diff --git a/libs/langchain-mongodb/langchain_mongodb/vectorstores.py b/libs/langchain-mongodb/langchain_mongodb/vectorstores.py index 288ab629..e50ea8a3 100644 --- a/libs/langchain-mongodb/langchain_mongodb/vectorstores.py +++ b/libs/langchain-mongodb/langchain_mongodb/vectorstores.py @@ -877,6 +877,26 @@ def similarity_search_by_vector( *args: Any, **kwargs: Any, ) -> list[Document]: + """Return MongoDB documents most similar to the given query vector. + + Atlas Vector Search eliminates the need to run a separate + search system alongside your database. + + Args: + query_vector: Embedding vector to search for. + k: (Optional) number of documents to return. Defaults to 4. + pre_filter: List of MQL match expressions comparing an indexed field + post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages + to filter/process results after $vectorSearch. + oversampling_factor: Multiple of k used when generating number of candidates + at each step in the HNSW Vector Search. + include_embeddings: If True, the embedding vector of each result + will be included in metadata. + kwargs: Additional arguments are specific to the search_type + + Returns: + List of documents most similar to the query vector. + """ tuple_list = self.vector_store._similarity_search_with_score( query_vector, *args,