a damage detection rate of 70%.

3



An ANN is used to detect damage from dynamic responses from a FEM
of a railway bridge in [14]. To accomplish this an ANN is trained on past
acceleration responses from the healthy bridge and then used to predict
future values, the difference between predicted and measured data are used
as a damage indicator. While prediction of subsequent acceleration data
was possible, the only loading applied was one moving vehicle, a train, no
additional vehicles or second lane of traffic. Furthermore the authors suggest
further work regarding the effect of environmental and operational effects.

The Syndey Harbour Bridge (SHB) is a steel-reinforced concrete bridge
built in 1932. The SHB consists of 800 jack arches in longitudinal direction.
In an experimental campaign each jack arch was fitted with 3 accelerometers.
It was known that one of the arches was cracked. Two very interesting papers
applied damage detection to acceleration data collected from the sensors on
the SHB. Both of these papers, unlike any of the works discussed so far,
make use of structural information of the bridge.

[15] uses the idea that if an arch on the SHB is healthy then accelerome-
ters would move together, if there is a crack then they would move differently.
An SVM was trained using labeled data from features combining data from
sets of 3 accelerometers on an arch. A one-class SVM (OCSVM) which is an
unsupervised variant of the SVM that is trained only on the healthy data,
was also tested. The supervised variant achieved an accuracy of approxi-
mately 0.97 and the unsupervised approximately 0.71.

Two methods were applied in [16] using the idea that similar substruc-
tures should behave similarly. k-means clustering was applied to the features
collected from each joint. With k-means k=2 and only considering 6 joints,
including one known damaged joint, a cluster was formed containing pri-
marily features from the damaged joint. This method did not perform well
when the amount of joints considered was increased to 71. The other method
applied in [16] considered a “joint representative”, a feature that is the mean
of the features from one joint. Then a pairwise map was created using the
euclidean distance between each pair of joint representatives. This method
detected the known damaged joint, another joint with a known faulty sensor
and a third joint with unknown damaged state.

3 Practical Considerations

Any SHM system that is deployed on a real-life structure must consider
the environmental and operational effects that will affect the responses of
the bridge. Temperature changes the stiffness properties of a bridge deck
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resulting in different responses throught a day or year, and noise from traffic
on another lane will also make damage identification more difficult.

A regression analysis was applied to acceleration data from the Alamosa
Canyon Bridge in New Mexico in [17]. The natural frequency varied approx-
imately 5% during the 24 hour interval when measurements were taken and
the frequency was well correlated with temperature. Measured temperatures
exceeded 45 celcius and the eastern and western sides of the bridge showed
a large temperature gradient, because the bridge is oriented north to south.
In [18] a linear relationship is shown between the 1st and 2nd eigenfrequen-
cies of the Z24 bridge in Zwitzerland and temperature above 0 celcius, and
a separate linear relationship below temperature below 0 celcius. The linear
relationship was related to the presence of the asphalt on the bridge.

An integrated machine learning algorithm, combining techniques includ-
ing PCA, is presented in [19] for separating the individual components of
the deflection signal into componenets with separate frequencies. When the
noise level was under 10%, each component (temperature, live load, struc-
tural damage) was succesfully separated based on data from a computer
model of a long-span bridge. A linear relationship between temperature
and deflection was assumed. Temperature was decomposed into two sinu-
soidal components, daily and annual. An auto-associative neural network is
employed for separating the effect of damage in extracted features from re-
sponses caused by environmental variations of the system [20]. However the
experiment was on a numerical simulation of a hard drive, and a laboratory
test on a spring-mass system. The authors admit that several issues are to
be addressed before the approach can be used on real structures.

In a real-life installation the possibility that a sensor has developed a
fault and that the received signal is incorrect must be considered, in the
work on the SHB [16] one of the sensors was faulty, which was detected as
damage. Damaged sensors can be detected via sensor data reconstruction.
In this approach sensor data is reconstructed based on spatial and temporal
correlations among the sensor network. If there are discrepancies between
the measurement data and reconstructed data then the sensor may be faulty.
Spatial correlations are used to reconstruct sensor data via PCA [21], mini-
mum mean square error estimation [22], and support vector regression [23].
A recurrent neural network (RNN) was used that includes both spatial and
past temporal data [24]. More recently in 2019 a bidirectional RNN includes
more information by considering spatial and both past and future temporal
correlations [25]. This method outperformed a number of existing methods
on their test set, however the test data was from numerical simulation of an
unvalidated model.
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4 Conclusion

Early work on damage identification of civil infrastructure was largely fo-
cused on the analysis of modal properties such as mode shapes while recent
work tends to employ machine learning, with particular use of unsupervised
methods such as the OCSVM. Feature extraction is arguably the most im-
portant and difficult step in ML-based health monitoring [12]. Much of the
existing research suggests promising results in a simulated or laboratory set-
ting, and does not consider the difficulties that environmental or operational
effects provide. Two works that succesfully detected aprioi known damage
on the SHB combined machine learning techniques with knowledge about
the behaviour of the structure.

{TODO: more on: anomaly detection. SHM installations in real life, and
anomaly detection of non-bridge structures e.g. levees. and conclusion.}
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