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 Bayes Factors

 Robert E. KASS and Adrian E. RAFTERY*

 In a 1935 paper and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a

 scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when

 the prior probability on the null is one-half. Although there has been much discussion of Bayesian hypothesis testing in the context
 of criticism of P-values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this article we
 review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology, and

 psychology.

 We emphasize the following points:

 * From Jeffreys' Bayesian viewpoint, the purpose of hypothesis testing is to evaluate the evidence in favor of a scientific theory.
 * Bayes factors offer a way of evaluating evidence in favor of a null hypothesis.
 * Bayes factors provide a way of incorporating external information into the evaluation of evidence about a hypothesis.

 * Bayes factors are very general and do not require alternative models to be nested.
 * Several techniques are available for computing Bayes factors, including asymptotic approximations that are easy to compute

 using the output from standard packages that maximize likelihoods.
 * In "nonstandard" statistical models that do not satisfy common regularity conditions, it can be technically simpler to calculate

 Bayes factors than to derive non-Bayesian significance tests.
 * The Schwarz criterion (or BIC) gives a rough approximation to the logarithm of the Bayes factor, which is easy to use and does

 not require evaluation of prior distributions.

 * When one is interested in estimation or prediction, Bayes factors may be converted to weights to be attached to various models
 so that a composite estimate or prediction may be obtained that takes account of structural or model uncertainty.

 * Algorithms have been proposed that allow model uncertainty to be taken into account when the class of models initially considered
 is very large.

 * Bayes factors are useful for guiding an evolutionary model-building process.
 * It is important, and feasible, to assess the sensitivity of conclusions to the prior distributions used.

 KEY WORDS: Bayesian hypothesis tests; BIC; Importance sampling; Laplace method; Markov chain Monte Carlo; Model selection;
 Monte Carlo integration; Posterior model probabilities; Posterior odds; Quadrature; Schwarz criterion; Sensitivity
 analysis; Strength of evidence.

 1. INTRODUCTION

 The Bayesian approach to hypothesis testing was devel-

 oped by Jeffreys ( 1935, 196 1 ) as a major part of his program

 for scientific inference. Although Jeffreys called his methods

 "significance tests," apparently borrowing the term from
 Fisher, this is misleading, because Jeffreys's perspective and
 goals were quite different. Jeffreys was concerned with the

 comparison of predictions made by two competing scientific
 theories. In his approach, statistical models are introduced

 to represent the probability of the data according to each of
 the two theories, and Bayes's theorem is used to compute
 the posterior probability that one of the theories is correct.

 Considerable attention has been given to distinctions be-
 tween the two approaches (e.g., Berger and Delampady 1987,
 Berger and Berry 1988, and references therein). Often lost
 from the controversy, however, are the practical aspects of
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 Contract N-00014-91-J-1074, by the Ministere de la Recherche et de l'Espace,
 Paris, by the Universite de Paris VI, and by INRIA, Rocquencourt, France.
 Raftery thanks the latter two institutions, Paul Deheuvels, and Gilles Celeux
 for hearty hospitality during his Paris sabbatical in which part of this article
 was written. The authors are grateful to former editor Don Guthrie for
 encouraging them to write this article, to David Madigan and Larry Was-
 serman for many helpful comments and discussions, and to Jim Albert,
 James Dickey, Andrew Gelman, Julia Mortera, Michael Newton, Sue Ro-
 senkranz, Michael Sobel, Mike Titterington, the editor, the associate editor,
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 the Bayesian methods: how conclusions may be drawn from

 them, how they can provide answers when non-Bayesian
 methods are hard to construct, what their strengths and lim-
 itations are. These concerns are the focus of this article. We

 will also discuss the Bayesian approach to accounting for

 uncertainty in the model-building process, which is closely

 connected to the methodology for hypothesis testing.

 In Section 2 we motivate the work with several applications

 from the areas of genetics, sports, ecology, sociology, and

 psychology. These help connect hypothesis testing with
 model selection and introduce several problems that Bayesian

 methodology can solve, including the evaluation of the ev-

 idence in favor of a null hypothesis, the inclusion of other

 information in the weighing of evidence, the comparison of
 nonnested models, and accounting for uncertainty in the

 choice of models. In Section 3 we introduce the Bayes factor,

 which is the posterior odds of one hypothesis when the prior

 probabilities of the two hypotheses are equal.

 Bayesian methods involve integrals and thus, often, nu-

 merical integration. Many integration techniques have been

 adapted to problems of Bayesian inference, including the

 computation of Bayes factors; this is discussed in Section 4.
 Bayes factors require priors on the parameters appearing in
 the models that represent the competing hypotheses. The

 choice of these priors and the extent to which Bayes factors
 are sensitive to this choice is discussed in Section 5.
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 In Section 6 we take up the problem of accounting for

 uncertainty about model form. The data analyst is often faced
 with many models that involve different assumptions, dis-

 tributional forms, or sets of covariates. Although he or she
 may wish to summarize findings with a single model, there

 are usually many choices to be made, and in estimating

 quantities of interest it is desirable to provide an assessment

 of the uncertainty that accounts for the model-building pro-

 cess itself. This can be done with Bayesian methods, in which
 Bayes factors are used to calculate the posterior probabilities

 of the models considered.
 In Section 7 we return to the applications and show how

 the methods reviewed in Sections 3-6 may be used to solve

 the problems posed in Section 2.
 There has been much controversy about Bayes factors. In

 Section 8 we discuss several issues, including the purpose of

 testing sharp hypotheses, disagreements between Bayes fac-

 tors and P values, and alternative model selection criteria.
 In Section 9 we briefly mention some other work and provide

 references to the calculation of Bayes factors for some specific
 models. Finally, in Section 10 we conclude by summarizing
 the most important points and highlighting outstanding
 problems.

 2. APPLICATIONS

 In this section we present five applications that pose prob-

 lems usefully solved with Bayes factors. In the first two the
 goal is to evaluate the evidence in favor of a null hypothesis.
 The third involves irregular, nonnested models. The fourth
 has to do with drawing inferences while trying to account

 for the uncertainty in modeling; the fifth, with determination
 of which of two sets of alternative explanatory variables better
 predicts some binary repeated-measures data. The latter will

 lead to computational difficulties solved by some of the tech-
 niques reviewed in this article. Here we describe the prob-

 lems; in Section 7 we describe solutions to them.

 Application 1: Escherichia coli Mutagenesis

 In an experiment in molecular biology (Sklar and Strauss

 1980), the investigators hypothesized that in the uvrE strain

 of E. coli bacteria, mutations leading to "acetate utilization
 deficiency," would occur by an unusual error-prone DNA
 repair mechanism. As a consequence, this mutation would
 fail to be linked to mutations at neighboring loci. Specifically,

 they noted that if the acetate utilization deficiency mutation
 occurred during DNA replication, then it would be linked
 to the relatively rare trait of "rifampin resistance," but if the
 error-prone repair mechanism were responsible, then there
 would be no such linkage. The investigators thus created a

 pair of cell lines, of which one contained cells "selected" for
 rifampin resistance, and the other contained "unselected"
 cells. The absence of linkage, predicted by the error-prone
 repair hypothesis, would imply that the proportions Pi and
 P2 of bacteria exhibiting acetate utilization deficiency in the
 "selected" and "unselected" cell lines would be equal. When
 the investigators took samples from each cell line and found

 i5l and 132 to be approximately equal, they believed that this
 ought to have represented fairly strong evidence in favor of

 error-prone DNA repair.

 Already there is an interesting problem here. The inves-
 tigators understood that the hypothesis of no linkage cor-

 responded to the statistical null hypothesis Ho: Pi = P2, and
 they computed Pearson's chi-squared statistic to test it. They
 found that the chi-squared test did not reject the null hy-

 pothesis Pi = P2, but they were aware that the usual inter-
 pretation of significance tests is that they may be used only
 to reject hypotheses and do not offer an assessment of the
 strength of the evidence in favor ofthe null hypothesis. Thus

 they were left in doubt about the question that they thought
 their data should have been able to answer.

 In fact, there is more to the story. They also had data on

 12 other strains of E. coli, which showed a range of variation
 in the differences between Pi and P2. There clearly was con-

 siderable related information provided by the other strains,
 and it was desirable to try to use that information in the

 statistical analysis of the uvrE data.

 This first application poses several problems. First, the

 investigators wished to know the strength of the evidence
 provided by the data in favor of their scientific hypothesis,
 which was translated to a statistical hypothesis. Second, the
 hypothesis at issue was the n ull, and the failure of the Pearson
 chi-squared statistic to reject it did not indicate the strength
 of evidence in its favor. Third, there were other data that
 could be used to construct an alternative hypothesis; that is,
 there was prior information. These facets of the problem
 suggest that the Bayesian approach could be useful.

 In the next application, evidence in favor of the null is

 again at issue, but prior information is less well documented.
 This example concerns the evidence against extrabinomial
 variability.

 Application 2: The Hot Hand

 It has been argued that belief in the "hot hand" in bas-
 ketball is based on misperception of random sequences

 (Gilovich, Vallone, and Tversky 1985$). That is, erratic be-
 havior of shooting may not reflect any real tendency for
 players to have good streaks or bad streaks but may instead
 be consistent with a stable shooting percentage. If there were

 a strong tendency for players to have good and bad streaks,
 then one would expect to see this expressed in good and bad
 days. In fact, many people who engage in athletic activity
 do seem to think that they themselves have good days and
 bad days. Fans often have similar beliefs about players. As
 a check on results reported by Gilovich et al. (1985), one
 of us (Kass) collected data on Larry Bird's game-by-game
 performance during the 1986-1987 season. Bird's field goal
 shooting percentage ranged from 21% to 92%, with an av-
 erage of 53.5% over the 44 games that were reported in The
 Boston Globe. The null hypothesis was that Bird's shooting
 percentages resulted from 44 binomial distributions all hav-
 ing the same probability of success; that is, from 44 batches
 of independent coin flips with a "Larry Bird coin."

 It turned out that the null-hypothetical binomial model
 fit these data fairly well. That is, there was not enough vari-
 ability in these data to reject the null hypothesis that each

 shot was exactly analogous to a flip of a coin. Here, however,
 it was not clear whether the data failed to reject the null
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 hypothesis because the null hypothesis was true or because

 the sample size was too small. To check this, an alternative

 to the binomial could be constructed and the posterior odds
 of the binomial calculated. A particularly simple alternative
 is to assume that the binomial parameters vary across games

 according to a beta distribution. In addition, Kass collected
 more data, using Vinnie Johnson, the player who at that
 time seemed to be the most commonly cited example of a
 "streak shooter," as opposed to Larry Bird, who was viewed
 as a relatively stable shooter. Kass obtained Johnson's shoot-
 ing data for 380 games during the 1985-1989 seasons.

 Bayes factors allow easy comparison of nonnested models

 and of irregular models. This is illustrated in the next ap-
 plication.

 Application 3: Ozone Exceedances

 As described by Smith ( 1989), ground-level ozone is a topic

 of concern because high levels of ozone indicate that the air is
 polluted. U.S. standards specify that a threshold level be ex-
 ceeded on no more than three days in any three-year period.
 In a number of U.S. cities, including Houston, Texas, this stan-
 dard is far from being met, and the task of regulatory bodies
 such as the Texas Air Control Board is to introduce measures
 to reduce the frequency and level of high exceedances.

 The question of whether ozone exceedances were decreas-
 ing in Houston may be examined using the times of occur-
 rence of clusters of exceedances above the threshold of 16

 parts per 100 million (pphm) between 1974 and 1986, de-
 seasonalized; the data were given by Raftery (1989, Table
 1). Exceedances may be modeled as a Poisson process with

 a rate that is perhaps varying over time. Raftery ( 1989) con-
 sidered three models for the rate that represent (a) no change.
 (b) a gradual decrease, and (c) an abrupt decrease. There
 are several interesting features of this application. Models

 (b) and (c) are not nested. In addition, model (c) is not a
 regular statistical model in that it has a highly discontinuous
 likelihood function. As a result, frequentist methods for test-
 ing (a) against (c) are complex to develop, whereas Bayes
 factors are fairly simple to calculate. We know of no fre-

 quentist way of testing (b) against (c). The analysis suggested
 a more precise mechanism and, potentially, a more devel-
 oped statistical model, illustrating that Bayes factors are not
 restricted to the comparison of previously formulated hy-
 potheses but are also useful for guiding an evolving model-
 building process.

 In the foregoing applications, simple plausible models were
 used to represent competing hypotheses. In each case,
 though, one could phrase the question differently by asking
 which of the models fits the data better. That is, the problem
 of testing a hypothesis was identified with one of model se-

 lection. But the connotation of the phrase "model selection"
 differs according to whether the model comes from under-
 lying theory or from looking at the data. If the latter, then
 Bayes factors can still be used, but choosing a model may
 no longer be the primary goal.

 This arises, for example, when one is interested in the effect

 of one variable on another and where there are several other

 possible covariates to be included in a regression equation. One

 often is not sure of having chosen exactly the right set of co-

 variates, and this is a source of uncertainty that should be taken

 into account. Similarly, other functional or distributional as-

 sumptions may lead to different estimates of quantities of in-

 terest, and again, one would like to take account of uncertainty

 about the assumptions within the estimation process. The
 Bayesian approach allows this to be done in a natural way by

 averaging over the candidate models with their posterior prob-

 abilities as weights. The following application raises this issue,

 where the competing models correspond to different link func-

 tions in a generalized linear model.

 Application 4: Educational Transitions

 Do social class background, ability, and type of school

 attended affect educational attainment? These questions were
 addressed in the context of Ireland by Greaney and Kelleghan

 ( 1984), who concluded that the Irish educational system is

 approaching the meritocratic ideal. By this they meant that
 progress within the system is determined largely by educa-

 tionally relevant attributes and not by other, educationally
 irrelevant, attributes such as social class. One question of

 particular policy interest is whether and to what extent stu-
 dents in vocational (nonacademic second-level) schools drop
 out of school earlier than their counterparts in secondary

 (academic second-level) schools with the same ability and
 social class origin.

 The questions may be addressed by reanalyzing the lon-

 gitudinal data of Greaney and Kelleghan ( 1984) using mod-

 els based on logistic regression. They then reduce to questions
 about the presence or absence of the effects of interest in the
 regression model and their size. Questions about the size of

 these effects have to be answered in the presence of several

 competing models (in this case different link functions) be-
 tween which the data do not distinguish clearly but which
 nevertheless yield very different results. It is essential to take

 account of this model uncertainty.

 In the final application, simple approximate methods were

 applied in a modestly complicated setting (i.e., repeated-
 measures logistic regression with alternative predictors). It
 was desired to check the modeling assumptions and the ac-

 curacy of the asymptotics used. This raised problems of
 computation and the determination of prior distributions.

 Application 5: Human Working Memory Failure in
 Computer-Based Tasks

 In human-computer interaction it is of interest to char-

 acterize tasks that tend to lead to human error, so that pro-

 cedures may be written to avoid them. Carlin, Kass, Lerch,
 and Huguenard ( 1992) have described one such effort in an
 experimental study involving the data base management
 system SQL, which presented subjects with query tasks of
 varying complexity (such as "find all customers having an
 outstanding invoice of more than $200"). Understanding of
 errors is guided by cognitive psychological theory concerning
 overload of what is now called "working memory" (a concept

 that has replaced and refined what used to be called short-

 term memory). Thus the notion is that errors tend to occur

 when human working memory is overloaded because of ex-
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 cessive demands in the task. At issue in this study was
 whether overload tended to be due to (a) the number of

 conditions in the query or (b) the complexity of the query.
 To determine which characterization led to better predictions
 of error rates, two alternative statistical models were con-

 structed based on alternative predictor variables, either the
 number of conditions or a pair of measures of query com-
 plexity.

 There were 20 experimental subjects, each of whom was
 given 50 tasks to complete. Half the subjects received a "cue,"
 which was supposed to remind them of the essential feature
 of the problem and to prevent them from making the error
 under study. Carlin et al. ( 1992) used a logistic regression
 model with random subject ability effects (a single number
 for each subject) nested within the cue effect, together with
 the respective predictor variables. The two competing models
 had four parameters in common; the number-of-conditions
 model had one additional parameter (the coefficient of the
 predictor), whereas the query-complexity model had two
 additional parameters (the coefficients of the two predictors).
 Evaluation of the likelihood in either model required the
 numerical calculation of an integral due to the random sub-
 ject effects.

 3. BAYES FACTORS

 3.1 Definition

 We begin with data D, assumed to have arisen under one

 of the two hypotheses H1 and H2 according to a probability
 density pr(D I H1) or pr(D I H2). Given a priori probabil-
 ities pr(H1) and pr(H2) = 1 - pr(Hi), the data pro-
 duce a posteriori probabilities pr(Hi ID) and pr(H2 I D)
 = 1 - pr(H1 I D). Because any prior opinion gets transformed
 to a posterior opinion through consideration of the data, the
 transformation itself represents the evidence provided by the
 data. In fact, the same transformation is used to obtain the
 posterior probability, regardless of the prior probability. Once
 we convert to the odds scale (odds'= probability/( 1 - prob-
 ability)), the transformation takes a simple form. From
 Bayes's theorem, we obtain

 pr(HkID) =pr(D IHk)pr(Hk)
 pr(D I HI)pr(HI) + pr(D I H2)pr(H2)

 (k= 1, 2),

 so that

 pr(Hi I D) pr(D I HI) pr(H1)

 pr(H2 ID) pr(D I H2) pr(H2)

 and the transformation is simply multiplication by

 B12 = pr(D I HI)
 B2=pr(D IH2)(1

 which is the Bayes factor. Thus, in words,

 posterior odds = Bayes factor X prior odds,

 and the Bayes factor is the ratio of the posterior odds of H1

 to its prior odds, regardless of the value of the prior odds.
 (The terminology is apparently due to Good 1958, who at-

 tributed the method to Turing in addition to, and indepen-

 dently of, Jeffreys at about the same time; see Good 1983.)

 When the hypotheses H1 and H2 are equally probable a priori

 so that pr(H1) = pr(H2) = .5, the Bayes factor is equal to

 the posterior odds in favor of H1. The two hypotheses may

 well not be equally likely a priori, however.

 In the simplest case, when the two hypotheses are single

 distributions with no free parameters (the case of "simple
 versus simple" testing), B12 is the likelihood ratio. In other

 cases, when there are unknown parameters under either or

 both of the hypotheses, the Bayes factor is still given by ( 1 ),

 and, in a sense, it continues to have the form of a likelihood

 ratio. Then, however, the densities pr(D I Hk) (k = 1, 2) are
 obtained by integrating (not maximizing) over the parameter
 space, so that in Equation ( 1),

 pr(D I Hk) = f pr(D I Ok, Hk) ( Ok IHk) dOk, (2)

 where Ok iS the parameter under Hk, ir( Ikl Hk) is its prior
 density, and pr(D1 Ok, Hk) is the probability density of D
 given the value of Ok, or the likelihood function of 0. Here

 Ok may be a vector, and in what follows we will denote its
 dimension by dk.

 The prior distributions lr(Ok I Hk) (k = 1, 2) are necessary.
 This may be considered both good and bad. Good, because

 it is a way of including other information about the values

 of the parameters (as in Application 1). Bad, because these
 prior densities may be hard to set when there is no such

 information. We discuss the problem of setting priors and

 assessing sensitivity to the choices in Section 5.

 The quantity pr(D I Hk) given by Equation (2) is the mar-
 ginal probability of the data, because it is obtained by inte-

 grating the joint density of (D, ok) given D over 0k. It is also

 the predictive probability of the data; that is, the probability
 of seeing the data that actually were observed, calculated

 before any data became available. It is also sometimes called
 a marginal likelihood, or an integrated likelihood. Note that,
 as in computing the likelihood ratio statistic but unlike in
 some other applications of likelihood, all constants appearing

 in the definition of the likelihood pr(DI Ok, Hk) must be
 retained when computing B12. In fact, B12 is closely related

 to the likelihood ratio statistic, in which the parameters Ok
 are eliminated by maximization rather than by integration.
 We discuss this relationship in Sections 4.1.2 and 4.1.3.

 Other notations are often used for the Bayes factor. When
 many hypotheses are involved, we will write Bik as the Bayes

 factor for Hj against Hk. Often, one of the hypotheses is
 considered the null and thus is denoted by Ho. In this case
 if there is only one alternative, it will be denoted by H1, so

 that, putting pr(D I H0) in the numerator, the Bayes factor

 becomes Bo I. In this situation Jeffreys instead used K. When
 comparing results with standard likelihood ratio tests, it is
 convenient to instead put the null hypothesis in the denom-

 inator of ( 1) and thus use BIo as the Bayes factor.
 For the usual (non-Bayesian) large-sample distribution

 theory of likelihood ratio tests to be applicable, the null must

 be nested within the alternative. That is, there must be some

 parameterization under H1 of the form 0 = (,B, 4' such that
 Ho is obtained from H1 when 4' = 4'0 for some 4'o. Here both
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 ,B and 4' may be vectors. Although the expression (1) does

 not require the models to be nested, the case of nested models

 is of special interest in the Bayesian approach as well, and

 we will refer to it frequently in what follows.

 3.2 Interpretation

 The Bayes factor is a summary of the evidence provided

 by the data in favor of one scientific theory, represented by

 a statistical model, as opposed to another. Jeffreys (1961,

 app. B) suggested interpreting Blo in half-units on the log1o
 scale. Pooling two of his categories together for simplification,
 we have:

 log1o(Blo) Blo Evidence against Ho

 0 to 1/2 1 to 3.2 Not worth more than a bare

 mention

 1/2 to 1 3.2 to 10 Substantial

 1 to 2 10 to 100 Strong

 >2 > 100 Decisive

 Probability itself provides a meaningful scale defined by bet-

 ting, and so these categories are not a calibration of the Bayes
 factor, but rather a rough descriptive statement about stan-
 dards of evidence in scientific investigation. We speak here

 in terms of Blo, because weighing evidence against a null
 hypothesis is more familiar, but Bayes factors can equally
 well provide evidence in favor of a null hypothesis. Of course,
 the interpretation may depend on the context. For example,
 Evett ( 199 1 ) has argued that for forensic evidence alone to
 be conclusive in a criminal trial, one would require posterior

 odds for H1 (guilt) against Ho (innocence) of at least 1,000
 rather than the 100 suggested by Jeffreys.

 It can be useful to consider twice the natural logarithm of
 the Bayes factor, which is on the same scale as the familiar
 deviance and likelihood ratio test statistics. Rounding and

 using 20 rather than 10 as the requirement for strong evi-
 dence, we then obtain a slight modification:

 2 loge(Blo) (Blo) Evidence against H0

 0 to 2 1 to 3 Not worth more than a bare
 mention

 2 to 6 3 to 20 Positive
 6 to 10 20 to 150 Strong

 >10 >150 Very strong

 From our own experience, these categories seem to furnish
 appropriate guidelines.

 The logarithm of the marginal probability of the data may
 also be viewed as a predictive score. This is of interest, because
 it leads to an interpretation of the Bayes factor that does not

 depend on viewing one of the models as "true." Suppose
 that D = {yl, . y. , Yn} and that for each i, we form a pre-

 dictive distribution pri (*) of yi given the already available
 data { Y, . . ., yi-I }. We use the logarithmic scoring rule,
 log pri(yi) (Good 1952), to assess performance. Then the
 overall score of any rule that generates such predictive dis-

 tributions is LS = Ei log pr, (y, ). In particular, if the pre-
 diction rule is derived from the model Hk (i.e., likelihood

 and prior), then log pr(DI|Hk) = Si log pr(y, IYi1,.*.* *, ,

 Hk) = LSk. It follows that the log Bayes factor is log Blo
 = LS1 - LSo; that is, the difference in predictive scores. Thus
 the Bayes factor can be viewed as measuring the relative
 success of H1 and Ho at predicting the data. This is related
 to prequential analysis (Dawid 1984) and also to stochastic
 complexity (Rissanen 1987); the connections were discussed
 by Dawid (1992) and Hartigan (1992). Good (1985), and
 in many other publications, has referred to the log Bayes
 factor as the "weight of evidence."

 4. CALCULATING BAYES FACTORS

 In some elementary cases the integral (2), which we will
 rewrite in this section as

 I = f pr(DI0, H) r(OIH) dO, (3)

 may be evaluated analytically. More often, it is intractable
 and thus must be computed by numerical methods. But most
 available software developed by numerical analysts is gen-
 erally so inefficient for these integrals that it is of little use.
 One reason is that when sample sizes are moderate or large,
 the integrand becomes highly peaked around its maximum,
 which may be found by other techniques, and quadrature
 methods that do not begin with knowledge of the maximum
 are likely to have difficulty finding the region where the in-
 tegrand mass is accumulating. A second reason is that some
 problems are of high dimension. In this case Monte Carlo
 methods may be used, but these too need to be adapted to
 the statistical context. A review of various numerical inte-
 gration strategies for evaluating the integral in (3) is provided
 by Evans and Swartz ( 1995).

 Exact analytic evaluation of the integral (3) is possible for
 exponential family distributions with conjugate priors, in-
 cluding normal linear models (DeGroot 1970, chap. 9; Zell-
 ner 1971, chap. 10).

 4.1 Asymptotic Approximation

 4.1.1 Laplace's Method. A useful approximation to the
 marginal density of the data as given by (3) is obtained by
 assuming that the posterior density, which is proportional
 to (pr(D 10 , H) r(0 I H)), is highly peaked about its maximum
 0, which is the posterior mode. This will usually be the case
 if the likelihood function pr(D 10 , H) is highly peaked near
 its maximum 0, which will be the case for large samples. Let

 1(0) = log(pr(D I 0, H) r(0 I H)). Expanding 1(0) as a qua-
 dratic about 0 and then exponentiating yields an approxi-
 mation to (pr(D 10, H) r(OIH)) that has the form of a
 normal density with mean 0 and covariance matrix X
 = (-D2 (O))-1, where D2l(0) is the Hessian matrix of second
 derivatives. Integrating this approximation yields

 I = (27r)d"21 1 112 pr(D I, H) r(b I H), (4)

 where d is the dimension of 0.
 This is Laplace's method of approximation (de Bruijn

 1970, sec. 4.4; Tierney and Kadane 1986). For many prob-
 lems in which the sample size n is moderate, it produces

 answers well within the accuracy required for drawing con-
 clusions according to the scheme of Section 3.2. Formally,
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 under conditions spelled out by Kass, Tierney, and Kadane
 (1990), as n oo, I = I (1 + O(n -1)); that is, the relative
 error is O(n1). Thus when Laplace's method is applied to

 both the numerator and denominator of BIo in (1), the re-
 sulting approximation also has relative error of order O(n1 ).

 The accuracy of Laplace's method in this context has been
 examined by Kass and Vaidyanathan (1992), Rosenkranz
 (1992), and Raftery (1993c) and is mentioned in Applica-
 tions 4 and 5. In general, the method provides adequate ap-
 proximations for well-behaved problems (those in which the
 likelihood functions are not grossly nonnormal) of modest
 dimensionality. We are unable to be much more specific
 than this, though our rough feeling is that samples of size
 less than 5d are worrisome (with d being the dimension of
 0), whereas those of size greater than 20d are large enough
 for the method to work well in most familiar problems, pro-
 vided that a reasonably good parameterization is used. (See
 Slate 1994 for a detailed discussion of sample sizes required
 to obtain posterior normality, which would guarantee ac-
 curacy of Laplace's method, for various parameterizations
 of exponential families.) Software for applying Laplace's
 method is available in S and in LispStat (Raftery 1993c;
 Tiemey 1989, 1990). Approximations of this kind have been
 used by many authors, notably Jeifreys (1961), Lindley
 (1961), Mosteller and Wallace (1964), and Leonard (1982).

 4.1.2 Variants on Laplace's Method. Laplace's method
 may be applied in alternative forms by omitting part of the
 integrand from the exponent when performing the expan-
 sion. (For the general formulation, see Kass and Vaidyan-
 athan 1992, which followed Tiemey, Kass, and Kadane 1989
 and Mosteller and Wallace 1964, Sec. 4.6). An important
 variant on (4) is

 IMLE = (21r )d/21? 11/2 pr(D I , H)7r(b IH) (5)
 where X` is the observed information matrix; that is, the
 negative Hessian matrix of the log-likelihood evaluated at
 the maximum likelihood estimator (MLE) 0. This approx-
 imation again has relative error of order 0( n-). Although
 it is likely to be less accurate than (4) when the prior is
 somewhat informative relative to the likelihood, it has the
 advantage that it is easily computed from any statistical soft-
 ware package that reports the MLE, the observed information
 matrix (or its inverse), and the value of the maximized like-
 lihood.

 Some software packages calculate the expected informa-
 tion matrix (i.e., the usual Fisher information matrix), or
 its inverse, as the asymptotic covariance matrix rather than
 the observed information matrix. The inverse of the expected
 information matrix may be used in place of X in (5). The
 resulting approximation has a larger asymptotic relative er-
 ror, of order O(n n1/2), but it remains sufficiently accurate
 to be of use in many problems.

 Now suppose that we have nested hypotheses, with pa-
 rameter (,B, 0/) having prior ir(fl, 4A I H1) under H1 and then
 Ho: 4' = V/0 with prior 7r(0'IHO). When (5) is applied, we
 obtain

 2 log B10 A + logX1I:1 - logiZo l + log ir(fl, 4'1 H1)

 - log ir(fl*, gHo) + (d - do)log(2ir), (6)

 where A = 2(Iog pr(DI(fB, 0', H1) -log pr(DIl j, Ho)) is

 the log-likelihood ratio statistic having degrees of freedom

 (di - do) and ,B* denotes the MLE under Ho. Again, either
 observed or expected information may be used in computing

 the covariance matrices Xk; then (6) has relative error of
 order O(n-1) or O(n-1/2). Jeffreys (1961, sec. 5.31) gave

 an approximation for the case where (di - do) = 1 in es-
 sentially the form of (6) but with expected rather than ob-
 served information, and Chow ( 1981) extended Jeffreys' re-
 sult to higher dimensions. Hsiao (1994) investigated

 alternative expansions for the case in which 4 l = o lies at
 the boundary of the parameter space.

 Raftery (1993c) suggested approximating 0k by a single
 Newton step starting from 0k and substituting the result into
 Equation (4), which yields the approximation

 2 log Blo A + (E1-EO). (7)

 In Equation (7),

 Ek = 2Xk(Ok) + Xk(Ok) (Fk + Gk)O {2 - Fk(Fk + Gk) }

 X X(O) - logI Fk + GkI + dklog(21r), (8)

 where var[OkjHk] = Wk, Fk = Zk, Gk = Wk , Xk(Ok)
 = log pr(Ok l Hk) is the log-prior density, and Xk(bk) is the dk
 vector of derivatives of Xk(Ok) with respect to the elements

 Of Ok (k = 0, 1). This often improves on the approximation
 of (5), but it does not require any additional information.
 It is implemented for generalized linear models in the GLIB
 software; see Section 9.

 4.1.3 The Schwarz Criterion. It is possible to avoid the

 introduction of the prior densities 17k(Ok l Hk) in (1) by using

 S = log pr(D I A1, H1) - log pr(D I O, H2)

 --(di - d2)log(n),
 2

 where 0k iS the MLE under Hk, dk is the dimension of Ok,
 and n is the sample size. As n -* oo, this quantity, often
 called the Schwarz criterion, satisfies

 S-logB120 (9)
 log B12

 and thus may be viewed as a rough approximation to the
 logarithm of the Bayes factor. Minus twice the Schwarz cri-

 terion is often called the Bayesian information criterion
 (BIC); sometimes an arbitrary constant is added. See Section
 8.3 for additional discussion.

 In contrast to the approximations furnished by (4) or (5),

 the relative error of exp(S) in approximating B12 is generally
 0(1). Thus even for very large samples, it does not produce
 the correct value. On the other hand, keeping in mind the
 rough interpretation of B12 on the logarithmic scale suggested
 in Section 3.2, Equation (9) shows that in large samples the

 Schwarz criterion should provide a reasonable indication of
 the evidence.

 The Schwarz criterion is appealing in that it can be applied
 as a standard procedure even when the priors ir( 0k IHk) are
 hard to set precisely. In this sense it provides an often-useful

 reference procedure for scientific reporting. Also in its favor

 is the following. For independent and identically distributed
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 sampling in nested models with Ho: A/ = 4'O, it is reasonable
 to take the prior on 4 to be N(lo, W) with I W I = I J(4o) I -1,
 where J(4') is the Fisher information in the parameter A'.
 This says that the amount of information in the prior is
 equal to the amount of information in one observation. In

 this case, under certain conditions (i.e., the assumptions of
 null orthogonality and local alternative mentioned in Sec.

 5.2), the Schwarz criterion furnishes an order O(n-1/2) ap-
 proximation to log B12 (Kass and Wasserman 1995). Thus
 if one were willing to use this prior as a "reference prior"
 suitable for standardized reporting, then the Schwarz crite-
 rion would be a reasonably good approximation to the log

 of the Bayes factor. As Kass and Wasserman (1995) noted,
 Jeffreys's method was essentially to use S + c as an approx-
 imation to the log of the Bayes factor, with c being a constant

 determined by substituting a Cauchy prior in place of the
 normal prior on 4'.

 The sample size n in the definition of S needs to be figured

 carefully. It is apparent from the derivation of S (e.g., Kass
 1993), that n should be the rate at which the Hessian matrix

 of the log-likelihood function grows; thus n becomes the
 number of data values contributing to the summation that

 appears in the formula for the Hessian. For instance, as Raf-
 tery (1986a) pointed out, in the case of log-linear models
 for contingency tables, n is the sum of the counts, not of the
 number of cells. Similarly, in models for binomial responses,
 n is the sum of the denominators, not the number of re-

 sponses or the number of successes. In survival analysis,
 Raftery, Madigan, and Volinsky (1995) have taken n to be

 the number of uncensored observations; that is, of deaths.
 In two-stage hierarchical models the situation can be subtle

 and the appropriate form of S depends on which parameters
 are being tested.

 Schwarz (1978) gave a rigorous derivation of the criterion
 for linear subfamilies of exponential families and Haughton
 (1988) extended Schwarz's result to curved exponential

 families. Heuristic derivations of (9) are quite easy: one ap-
 plies (5) and then neglects constant-order terms. It is ap-

 parent from arguments such as those of Kass et al. (1990)
 that (9) holds much more generally than in the restricted
 setting of curved exponential families (e.g., Kass 1993, Katz
 1981, Leonard 1982, Raftery 1986a). But rigorously dem-

 onstrating the assumptions for the validity of Laplace's
 method seems to be enough of a chore that no general pre-
 cisely formulated result has been published.

 4.2 Simple Monte Carlo, Importance Sampling,
 and Gaussian Quadrature

 Dropping the notational dependence on Hk, Equation (2)
 becomes

 pr(D) = f pr(D I )r(O) dO.

 The simplest Monte Carlo integration estimate of this is

 pr1 (D) =-1m pr(D I 8 (i),

 where { 0 ('): i = 1, . . ., m } is a sample from the prior dis-
 tribution; this is the average of the likelihoods of the sampled

 parameter values (e.g., Hammersley and Handscomb 1964).
 This possibility was mentioned by Raftery and Banfield

 (1991 ) and was investigated in some detail in particular cases

 by McCulloch and Rossi (1991). A major difficulty with

 pr1 (D) is that most of the 0 (i) have small likelihood values

 if the posterior is concentrated relative to the prior, so that

 the simulation process will be quite inefficient. Thus the es-

 timate is dominated by a few large values of the likelihood,

 and so the variance of pr1 (D) is large and its convergence

 to a Gaussian distribution is slow. These problems were ap-
 parent in the examples studied in detail by McCulloch and

 Rossi ( 1991 ).

 The precision of simple Monte Carlo integration can be

 improved by importance sampling. This consists of gener-

 ating a sample { (i): i = 1, . .. , m} from a density ir*(0).

 Under quite general conditions, a simulation-consistent es-
 timate of I is

 I Sm=1 wipr(DI0(i') (10)

 where wi = ir(0 (i))/ir*( 0 (i)); the function ir*( 0) is known as
 the importance sampling function. (For general discussion

 and references, see Geweke 1989.)
 A more efficient scheme is based on adaptive Gaussian

 quadrature. Using well-established methods from the nu-
 merical analysis literature, Genz and Kass (1993) showed
 how integrals that are peaked around a dominant mode may

 be evaluated. This approach is effective in such problems
 when the dimensionality of the parameter space is modest

 (roughly, less than 9).

 4.3 Simulating from the Posterior

 Several methods are now available for simulating from

 posterior distributions. In the simplest cases these include
 direct simulation and rejection sampling. In more complex
 cases, Markov chain Monte Carlo (MCMC) methods, par-
 ticularly the Metropolis-Hastings algorithm and the Gibbs
 sampler, provide a general recipe (e.g., Smith and Roberts
 1993 and references therein). Another fairly general recipe
 is the weighted likelihood bootstrap (Newton and Raftery

 1994).
 Any of these methods gives us a sample approximately

 drawn from the posterior density ir*( 0) = pr(O I D)
 = pr(D I 0) ir(O)/pr(D). Substituting into Equation ( 10)
 yields as an estimate for pr(D),

 I m -
 pr2(D)= - 1 pr(D 1(i))O , (11)

 the harmonic mean of the likelihood values (Newton and
 Raftery 1994). This converges almost surely to the correct

 value, pr(D), as m -* oo, but it does not generally satisfy a
 Gaussian central limit theorem. This manifests itself by the
 occasional occurrence of a value of 0 (i) with small likelihood
 and hence large effiect on the final result. But it is very easy
 to calculate, and experience to date suggests that although

 it is indeed unstable, it often gives results that are accurate
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 enough for interpretation on the logarithmic scale of Section
 3.2 (Carlin and Chib 1993; Raftery 1994; Rosenkranz 1992).

 Several modifications of the harmonic mean estimator
 (11) have been suggested to get around its instability. Newton
 and Raftery (1994) suggested using as importance sampling
 function in (10) a mixture of the prior and posterior densities,
 ir*(0) = bir(0) + (17 )pr(0ID), where 0 < a < 1. The
 resulting estimator, pr3(D), has the efficiency of pr2(D) be-
 cause it is based on many values of 0 with high likelihood,
 but avoids its instability and does satisfy a Gaussian central
 limit theorem. But it has the irksome aspect that one must
 simulate from the prior as well as the posterior. This may
 be avoided by simulating all m values from the posterior
 distribution and imagining that a further bm/( 1 - 6) values
 of 0 are drawn from the prior, all of them with likelihoods
 pr(D I 0 (i)) equal to their expected value pr(D). The result-
 ing estimator, pr4(D), may be evaluated using a simple
 iterative scheme.

 A simple modification of (11) is to instead calculate

 itm

 pr5(D) m - t f(O ()/(pr(DI 0 (i)) r( (i))), (12)

 where f(.) is any d-dimensional probability density. This
 was mentioned by Gelfand and Dey (1994). It is an unbiased
 and consistent estimator of the marginal likelihood pr(D),
 and satisfies a Gaussian central limit theorem if the tails of

 f(*) are thin enough, specifically if f {ff()2/(pr(D I 0)r(O)) }
 dO < oo. High efficiency would seem most likely to result if
 f(O) were roughly proportional to pr(D I 0). The very
 limited experience to date indicates that for low-
 dimensional problems with a good choice off, pr5(D) can
 be very accurate. For high-dimensional problems, however,
 it may be hard to find an appropriate f, and the results can
 be very poor. Meng and Wong (1993) considered an optimal
 choice of f and showed how this could be computed itera-
 tively from an initial guess. [Their framework actually applies

 to the computation of a ratio of integrals of the form (3).]
 Their approach appears promising but has not yet been ex-
 tensively tested.

 Raftery (1995a) suggested what he called the "Laplace-
 Metropolis" estimator of pr(D), obtained by using the pos-
 terior simulation output to estimate the quantities needed
 to compute the Laplace approximation (4), namely the pos-
 terior mode, 0, and minus the inverse Hessian at the posterior
 mode, X. The posterior mode can be estimated as the (i)
 that maximizes (pr(D 0 (i)) 7r( (i))). This requires computing
 the likelihood for each simulated 0 (i); if this takes too much
 computer time, then an alternative is to use the multivariate
 or componentwise posterior median or to estimate the pos-
 terior mode by nonparametric density estimation. The ma-
 trix X can be estimated by the estimated posterior covariance
 matrix; it is wise to use a high-breakdown point robust es-
 timator. The resulting estimator has performed well in nu-
 merical experiments (Lewis and Raftery 1994). A similar
 combination of simulation with Laplace's method was sug-
 gested by Kass and Wasserman (1992a), who provided a
 correction term as well. From recent unpublished studies we
 have conducted with T. J. DiCiccio and L. Wasserman, the
 latter method appears to be quite promising.

 In the case of nested models in which the priors satisfy

 (13) of Section 5.1 and /t and 4' are independent, then

 - 7r(V/o I HI)
 B1 pr(o'| ID, HI)

 (Actually, instead of a priori independence of /t and 4', it is
 enough to have ir(fl I Ho) = ir(l AIV = VI0, H1).) This result
 is apparently due to L. J. Savage and was called the "Savage
 density ratio method" by Dickey (1971). It has been ex-
 ploited in several applications (e.g., McCulloch and Rossi
 1991) . Verdinelli and Wasserman (1993a) pointed out that
 a method of generating marginal posterior densities discussed
 by Chen (1992) may then be applied advantageously in this
 case. This leads to a method similar to pr5 (D), and the choice
 of f is again crucial and difficult.

 Carlin and Chib (1993) suggested including a model in-
 dicator variable in the MCMC scheme and defining "pseudo-
 priors" for (01 I H2) and (02 H1). This involves designing and
 running a special MCMC algorithm to calculate Bayes fac-
 tors. Similar suggestions have been made by Carlin and Pol-
 son (1991) and George and McCulloch (1993).

 An alternative approach is available when many param-
 eters, z, are present in all the models considered. These might
 be missing data, the values of a random effect in a hierarchical
 model, or "latent data" chosen in such a way that the "com-
 plete data likelihood" pr(D, z 1 0) has a simple form (Tanner
 and Wong 1987). Then the Bayes factor can be simulation-
 consistently estimated by the average of the quantities
 B I (z () = pr(D, z(i) HI)/pr(D, z (ilHo), where the z(i
 are simulated from the posterior distribution of z under Ho;
 this is often possible using MCMC methods. The B1o(z(i))
 are then often easy to calculate or at least to approximate
 fairly well; for example, using the Laplace method. When z
 is present in H1 but not in Ho, we again recover the harmonic
 mean estimator of pr(D I HI) (Raftery 1993a). This is related
 to previous work of Thompson and Wijsman (1990) on the
 calculation of likelihood ratios.

 Finally, some general methods of calculating I have been
 considered in the statistical physics literature under the name
 "free energy estimation." The approaches are not automatic
 and require analytical effort to tailor them to statistical ap-
 plications; however, they may be of use in certain problems
 (See Neal 1992 for references.)

 4.4 Comparison of Methods

 The different methods for calculating and approximating
 Bayes factors have been compared by Rosenkrantz (1992)
 in the contexts of normal models and of Poisson-gamma
 models for counts with independent variables, unobserved
 heterogeneity, and outliers, and by Raftery (1993c) in the
 context of generalized linear models.

 Exact analytic evaluation is best because it is most accurate
 and usually also most efficient computationally, but it is fea-
 sible only for a narrow class of models. The Laplace method
 for integrals yields accurate approximations and is usually
 quite computationally efficient. In particular, the approxi-
 mation using the posterior mode in (4) or its one-step ap-
 proximation given by Equations (7) and (8) can be very
 accurate. The latter is easy to compute using the output from
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 standard software. For cases of modest dimensionality, the

 adaptive quadrature method of Genz and Kass (1993) is

 effective. The Monte Carlo integration and importance sam-
 pling methods are less precise and more computationally

 demanding, but they may well be the only ones available in
 complex models. The methods using MCMC seem promising

 but have not yet been applied in many demanding problems.
 In addition, they can require large numbers of likelihood
 function evaluations, which in some cases is itself difficult.

 The Schwarz criterion is the easiest approximation to

 compute and has the advantage of not requiring that the

 user specify the prior distributions. It is suitable for com-

 municating results even when more detailed calculations are

 made using other methods (as in Application 5). As an
 asymptotic approximation it is admittedly rough, but, as long

 as the number of degrees of freedom involved in the com-

 parison is reasonably small relative to sample size, it does
 not seem to be grossly misleading in a qualitative sense. It

 can be very poor, however, when the number of degrees of
 freedom involved in the comparison is large and the prior

 is very different from that for which the approximation is

 best; McCulloch and Rossi ( 1991 ) gave an example of this
 with 115 degrees of freedom.

 5. THE CHOICE OF PRIORS

 In order to compute a Bayes factor, the prior distributions

 rr(Ok lHk) on the parameters of each model must be specified.
 Sometimes, as in Application 1, there are closely related data
 with which to construct priors. This nicest situation is rare,
 however. More often, as in Application 5, some combination

 of relevant data, information from the literature, and rough
 guesses must be used. In that case there will be doubts about

 the accuracy of the prior distribution. Thus a first concern

 is how to choose prior distributions to represent the available
 information, but once this is done, an important issue is the

 sensitivity of the Bayes factor to the choices of priors.
 The easiest way to deal with the problem of prior choice

 is to ignore it and simply use the Schwarz criterion or Jef-
 freys's variant of it (see Sec. 4.1.3). Although this will lead

 to appropriate conclusions in sufficiently large samples, there
 is not much available guidance as to the operational meaning

 of "sufficiently large." Also, in contrast with Bayesian point
 estimates such as the posterior mean, the Bayes factor does
 tend to be sensitive to the choices of priors on the model
 parameters. We discuss informative prior selection and the
 problem of sensitivity in Section 5.1 and review results and

 methods for assessing sensitivity over a range of priors in
 Section 5.2. In Section 5.3 we consider the use of improper
 priors and note the resulting difficulties.

 Sensitivity analysis concerns distributional forms for

 models pr(D 1Ok, Hk) as well as priors. When alternatives
 are introduced (e.g., the Student's t distribution in place of
 the normal), Bayes factors may be used to determine which
 best fits the data. One may also assess the influence of in-
 dividual data values by computing the Bayes factor after

 omitting each observation in turn ( Pettit and Young 1990) .
 Asymptotic approximation makes the "leave-one-out" di-

 agnostic approach easy; see Application 5.

 5.1 Prior Information

 The problem of determining a prior distribution from

 available information appears throughout Bayesian infer-

 ence. The information may come from other data or from

 the subjective knowledge of experts, or it may be too hard

 to express as a prior distribution. Even when there are other

 data, judgment must be used because a distribution must be

 chosen (as in Application 1), but this is familiar. The use

 of subjective opinion is different. For the most part, in both

 of these cases the formulation of priors is problem-specific

 and there is not much general methodology for it. There is,

 however, a modest literature on "eliciting" probabilistic in-

 formation from individuals. One psychologically appealing

 device is the method of imaginary observations (Good 1950).
 Kadane, Dickey, Winkler, Smith, and Peters (1980) dis-

 cussed a formal elicitation procedure in the context of linear

 regression; Garthwaite (1992) included more recent refer-

 ences. Formal representation of opinion may be useful for
 private analysis and in verifying that a simpler public analysis

 leads to appropriate conclusions, as in Application 5. Prior

 distributions sometimes become communally accepted after
 much research and discussion; this happened in the esti-
 mation of bowhead whale population size (Raftery and Zeh

 1993).
 In choosing priors, just as in choosing models for data

 distributions, simplifications are often made. This occurs
 notably when there are nested models in which a hypothesis

 Ho: A = 40 is being tested in the presence of an additional
 parameter ,B. For example, it is often assumed that

 r(f3IHo) = fr(1, 3 ,IH) d+. (13)

 If in addition it is assumed that ,B and 4A are independent a

 priori under HI, then one needs only to choose one prior
 for ft and another for 4'.

 Sometimes instead of (13), it is assumed that ir(f I HO)
 = I(,B 4' = 400 HI ). But this prescription depends on the
 choice of parameterization used. If an alternative parame-

 terization (Q, X) is used under HI, with Ho then being specified
 by X = X0, and if i(r, XI H1) is obtained from ir(f, 4A H1)
 by the change-of-variables formula (introducing the appro-
 priate Jacobian determinant), then it may happen that

 r I HO) is not obtained by a change of variables from
 r(fl I Ho). (In a personal communication, J. Dickey has noted
 that L. J. Savage discussed this as an instance of the "Borel
 paradox" in a 1963 lecture; see also Dickey 1985.) Variations
 on the marginal and conditional density methods have been

 discussed by McCulloch and Rossi (1993) and Verdinelli
 and Wasserman (1993a).

 Again as in data modeling, simplifications involving priors
 should be considered carefully, because they may affect the
 results and yet may not be justified. Here testing is different
 from estimation. In frequentist theory, estimation and testing

 are complementary, but in the Bayesian approach, the prob-
 lems are completely different. In testing, Bayesians put pos-

 itive prior probability on models that represent hypotheses,

 whereas in estimation, continuous priors are used that would

 assign zero probability to special values such as 4' = 4'o* In
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 estimation, priors are often picked for convenience, knowing
 that if the sample is fairly large, then the effect of the prior
 is small. In testing this is not so. As expression (5) shows,
 to order O(n'- ) the prior density may not be eliminated as
 the sample size increases, which contrasts with the case of

 estimation, where the MLE approximates the posterior mean
 to this order. As a result, the Bayes factor tends to be more

 sensitive to the choice of prior than the posterior probability
 of an interval (e.g., Kass 1993; Kass and Greenhouse 1989).

 In fact, it may happen that conclusions based on esti-

 mation seem to contradict those from a Bayes factor (as
 illustrated in Kass and Greenhouse 1989). This occurs when
 an estimate, say of At, is found to be distant from a null-

 hypothetical value it0. In this case the data seem unlikely
 under Ho, but if the Bayes factor turns out to be in favor of
 Ho, then the data are even more unlikely under HI than they
 would have been under Ho. (This is one cause of discrep-
 ancies between conclusions reached with Bayes factors and
 those reached using P values; see Sec. 8.2.) A consequence

 is that using a prior with a very large spread on At under HI
 in an effort to make it "noninformative" will force the Bayes
 factor to favor Ho. This was noted by Bartlett ( 1957 ) and is
 sometimes called "Bartlett's paradox." As Jeffreys recog-
 nized, to avoid this difficulty, priors on parameters being
 tested ('I in the discussion here) generally must be proper
 and not have too big a spread; thus the standard improper
 priors that he used for estimation are not applicable to testing.
 We return to the use of improper priors on nuisance param-
 eters in Section 5.3.

 5.2 Sensitivity Analysis

 Because Bayes factors can be sensitive to the prior, it is

 important to evaluate the Bayes factor over a range of pos-
 sibilities. This involves specifying classes of priors to use un-

 der HI and H2, and it also makes the issue of computation
 more urgent, because many multidimensional integrals [as
 in Eq. (2)] must be calculated. We mention here several
 classes of priors that may be used. When there is enough
 information to yield initial priors with given hyperparameters
 (such as a N(v, 4)2) prior in which the hyperparameters are
 v and 4)), the hyperparameters may be perturbed (e.g., by
 halving and doubling 4) or changing v to v ? 4)) and the Bayes
 factor recomputed, as in Applications 1, 4, and 5 (see also
 McCulloch and Rossi 1991 ).

 An important computational device is to use Equation
 (5 ) as an approximation to (2) substituted in ( 1). From this,

 if we change from an original pair of priors under HI and
 H2 to a new pair and thus compute a new Bayes factor

 B12 , we obtain

 B(NEW) . /(NEW) (61 I HI) \ / (62AlH)i, 1
 B12 B12= l .(NEW)( H2) r(OI IHI) /

 with an error of order O(n-'), which also holds if (5) is
 used to evaluate the original Bayes factor B12. Because the
 ratio of prior ordinates at the MLE is easy to evaluate, (14)
 makes results for large numbers of priors easy to obtain; see
 Application 5. The accuracy of the method was explored in

 detail for the case of testing equality of two binomial pro-
 portions by Kass and Vaidyanathan ( 1992) .

 The maximum of Blo (and thus the maximal evidence
 against Ho) over classes of priors was discussed by Edwards,
 Lindman, and Savage (1963) in contrasting Bayes factors

 with P values and was further developed by Berger and

 Delampady (1987), Raftery (1988b), and others (see Sec.

 8.2). Suppose, first, that 4A is one-dimensional and that there
 is no additional parameter ,B. In this case, under Ho we have

 A = 4'o, and there is no prior. Under HI, taking 4 - N( 410,
 4)2) leaves only the parameter 4)2 to be determined; sensitivity
 in the Bayes factor is then reflected in its sensitivity to the

 choice of 4). Edwards et al. (1963) computed the maximum
 of Blo over all choices of 4), which we will denote by

 ( NORMAX )
 B jO . There is no corresponding minimum; it is gen-

 erally the case that Blo -O 0 as 4) -s oo.
 Edwards et al. (1963) also considered the maximum of

 Blo over all possible priors on 4, which in simple cases occurs
 for the prior with all its mass at the MLE 4. This class is

 wider, but it can be too large and can yield bounds on Blo
 that are too big. As a result, Berger and Delampady (1987)

 examined the class of "symmetric unimodal" priors, which

 are symmetric about 4'0 and nondecreasing in 4' - 4'o 1, and
 obtained an expression for the maximum of Blo. They also
 considered other classes, which opens up the question of

 what class should be used. Note that B (NORMAX) is also the
 maximum of Blo over all priors that are scale mixtures of
 the N(4o, 4)2) distribution. This seems a reasonably large
 and interesting class. Berger and Delampady (1987) showed

 that B (NORMAX) is not very different from the bound obtained
 using the symmetric unimodal class. A computationally
 simple approximation to B (NORMAX) may be obtained using
 Laplace's method [Eq. (5)] together with the argument
 leading to equation (15); the formula may be found in Kass

 and Raftery (1993) .

 When 4' may be a vector and there is also, under both Ho
 and H1, a nuisance parameter ,B (again possibly a vector),

 the problem is more complicated. Jeffreys (1961, pp. 249-
 250) showed that under certain conditions, the prior on the

 nuisance parameter ,B is much less relevant than that on the

 parameter being tested 4 if the simplification (13) is used

 together with a priori independence under HI. Kass and
 Vaidyanathan (1992) extended and sharpened the result,

 which we now describe, by considering local alternatives (4'
 near 0o).

 In addition to the simplification of (13) together with a

 priori independence of ft and 4 under H1, assume that ft
 and 4 are null-orthogonal in the sense that the Fisher infor-

 mation matrix J (ft, 4') is block-diagonal when 4' = 4'0. Kass
 and Vaidyanathan (1992) noted that this condition often
 holds, at least approximately, and by a transformation of

 parameters it can always be made valid. They assumed that

 4 - lA0 = O(n-1/2), as would be the case if the "true" value
 of 4' were either 40 or a neighboring alternative 4n such that

 lAn - 4o = O(n-'/2): when this situation does not hold, the
 Bayes factor will quickly become decisive, and issues of
 asymptotic approximation will no longer be of concern. Now

 let B10 be the Bayes factor for one prior on ,B and let B%l be
 the Bayes factor for a different prior. Then (under suitable

 regularity conditions),
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 Kass and Raftery: Bayes Factors 783

 Blo = B*-(I + (n-')). (15)
 That is, up to order O(n' ), the Bayes factor no longer de-

 pends on the choice of prior on ft. Thus when the parameters
 are null-orthogonal, sensitivity analysis may be confined to

 examination of priors on if. In practice if, under H1, ft and
 A are approximately uncorrelated (they are "observed-
 orthogonal," which may be easier to check), then the relative

 insensitivity to choice of prior on ft may be expected to hold
 (this was done in Application 5). Furthermore, the same
 argument (under the null, or for local alternatives) shows
 that ( 15 ) holds to order O( n `1/2) even if the parameters are
 not null-orthogonal.

 When there is little prior information, Raftery (1993c)
 argued that subjective priors will often be relatively flat in
 the region where the likelihood is large and that their impact
 on Bayes factors for the comparison of both nested and non-
 nested models should be small. Thus an alternative to careful
 and time-consuming prior elicitation in this case may be to
 use a set of priors constructed to have this property. Raftery
 ( 1 993c) showed how this can be done for generalized linear
 models. These models relate a dependent variable yi to in-
 dependent variables xi = (xi l, . . ., xij), where xil = 1 in
 such a way that E[yi l xii = 1ui, var[yi I xi ] = a2v(,ui), and
 g(,ui) = xi#, where ft = (f1, .. , fJ)T . The idea is to narrow
 down an initial class of baseline priors for ft, here taken to
 be such that when g(,u) = ,u, v(,u) = 1, and the variables have
 been standardized to have mean zero and variance 1, the 3,B

 are independent normal a priori with #I - N(v, i72) and f3,
 - N(O, 02) (j = 2, . . . , J). Bayes factors tend to be insen-

 sitive to v and iq (as indicated by the remarks following ( 15 )),
 but they can be quite sensitive to the choice of k.

 One way of defining a reasonable range of priors is to
 require that the ratio of prior ordinates at the MLE, given
 in Equation ( 14), not be too far from 1 for any of the possible

 values of j, namely I 21 1 when J = 2. We wish the same
 to be true when Ho and HI are not nested. This corresponds
 to requiring that the prior not contribute much evidence in
 favor of either model, whether the models being compared
 are nested or not. This requirement involves a tradeoff: for
 nonnested models, it implies that 0 be large, whereas for
 nested models it implies that X not be too large. Balancing
 these two desiderata in a certain sense gives 0 = e'/2 = 1.65,
 and requiring that the priors not contribute evidence "worth
 more than a bare mention" beyond what is unavoidable leads
 to the range 1 < 0 < 5. The resulting priors are then trans-
 formed back to the original scale for the variables; results
 for other choices of g(,u) and v(,u) are obtained by weighting
 the cases appropriately.

 The result is what Raftery (1993c) calls a reference set of
 proper priors for generalized linear models. These are used
 in the GLIB software; see Section 9. Although they are mildly
 data-dependent, they do have properties that one would as-
 sociate with genuine subjective data-independent priors that
 represent a small amount of prior information. Similar rea-
 soning can be applied to other classes of baseline priors and
 to other models.

 5.3 Bayes Factors with Improper Priors

 In Section 5.1 we indicated that improper priors on pa-
 rameters of interest (i,t when we have Ho: AI = 'I') are prob-

 lematic because, when used under H1 and not under Ho,
 they force B1o to become zero. But Jeffreys (1961) used im-
 proper priors on nuisance parameters appearing in both null
 and alternative models (e.g., in testing the value of a Normal
 mean Ho: u = u0, he took the prior on ,u under H1 to be
 proper but set r( a) = 1 / a; p. 268). This leads to an improper
 predictive distribution specified by (2), but the value of (2)
 for the given data remains well defined, so this impropriety
 did not seem to bother Jeffreys; others also are untroubled
 by the procedure (Moulton 1991; Robert 1992; Robert and
 Caron 1992). Equation (15) shows that in many cases the
 choice of prior on the nuisance parameter does not greatly
 affect the results.

 Some authors have used improper priors for all parameters
 appearing in the models. This has the problem that flat priors
 are specified only up to an undefined multiplicative constant.
 Thus the Bayes factor in this case also contains undefined
 constants. One effort to resolve this difficulty is the "imag-
 inary training sample device" of Smith and Spiegelhalter
 (1981) and Spiegelhalter and Smith (1982). This consists
 of imagining that a data set is available that involves the
 smallest possible sample size permitting a comparison of Ho
 and H1 and provides maximum possible support for Ho, and
 then arguing that B1o = (1 + e)-', where e 2 0 is small; they
 took e = 0. This yields a value for the ratio of constants.

 The authors of several published applications of the
 method found it useful (Akman and Raftery 1986a; Racine,
 Grieve, Fluhler, and Smith 1986; Raftery 1987, 1988; Raftery
 and Akman 1986b). The dimensionalities of the alternative
 models in these examples were not very different, however,
 and it is not clear how the method will perform in the more
 difficult case where this is not so.

 Another solution is to set aside part of the data to use as
 a training sample which is combined with the improper prior
 distribution to produce a prior prior distribution. The Bayes
 factor is then computed from the remainder of the data. This
 idea was introduced by Lempers (1971), and other imple-
 mentations have been suggested more recently under the
 names partial Bayes factors (O'Hagan 1991), intrinsic Bayes
 factors (Berger and Perrichi 1993), and fractional Bayes fac-
 tors (O'Hagan 1995).

 6. ACCOUNTING FOR MODEL UNCERTAINTY

 Practical model-building often involves far more than the
 comparison of two models; there are usually many other
 choices to be made. For example, in regression the analyst
 must choose the independent variables, decide which if any
 of the observations are outliers, and determine how if at all
 to transform the variables. Each possible combination of
 choices defines a different model, so that the model-building
 process consists of comparing many competing models.
 Strategies for doing this are commonly guided by a series of
 significance tests, often based on the approximate asymptotic
 distribution of a test statistic.

 There are several problems with this. The sampling prop-
 erties of the overall strategy, as distinct from those of the
 individual tests, are not well understood (Freedman 1983;
 Miller 1984, 1990). The models being compared are often
 not nested. Power considerations are usually not taken into
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 account when setting significance levels; indeed, the power

 characteristics of the tests are often unknown. Any approach

 that selects a single model and then makes inference con-

 ditionally on that model ignores the uncertainty involved in

 model selection, which can be a big part of overall uncer-

 tainty. This leads to underestimation of the uncertainty about
 quantities of interest, sometimes to a dramatic extent. See

 Application 4 for an example of this.

 All of these difficulties can be avoided, at least in principle,

 if one adopts a Bayesian approach and calculates the posterior

 probabilities of all the competing models, which follow di-

 rectly from the Bayes factors (e.g., Leamer 1978; Stewart

 1987). A composite inference can then be made that takes

 account of model uncertainty in a simple and formally jus-

 tifiable way. In Section 6.1 we review this approach, and in

 Sections 6.2-6.5 we discuss methods for handling the difficult

 situation where the number of models is very large.

 6.1 Basic Ideas

 When several models are being considered, Bayes factors

 yield their posterior probabilities as follows. Suppose that

 (K + 1 ) models, HO, H1, . . ., HK, are being considered.
 Each of HI, ._. , HK is compared in turn with HO, yielding
 Bayes factors Blo, . .. , BKO. Then the posterior probability
 of Hk is

 /K

 pr(HkID) = akBko/ > arBro, (16)
 r=O

 where ak = pr(Hk)/pr(HO) is the prior odds for Hk against

 HO (k = 0, ... , K); here BOO = ao = 1. Taking all the prior
 odds ak equal to 1 is a natural choice, but other values of ak

 may be used to reflect prior information about the relative
 plausibility of competing models.

 The posterior model probabilities given by Equation ( 16)

 lead directly to solutions of the prediction, decision-making

 and inference problems that take account of model uncer-
 tainty. For a quantity of interest A that is well-defined for

 every model, the posterior density given model Hk is pr(A I D,

 Hk) = f pr(A ID, Ok, Hk)pr(OkI D, Hk) dOk. This can be used
 to make inferences about A conditionally on model Hk, but
 instead we may use the posterior density of A without con-

 ditioning, namely
 K

 pr(A I D)= E pr(A ID,Hk)pr(HkI D) (17)
 k=O

 (Leamer, 1978, p. 117). This accounts for the uncertainty

 about model form by weighting the conditional posterior
 densities according to the posterior probabilities of each
 model. The posterior mean and standard deviation of A are
 as follows (Leamer, 1978, p. 118):

 K

 E[AID] = E E[AID,Hk].pr(HkID) (18)
 k=O

 and

 K

 var[AI|DI = E (var[A I D, HkI
 k=O

 + (E[ ID, HkI)2).*pr(HkI D)-E[AI|DI2. ( 19)

 Racine et al. (1986) showed how this method can be used

 to make inference about a treatment effect in the presence
 of uncertainty about the existence of a carryover effect.

 The decision-making problem is solved by maximizing

 the posterior expected utility of each course of action con-
 sidered. The latter is equal to a weighted average of the pos-

 terior expected utilities conditional on each of the models,

 with the weights equal to the posterior model probabilities

 pr(HkID). Smith (1991) discussed the situation where a
 model is to be chosen and then a decision made. Our view
 is that if possible, a single model should not be selected before

 decision making, and that model uncertainty should be ac-

 counted for in the calculation of posterior expected utilities.
 Much of the literature on statistical analysis in the presence

 of a set of rival models has focused on the selection of a

 single model. Equation (17) shows that selecting a single
 model and proceeding conditionally on it may be reasonable

 if one of the pr(Hkl D) is close to unity or if the sum is
 dominated by models for which the values of pr(A I D, Hk)
 are similar. If not, then analyses conditional on a single se-

 lected model fail to take account fully of uncertainty about

 structure and so may well underestimate the uncertainty as-

 sociated with their conclusions. This can lead to, for example,

 policy choices that are riskier than one thinks (Hodges 1987).

 6.2 Occam's Window

 Despite the importance of model uncertainty and the ex-

 istence of a general strategy for dealing with it, at least since

 the work of Leamer (1978), there have been three major

 obstacles to the widespread adoption of the method outlined

 in the previous section. The first is the difficulty of calculating
 Bayes factors; we have shown in Section 4 that there is now

 a range of feasible computational strategies for doing this.
 The second obstacle is that the number of terms in Equa-

 tion (17) can be enormous. For example, in regression with
 n cases and J candidate independent variables, considering

 all possible subsets, the possibility of outliers and four possible
 transformations of each variable gives an initial set of around

 (2J X (onax) X 4J+l) models, where rmax is the maximum
 number of possible outliers envisaged. Even for a relatively

 small problem, with n = 40, J = 12, and Omax = 5, this is
 on the order of 1016 models.

 The third obstacle is that prior distributions for the pa-

 rameters must be specified for each model. Various possible

 ways around this now exist. One approach is to use the

 Schwarz criterion, relying on the result of Kass and Wasser-
 man (1995) that this gives an accurate approximation for a
 particular, reasonable prior. Another way is to specify prior
 distributions for one or several "big" models within which
 all or most of the models considered are nested, and then

 obtain the priors for the nested models by conditioning on
 the constraints that define them (as in Raftery 1993c).

 In this section and the next we describe two general al-

 gorithmic approaches to solving this problem that lead to
 feasible methods. The first, known as "Occam's window,"

 was proposed by Madigan and Raftery (1994) and selects a

 subset of the models initially considered. This involves av-

 eraging over a much smaller set of models than in (17),
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 Kass and Raftery: Bayes Factors 785

 thereby facilitating effective communication of model un-

 certainty.

 Those authors argue that if a model is far less likely a

 posteriori than the most likely model, then it has been dis-

 credited and should no longer be considered. Thus models
 not belonging to

 = H:max,{Ipr (HIhID)} c}
 {pr(Hkl D))

 should be excluded from Equation ( 17), where C is a fairly

 large number (>1) chosen by the data analyst, such as C
 = 20. Appealing to Occam's razor, they also exclude from

 ( 17) complex models that receive less support from the data

 than their simpler counterparts, namely those belonging to

 Pr (H, D)
 13= {Hk: 3 H, E A, H, C Hk, P (k D)>1

 Then Equation ( 17) is replaced by

 pr(A ID) = lHkE=>4 pr(A I Hk, D)pr(D I Hk)pr(Hk)
 | Hke ,4 pr(D I Hk)pr(Hk)

 where A = A'\f3.
 One search strategy to identify the models in A consists

 of a sequence of pairwise comparisons of nested models. If
 a model is rejected in favor of a larger one, then all the
 models nested within it are also rejected. Also, if there is

 evidence for Ho. then HI is rejected; but to reject Ho. we
 require strong evidence for the larger model, HI. If the ev-
 idence is inconclusive (falling in "Occam's window"), then
 neither model is rejected.

 Typically the number of terms in ( 17) is reduced to 25 or

 less, and often to as few as 1 or 2. This procedure mimics
 the evolutionary process of model selection that is typical of
 science. The final solution is fairly independent of the initial

 class considered, in the sense that most initial classes that
 contain A give the same result.

 6.3 Markov Chain Monte Carlo Model
 Composition (MC3)

 Madigan and York ( 1992) proposed approximating ( 17)
 using MCMC methods, generating a process that moves
 through model space. They constructed an irreducible
 Markov chain { H( t) }, t = 1, 2, ... with state space X and

 equilibrium distribution pr(Hi I D), where X is the space of
 models considered. Then for any function u(Hi), if this
 Markov chain is simulated for t = 1, ... , m, the average,

 m

 U=- U(H(t)),
 m t=l

 converges with probability 1 to E[u(H)] as m -s oo. To
 compute ( 17) in this way, they set u(H) = pr(A I H, D).

 To construct the Markov chain, for each model H they

 defined a neighborhood nbd(H) consisting of H itself and
 the models that differ from H by just one parameter. They
 defined a transition matrix R by setting R(H -* H') = 0 for
 all H' g nbd(H) and R(H -*H') constant for all H'

 E nbd(H) . H' is then drawn from q(H -*H') and accepted

 with probability

 fpr (H' ID)
 min 15 pr(HI D))

 Otherwise, the chain stays in state H. Madigan and York
 (1992) reported that this process is highly mobile, and that

 runs of 10,000 or less are typically adequate.

 George and McCulloch (1993) proposed a similar method
 in which the chain moves through both model space and-

 parameter space at once. To ensure that the chain is irre-
 ducible, they never actually eliminated a parameter from the
 model, but instead set it close to zero with high probability.

 6.4 Model Expansion

 Draper (1995) proposed the model expansion method, in
 which one model is selected initially and then generalized

 to a set of models that include the initially selected one as a

 special case but that relax some of the structural assumptions
 underlying it. Equation (17) is then used for inference about

 quantities of interest, but restricted to the set of models ob-
 tained in the generalization step. In regression, for example,
 a set of variables and functional forms might be selected
 initially and a normal distribution assumed for the errors.
 This might be generalized by embedding the normal error

 distribution in the symmetric power exponential family (Box

 and Tiao 1962). Model expansion can be continuous, as in
 that example, or discrete.

 Model expansion is useful for taking account of uncer-

 tainty about specific structural assumptions in a model but
 is not designed to take account of the uncertainty inherent
 in model building when many models are initially consid-

 ered, as in variable selection in regression.

 6.5 Evaluation of Methods

 The efficacy of a modeling strategy can be judged by how
 well the resulting predictive distributions predict future

 observations (Dawid 1984). Madigan and Raftery (1994)
 measured predictive performance by splitting complete data
 into two subsets, one (typically about 25%-50% of the total)
 used to calculate model probabilities and the other used as
 a set of test cases. Predictive performance was then measured
 using the logarithmic scoring rule of Good (1952); see Sec-
 tion 3.2. This method can be used to assess the performance
 of any method that generates predictive distributions, Bayes-
 ian or not, model based or not, statistical or not. With this
 scoring rule, Equation (17) is guaranteed in a certain sense
 to give better predictions on average than those based on
 any individual selected model (Madigan and Raftery 1994).

 Model averaging by the Occam's window and MC3 meth-
 ods has given consistently and substantially better predictions
 than those methods based on any one model alone, for several
 data sets. The differences between individual "good" models
 were smaller than the gain due to taking model uncertainty
 into account. The MCMC method had better predictive per-
 formance than Occam's window, but at the cost of greater
 computational expense and less easily interpretable results.
 This is true for discrete graphical models (Madigan and Raf-

 tery 1994), linear regression models (Raftery, Madigan, and
 Hoeting 1993), and survival analysis (Raftery et al. 1995).
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 7. APPLICATIONS, REVISITED

 7.1 Application 1: E. coli Mutagenesis

 The raw data for each strain of E. coli were two pairs of

 sample sizes and corresponding proportions (n 1, IAp 1) and
 (ni2, Pi2). Here i = 1, ... , 13, with the 13th strain being
 the one in question, uvrE. The data were assumed to be
 distributed as binomial proportions and were transformed
 to the logit scale according to Yi = log[pj 1 ( -Pi2)/(A2( 1
 -Pi ))]. Then Y1 was assumed to be normally distributed,
 with a( taken to be known and equal to the first-order ap-
 proximate variance based on binomial sampling, namely

 2 = [ni l(1 i )] + [ni2i2 1 i2)I
 We write {i =lOg(Pi2(10 - AM2) 109?(Pi 1/( I - Pi M ))so

 that the null hypothesis is Ho: #13 = 0, and under this hy-
 pothesis, Y13 N(O, aD3). For the alternative H1, we begin
 with Y13 N(413, (r3) and then, considering the data from
 the first 12 strains to be directly relevant, we use them to
 formulate a prior for 4I13 (taking the strains to be exchange-
 able). This may be done by assuming that 4{i N(,u, T2),
 iid, i = 1, ..., 13, so that YI3 N(,u, T2 + (13). The quan-
 tities ,u and T may then be estimated from the data on the
 first 12 strains. This was done by maximum likelihood fol-
 lowing Kass and Steffey (1989), who used the transformed
 data (the uvrE strain is number 12 in their table 1 ). The
 Bayes factor is then

 B = n(y13; Ai, r2 ? 13)
 n(y13; 0, oj3)

 where n(x; m, v) denotes the normal density with mean m

 and variance v evaluated at x. The result was Blo = .065,
 indicating positive evidence in favor of Ho.

 7.2 Application 2: The Hot Hand

 Kass and colleague K. Hsiao-hereafter HK-analyzed
 the data for Vinnie Johnson. (Details may be found in Hsiao
 1994.) Under Ho we have Yi iid B(ni, p) (i = 1, ... ., 380),
 there being 380 games in the data set. Under the alternative,
 Yi..- B(ni, pi) independently for i = 1, ..., 380, and
 Pi ?- beta(a, b). HK began by reparameterizing the beta dis-
 tribution according to (a, b) = (t/I, (1 - t)/w). Then,
 under the beta-binomial, E(Yi/ni) = (, and the binomial
 becomes a limiting case of the beta-binomial as w -X 0.
 Thinking of this as a nested model and using the notation
 of Section 5.1, i1 becomes w and f, becomes (, which reduces
 to p when w = 0. The additional simplification mentioned
 there is then to take t and w to be a priori independent, with
 the distribution on t the same as that used on p under the
 binomial. HK put a uniform( 0, 1 ) prior on t and p and then
 examined the Bayes factor for several values of w.

 To think about the values of w that should be of interest,
 it is helpful to convert w to the standard deviation SD = t( 1

 - t)/(1 ?+ w-1), which may be done by taking t equal to
 Johnson's overall shooting rate, t = .43. Under H1, Johnson's
 underlying game shooting ability varies from good games
 with high values of Pi to bad games with low values. To
 consider the variation sufficiently large to represent inter-
 esting swings in ability, it seems to us that the pi's would

 have to vary frequently by about ?.05. That is, values of SD
 of at least .05 (roughly) would be needed to represent a
 meaningful amount of hot-handedness. With this in mind,
 here are several values of B1o:

 w SD Blo

 .005 .035 .16

 .01 .049 .017

 .03 .085 3 X 10-7

 From these calculations, the evidence does not rule out small
 degrees of game-to-game extra-binomial variability, but it is
 strongly against substantial game-to-game extra-binomial
 variability (as represented by the beta-binomial). In addition,
 HK used a normal prior on w for which "the information
 in the prior equals the information in one observation" as
 described in Section 4.1.3 (here the prior was half-normal,
 because w 2 0) and obtained Blo = Il using Laplace's
 method; the Schwarz criterion gave B1o ;j-. (A more ac-
 curate Laplace approximation accounting for co being at the
 boundary of the parameter space is described in Hsiao 1994;
 it yielded B1o = )-

 The uniform prior on t and p is a natural choice, but B1o
 may be sensitive to it. HK showed that this sensitivity is not
 enough to call the conclusions into question; indeed, the
 parameters are null-orthogonal, as discussed in Section 5.2.

 Thus these data show decisively that Vinnie Johnson did
 not have a "hot hand" in the sense that there was no sub-
 stantial game-to-game extra-binomial variability in his
 shooting percentage. (The data may be obtained by sending
 the e-mail message "send Vinnie.Johnson from data" to
 statlib@stat.cmu.edu.)

 7.3 Application 3: Ozone Exceedances

 Success of the regulatory efforts of the Texas Air Control
 Board would be indicated by a decrease in the rate of oc-
 currence of exceedances. If there were no trend, then the
 data would be close to being from a homogeneous Poisson
 process; we denote this model by Ho. An alternative hy-
 pothesis is that the exceedance rate has been decreasing
 smoothly and gradually. This may be represented by the log-
 linear Poisson process, HI: X(s) = pe-"s, where X(s) is the
 rate of occurrence at time s and y > 0. Another possibility
 is that the exceedance rate decreased fairly abruptly within
 a short time period. This may be represented by the change
 point Poisson process, H2: X(s) = XI if 0 < s < r and X(s)
 = X2 if r < s < T.

 Raftery (1989) calculated Bayes factors for these hy-
 potheses using improper reference priors and the imaginary
 training sample device of Spiegelhalter and Smith ( 1982).
 This is probably a reasonable approximation to vague prior
 information here, because degrees of freedom involved in
 the comparisons are small. The Bayes factor for a gradual
 change against no trend, Blo, is .02, indicating strong evi-
 dence (odds of 50) against a smooth decrease; the Bayes
 factor corresponds to strong evidencefor the null hypothesis.
 In contrast, the Bayes factor for an abrupt change against
 no trend, B20, is 2.75, indicating evidence for an abrupt
 change that is "worth no more than a bare mention." Note

This content downloaded from 
�������������139.80.135.89 on Fri, 21 Apr 2023 00:45:07 UTC������������� 

All use subject to https://about.jstor.org/terms



 Kass and Raftery: Bayes Factors 787

 Logit link
 _ O-- Cloglog link

 Bayeslan miXture

 I'

 0l 50 I 00 1 50 200 250 300
 Odds Matio

 Figure 1. Posterior Distributions of the Odds Ratio in the Educational
 Transitions Application: The results are indistinguishable for all the prior

 distributions (i.e., values of O) considered.

 that if there was a change, it is much more likely to been
 abrupt than smooth by odds of B21 = B20/B1o = 135. This
 is a nonnested model comparison, and one can see how easy
 it is with the Bayesian method.

 The finding of some evidence for an abrupt decrease in

 the exceedance rate gave rise to the suggestion that this was

 due not to a change in the underlying ozone levels, but rather
 to a change in measurement technology that led to lower
 variances and hence to fewer extreme values. Subsequent

 exploratory analyses of Smith (1989, rejoinder) suggested
 that this was plausible, especially because there were indeed
 changes in measurement instruments that could have led to

 such a change (Fairley 1989). It would be possible to expand

 the model to take this into account, and then to test for it
 explicitly by calculating the Bayes factors for the expanded
 model against the previously considered models. This ex-

 ample shows that Bayes factors are not restricted to tests of
 previously formulated hypotheses, but can also be used to

 guide an empirical model-building process.
 In this example Bayes factors have the advantage over

 frequentist approaches of being technically simpler. The

 comparisons between Ho and HI, and between Ho and H2
 both lead to nonstandard frequentist testing problems, even

 though their Bayesian solution is straightforward. Under HI,
 the expected total number of events over all time is finite,
 so that the usual asymptotic arguments do not apply. Under
 H2, the likelihood is highly discontinuous as a function of

 the change point r, so that the usual asymptotics based on
 smoothness of the likelihood do not apply at all. To see how
 much more cumbersome the frequentist approach to testing

 Ho against H2 is, compare the frequentist analyses of Worsley
 (1986) and Akman and Raftery (1986b) with the Bayesian

 analysis of Raftery and Akman (1986). And we know of no
 non-Bayesian testing procedures for comparing the non-

 nested and "irregular" models HI and H2. In particular, the
 methods of Cox (1961, 1962) do not apply, because the reg-
 ularity conditions that they require do not hold.

 7.4 Application 4: Educational Transitions

 We address the question of interest in this application

 using part of the longitudinal data collected by Greaney and

 Kelleghan (1984). In 1967, they selected a random sample

 of 11-year-old children in Irish elementary schools and fol-

 lowed them through the rest of their educational careers. Of

 the 441 students who entered second-level education, 230
 completed it by taking the Leaving Certificate Examination

 and 211 did not. Social class background and ability were

 both measured prospectively at age 11 by continuous-valued
 variables, whereas type of school was a dichotomous variable,

 indicating whether a secondary or vocational school was at-

 tended.

 We use logistic regression with the reference set of proper

 priors described in Section 5.2. It is clear that social class

 background does have an effect, with a Bayes factor exceeding
 2,000 for the model that includes it and ability against the

 model that includes only ability. Thus Greaney and Kel-

 leghan's conclusion about meritocracy was unwarranted.

 Also, gender has no effect. A frequentist analysis would say

 merely that the gender effect is "not significant," but the
 Bayesian analysis provides strong evidence (odds of more

 than 20) for the simpler model from which the gender effect
 is absent; as in Applications 1 and 2, the Bayes factor provides
 evidence for a null hypothesis.

 The main uncertainty is about the link function. The data
 provide some evidence (a Bayes factor of 3.7) for the com-

 plementary log-log (hereafter termed cloglog) link against

 the logit link, but this is not strong. This Bayes factor varied
 by less than .02 over the entire range of priors considered.
 The models corresponding to different links are not nested,

 so that a formal non-Bayesian comparison between these
 models would be cumbersome while the Bayesian compar-
 ison is straightforward.

 A question of policy interest is the difference between the

 attainments of secondary and vocational school students,

 after controlling for the other variables. Here we consider
 the ratio of the odds on completion of second-level education
 for secondary school students to that for vocational school
 students when both social class and ability are high (71 and
 127, corresponding to the 95th percentile in each case). We
 will refer to this quantity simply as the odds ratio. Even

 though the data do not distinguish clearly between the two
 link functions, the latter imply very different things about

 the odds ratio. With the logit link function, the MLE of the
 odds ratio is 23; with the cloglog link, the MLE is 91 -about
 four times larger.

 Approximate posterior distributions of the odds ratio un-

 der the two models are shown in Figure 1, as is the combined
 inference using the Bayesian mixture of Equation (17); the

 corresponding quantiles are shown in Table 1. The posterior
 distributions under the two models are very different; the

 Table 1. Posterior Quantiles of the Odds Ratio in the
 Educational Transitions Application

 Quantile

 Model .025 .5 .975

 logit link (H3) 10 23 52
 cloglog link (H4) 24 94 338
 Bayesian mixture 13 77 314
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 distribution for the logit link is more concentrated and cen-
 tered about a lower value. The combined posterior distri-
 bution has both the peak around 20 from the logit link and
 the long tail from the cloglog link. The combined 95% in-
 terval in Table 1 is close to the union of the intervals cor-
 responding to the individual models but is somewhat shorter;
 this is intuitively reasonable.

 For other analyses of these and related data, see the work

 of Raftery and Hout ( 1985, 1993). The data may be obtained
 by sending the e-mail message "send irish.ed from data" to
 statlib@stat.cmu.edu.

 7.5 Application 5: Predicting Working
 Memory Failure

 The analysis, including prior elicitation, was reported in
 detail by Carlin et al. (1992). Here we discuss several im-
 portant issues: the computational burden and the effective-
 ness of Laplace's method, the difficulty and effectiveness of
 eliciting the prior and assessing how sensitive the results are
 to it, the use of influence diagnostics, and the role of the
 Schwarz criterion.

 Computing (2) involved evaluating a one-dimensional
 integral nested within a five-dimensional integral for the
 number-of-conditions model and a six-dimensional integral

 for the query-complexity model. Laplace's method was pro-
 grammed in the S language; the result was B21 = 8.0 in favor

 of the query-complexity model. This was checked with
 subregion-adaptive integration, which yielded B21 = 10.8.
 Thus Laplace's method was somewhat inaccurate but clearly
 accurate enough for the inferential purpose at hand.

 (Subregion-adaptive integration was more difficult and was
 done by Alan Genz.)

 Simple forms were used for the priors, but there were still
 15 hyperparameters to be determined. Some of the infor-

 mation for this came from another related experiment, but
 some was based on the experience of the investigators and
 was really rough guesswork. Sensitivity analysis was carried
 out by shifting all prior means by one prior standard devia-
 tion unit in each direction and then doubling and halving
 each prior standard deviation, which resulted in approxi-
 mately IO0 alternative prior distributions. Even for this large
 number of priors, computations were performed quite easily
 using the Laplace approximation method of Equation (5).
 After eliminating certain of the alternative priors as unrea-
 sonable, the minimal value obtained over all remaining priors
 was B21 = 3.0.

 A concern was the influence that individual subjects might
 have on the results (via the normal distributional assumption
 of subject ability effects). Leave-one-out influence diagnostics
 were computed using the Laplace approximation methods,
 which are again quite easy to obtain in S. A small number
 of subjects in the experiment did carry much of the com-
 parative information. Taking these sensitivity analyses into
 account, the overall conclusion was that there was "some
 evidence, though not strong evidence" in favor of the query
 complexity model. The Schwarz criterion was S = 3.6, giving
 B21 6, which was consistent with the overall conclusion

 and thus could be used as a summary.

 8. ISSUES AND CONTROVERSIES

 8.1 Why Test Sharp Hypotheses?

 We introduced Bayes factors as a way of assessing the

 evidence in favor of a scientific theory. Our statement that
 Jeifreys's approach computes "the posterior probability that
 one of the theories is correct" invites argument, however.
 Some would say that theories are never correct, and thus
 any approach that assumes they are must be flawed. Those
 who make this argument generally prefer the use of interval
 estimates.

 Certainly we would agree with Jeifreys (1961, pp. 389-
 390) and Edwards et al. (1963, p. 235) when they say that

 often hypothesis testing is not applicable and estimation is
 more appropriate. We also recognize a legitimate worry on

 the part of many statisticians that empirical models are often
 taken too seriously, and that poor models are sometimes
 accepted merely because they fit the data better than other
 models that are even worse.

 But some authors see the introduction of sharp hypotheses

 as "silly" (e.g., Gelfand, Dey, and Chang, 1992). This view-
 point ignores the way scientific investigations usually pro-
 ceed: Though one rarely believes a scientific law in an ab-
 solute sense, it is a great convenience to speak and to act as.
 if laws are valid. When one says that a certain theory is cor-
 rect, one means that deviations from it are sufficiently minor
 to be irrelevant for all practical purposes at hand. Thus the-
 ories do become "accepted" for a period, during which they
 are used to make predictions about new phenomena. Jeffreys
 (1961, p. 391) pointed out that the best available law gets

 used for future calculations even when discrepancies are
 found, noting that "there has not been a single date in the
 history of the law of gravitation when a modern significance

 test would not have rejected all laws and left us with no law."
 The admission that minor discrepancies may exist between

 theory and data does not imply that estimation is more nat-
 ural than testing. For there are many ways in which a theory
 might err, and in representing the theory by a statistical model
 one should not presume that possible errors are eliminated

 simply by letting some parameter 41 take values other than
 a particular 410. Simple laws are preferred partly because one
 cannot be sure that by including more parameters to model
 one kind of error, the law will succeed better in some un-

 anticipated new situation. In some cases it may be worthwhile
 to include additional parameters, but this is an empirical
 question. In fact, it is exactly this empirical question that
 Bayes factors are supposed to answer. They do so by com-
 paring predictions made by the simpler and the more com-
 plicated theories.

 For example, in Application 1 an alternative to testing

 equality of the binomial proportions would be to assume
 that they are different and to ask how different they are. But
 how would this correspond to the scientific theory? One
 would have to say something like "we estimate the difference

 between the log odds to be less than .38 (with probability
 .95), which indicates that deviations from the error-prone

 DNA repair mechanism are quite small." But this is merely

 an elaboration of the more succinct "evidence in favor of

 the error-prone DNA repair mechanism." Careful exami-
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 Table 2. Approximate Minimum t Values for Different Grades of Evidence and Sample Sizes

 n=

 2 log B1o
 Evidence for H1 (Approximation (21)) 30 100 1,000 10,000

 Positive 0-6 1.84 2.15 2.63 3.03
 Strong 6-10 3.07 3.20 3.59 3.90
 Decisive >10 3.66 3.82 4.11 4.38

 nation of the data using either approach ought to lead an

 analyst to appropriate conclusions. We find that expressing
 results in terms of Bayes factors is simpler. It is also reassuring

 that, as Berger and Delampady (1987) noted, in testing a
 normal mean the point null is a good approximation to an
 interval null as long as the width of the interval is less than

 about one-half of the standard error of the sample mean (see
 also Dickey 1976 and Verdinelli and Wasserman 1993a).
 (For related discussion along these lines see Jeifreys 1961,
 p. 367, Raftery 1992, and Zellner 1987.)

 It has been argued that a comprehensive account of
 Bayesian model selection requires decision theory (Kadane
 and Dickey 1980; Smith 1991) . The approach discussed here
 avoids the introduction of utilities, which would bring with
 it another layer of sensitivity concerns.

 8.2 Bayes Factors Versus Non-Bayesian
 Significance Testing

 There is a substantial literature on the controversy between

 Bayesian and non-Bayesian testing procedures. This is not
 a central theme of our article, but we do wish to briefly men-

 tion several points that have been made in the literature.

 1. There is no reason to expect a P value to be similar to

 the posterior probability that the null hypothesis is correct.
 But partly because this misinterpretation of P values is com-
 mon among nonstatisticians, it is of some interest to compare
 results. This was done by Jeifreys (1961, pp. 434-435) and
 many subsequent workers. There is a general feeling that
 Bayes factors are more conservative than P values, mainly
 because when comparisons are made, it becomes clear that
 a P value of .05 cannot represent much evidence against the
 null (Berger and Mortera 1991 and references therein;
 Edwards et al. 1963).

 2. Frequentist tests tend to reject null hypotheses almost
 systematically in very large samples, whereas Bayes factors
 do not. This has been a real problem in sociology, where

 data sets frequently have thousands of cases. A dramatic
 example with n = 113,556 was discussed by Raftery ( 1986b,
 1995b). There a substantively meaningful model that ex-
 plained 99.7% of the deviance was rejected by a standard
 chi-squared test with a P value of about 10-120 but was nev-
 ertheless favored by the Bayes factor. Faced with this prob-
 lem, sociologists had taken to ignoring significance tests and
 using other criteria of reasonableness and common sense in
 comparing models (e.g., Fienberg and Mason 1979; Grusky
 and Hauser 1984). Bayes factors are now widely used in
 sociology, usually with BIC as an approximation.

 3. Bayes factors, like Bayesian procedures generally, follow
 the likelihood principle (e.g., Berger and Wolpert 1984). As

 a result, in settings such as clinical trials where cases may
 accrue sequentially, Bayes factors may be applied without
 concerns about unscheduled analysis of the data (see, for
 example, Berger and Berry 1988 and Cornfield 1966a, b).

 4. Bayes factors can be applied as easily to nonnested
 models as to nested ones. In contrast, the application of non-
 Bayesian significance tests to nonnested models is difficult.
 The approach of Cox (1961, 1962), which has spawned a
 large literature, tends to be cumbersome to implement and
 requires the often arbitrary designation of one of the two
 nonnested models as the null hypothesis. One way around
 this arbitrariness is to carry out two tests rather than one
 test, with each model in turn as the null hypothesis. But
 there is no guarantee of getting the standard kind of result
 of a test, namely rejection of one model and nonrejection
 of the other. Both models may fail to be rejected, in which
 case it is not clear how to make inferences about quantities
 of interest, especially if the two models lead to different con-
 clusions. Both models may be rejected (as often happens
 with large samples), in which case the tests do not provide
 a comparison between the two models.

 5. Non-Bayesian significance tests were developed for the
 comparison of two models, but practical data analysis often
 involves far more than two models, at least implicitly. In
 this case, carrying out multiple frequentist tests to guide a
 search for the best model can give very misleading results
 (e.g., Freedman 1983). By allowing us to take into account
 model uncertainty, Bayes factors can avoid this problem (e.g.,
 Raftery et al. 1993).

 With regard to Bayesian calibration of frequentist meth-
 ods, for large samples the Schwarz criterion may be used to
 obtain the required value of an approximate t statistic for it
 to represent strong or decisive evidence. Equation (9) implies
 that

 2 log Blo A - (di - do)log(n). (20)

 Now if Ho and HI are nested and differ by just 1 degree of
 freedom, so that (d1 - do) = 1, then A - t2 approximately
 in large samples, where t is the t statistic for (frequentist)

 testing of Ho against HI, obtained, for example, by dividing
 (VI - VI0) by its large-sample approximate standard error.
 Thus in this case Equation (20) implies that

 2 log Blo t2 - log(n). (21)

 The approximate t values corresponding to different grades
 of evidence (on the cruder scale in Sec. 3.2), and different
 sample sizes are shown in Table 2 (as in Raftery 1993b;
 see also Berger 1985). For "positive" evidence, this is t
 = 1l/og n; for "strong" evidence, it is t = Vlog n + 6; and
 for "decisive" evidence, it is t = Vlog n + 10. Note that the
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 critical values quickly become larger than the usual cutoffs

 based on P values as n becomes large.

 Atkinson (1978) has noted some instances of Bayes factors

 favoring the simpler model Ho even when a more complex
 model HI is correct. But Smith and Spiegelhalter (1980, p.
 216) showed that this occurs only when the two models are

 so close that there is nothing to be lost for predictive purposes
 by cutting back to the simpler model, so that the Bayes factor

 functions as afully automatic Occam's razor.
 I. J. Good has for many years advocated a Bayes/non-

 Bayes compromise, consisting essentially of calculating the

 Bayes factor and using it as a frequentist test statistic. He
 reviewed these ideas and listed nearly 50 of his own publi-

 cations on the topic, spanning 40 years (Good 1992). This
 is a frequentist testing proposal, and there seems to be no

 reason why it should escape the difficulties that other fre-

 quentist tests have. These arise from the way the test statistic
 is calibrated and not from the choice of test statistic. But

 Good has also pointed out that his compromise can be in-
 verted, with P values transformed to yield approximate Bayes

 factors; this is a sensible and useful point.
 Goodness-of-fit tests are different from other frequentist

 tests, because they do not aim to compare two competing
 models, but rather to detect departures from a null hypothesis
 even when no alternative has yet been formulated. One might
 question the use of "rejecting" a hypothesis if there is nothing
 to put in its place. Many Bayesians do, however, see a useful
 role for goodness-of-fit tests (Box 1980; Dempster 1971;

 Rubin 1984). They can be useful for calibrating the diag-
 nostic checks to which a model is subjected and thus guiding

 the search for a better model. In Jeffreys's view, a model
 should not be abandoned until a better one (in the posterior
 model probability sense) is found.

 8.3 Bayes Factors Versus the AIC

 Akaike (1973) advocated that, given a class of competing

 models for a data set, one choose the model that minimizes

 AIC = -2 (log maximized likelihood)

 + 2 (number of parameters). (22)

 Two main justifications for the AIC have been advanced.

 The first, due to Akaike (1973), is based on a predictive
 argument. Suppose that, given current data and a set of pos-
 sible models, we want the predictive distribution of a future

 datum. Then, if the predictive distribution is conditional on
 a single model and on its estimated parameters, the AIC
 picks the model that gives the best approximation, asymp-

 totically, in the Kullback-Leibler sense. But such a predictive
 distribution is incorrect, because it does not incorporate
 the uncertainty about parameter values and model form
 (Aitchison and Dunsmore 1975). Shibata (1976) and Katz
 (1981) have shown that the AIC tends to overestimate the
 number of parameters needed, even asymptotically. Thus if
 one must ignore both parameter uncertainty and model un-
 certainty when making predictions, it may be worthwhile to

 have a model that is too big (Shibata 1976; Stone 1979).

 Related remarks have been given by Zellner (1978) and

 Stone (1979).

 A related argument is that the AIC picks the correct model

 asymptotically if the complexity of the true model grows
 with sample size (Shibata 1980, 1981) . Typically this is taken

 to mean that the model grows in one respect (e.g., the order

 of an autoregressive model) but remains fixed in all other
 respects (e.g., normality, linearity). Our experience with large

 data sets in sociology is that the AIC selects models that are

 too big even when the sample size is large, including effects

 that are counterintuitive or not borne out by subsequent
 research.

 The second main justification for the AIC, perhaps best

 described by Akaike (1983), is Bayesian. He wrote that

 model comparisons based on the AIC are asymptotically

 equivalent to those based on Bayes factors. But this is true
 only if the precision of the prior is comparable to that of the

 likelihood, but not in the more usual situation where prior

 information is small relative to the information provided by
 the data. In the latter more usual situation, the Schwarz cri-

 terion indicates that the model with the highest posterior
 probability is the one that minimizes

 BIC = -2 (log maximized likelihood)

 + (log N)(number of parameters). (23)

 Comparing Equations (22) and (23) indicates that BIC tends
 to favor simpler models than those chosen by the AIC cri-
 terion. [Akaike (1977) proposed a modification of AIC that
 was consistent in Normal linear regression models; he called

 the new criterion BIC and, in fact, in this setting it is asymp-
 totically equivalent to (23).]

 Findley (1991) gave some cases in which BIC does not

 yield consistent model selection but AIC does. But these are

 cases in which standard asymptotics do not apply and thus
 the theory in Section 4.1.3 leading to the approximation (9)
 also does not apply.

 Linhart and Zucchini (1986) generalized Akaike's (1973)

 approach, replacing the Kullback-Leibler distance between
 true and estimated predictive distributions by any arbitrary
 distance and replacing the quantity to be predicted (the next
 data point in Akaike's development) by any quantity of in-
 terest. Their work shows, for example, that the "2" by which
 the number of parameters is multiplied in Equation (22) is
 arbitrary in that it depends crucially on the choices of distance
 and quantity of interest, and that other choices can lead to
 quite different multipliers, such as "4." But their approach
 is open to the same general criticisms as the AIC. In partic-
 ular, it provides no way of taking account of model uncer-
 tainty and so is somewhat at a loss when several models

 score almost equally well.

 9. BIBLIOGRAPHICAL REMARKS AND
 ADDITIONAL WORK

 The works of Jeffreys ( 1961) , Good ( 1952, 1983, 1985 ),
 Mosteller and Wallace (1964), and Zellner (1971) are im-
 portant basic sources for applications of Bayes factors. The
 literature on model selection also contains many papers on

 Bayes factors, particularly in econometrics (e.g., Leamer

 1983; McCulloch and Rossi 1991; Poirier 1985; Rossi 1985,

 1988; Schotman and van Dijk 1991) .

This content downloaded from 
�������������139.80.135.89 on Fri, 21 Apr 2023 00:45:07 UTC������������� 

All use subject to https://about.jstor.org/terms



 Kass and Raftery: Bayes Factors 791

 Several Bayesian methods of selecting models without
 Bayes factors have been proposed, often using some kind of

 sample-splitting as in cross-validation (Fornell and Rust
 1989; Geisser and Eddy 1979; Gelfand et al. 1992).

 Aitkin (1991) described so-called "posterior Bayes factors"

 in which the marginal likelihood pr(D I Hk) defined by
 Equation (2), which is the prior mean of the likelihood, is
 replaced in Equation (1) by the posterior mean of the like-

 lihood, namely f pr(DI0k, Hk)pr(OkID, Hk) dOk. Despite
 their name, these are quite different in practice from Bayes
 factors as defined in this article. Several discussants of Aitkin
 (1991) pointed out that the procedure has little Bayesian

 justification, does not have any known frequentist optimality
 properties, and yields counterintuitive results (e.g., discus-

 sions by Dawid, Fearn, Goldstein, Lindley, and Whittaker).
 We now give a noncomprehensive list of references in

 which explicit expressions for Bayes factors in different
 models appear.

 Multinomials: Jeffreys ( 1961 ); Good ( 1967 ); Dickey and
 Lientz (1970); Gunel and Dickey (1974); Good and

 Crook (1987); Albert (1990)
 Linear models: Zellner (1971); Dickey (1971); Dickey

 (1975); Zellner and Siow (1980); Smith and Spiegel-

 halter (1981); Zellner (1984); Broemeling (1985);
 Draper and Guttman (1987); Mitchell and Beauchamp

 (1988); Raftery, Madigan, and Hoeting (1993)

 Outliers: Pena and Guttman (1992); Pettit and Young
 (1990)

 Logistic regression and log-linear models: Raftery ( 1986a,
 1988b, 1993c); Stewart (1987); Madigan and Raftery

 (1994); McCulloch and Rossi (1991); Madigan and

 York (1992); Kass and Vaidyanathan (1992); also the
 GLIB software

 Survival analysis: Raftery, Madigan, and Volinsky (1995)
 Multivariate analysis: Dickey (1971); Dickey (1975);

 Dayal and Dickey (1976); Smith and Spiegalhalter
 (1981) [multivariate normal models]; Cooper and
 Herskovits (1992); Cowell, Dawid, and Spiegelhalter
 (1993), Madigan and Raftery (1994); Madigan, Raf-

 tery, York, Bradshaw, and Almond (1994) [discrete

 graphical models]; Banfield and Raftery (1993) [cluster
 analysis]; Raftery (1993b) [structural equation models
 (LISREL)]

 Stochastic processes: Dickey and Lientz (1970), Katz
 (1981) [Markov chains]; Broemeling (1985) [autore-
 gressive models]; Katz (1981) [Markov chains]; Ak-

 man and Raftery (1986a) [point processes]; Raftery
 and Akman (1986) [change-point Poisson processes];
 Raftery (1987, 1988) [software reliability]; Le, Raftery,
 and Martin (1990) [autoregressive models with out-
 liers]. Polson and Roberts (1994) [diffusion processes]

 Deterministic models: Raftery, Givens, and Zeh (1995)
 Other models: Berry, Evett, and Pinchin (1992) [assess-

 ment of forensic evidence]
 Software: There is little general purpose software for Bayes

 factors, although the BIC approximation can often be
 easily calculated from the output of standard statistical

 software. GLIB (generalized linear Bayesian modeling)

 is an S-PLUS function that returns accurate Bayes fac-

 tors and posterior probabilities for generalized linear

 models, as well as inference about the parameters that
 takes account of model uncertainty. It can be obtained
 by sending the e-mail message "send glib from S" to

 statlib@stat.cmu.edu. BICREG and BIC.LOGIT are S-
 PLUS functions that do approximate Bayesian model

 selection and accounting for model uncertainty in linear
 regression and logistic regression, respectively. They can

 be obtained by sending the messages "send bicreg from

 S" and "send bic.logit from S" to statlib@stat.cmu.edu.

 1 0. CONCLUSION

 We have reviewed applications and developments of a

 method introduced by Jeffreys more than 50 years ago. The
 appeal of the concept was that it provided a simple and sat-
 isfying description of the process of accepting new scientific
 laws as replacements for older ones, which Jeffreys illustrated

 through the use of many examples in his book Theory of
 Probability.

 We have tried to show that Jeifreys's methodology has
 worn well with time and that the Bayesian approach to hy-
 pothesis testing has evolved to fill a niche in modern com-

 putationally intensive statistical practice. It applies to a lim-
 ited but important class of problems in scientific inference

 and also to the assessment of uncertainty when many models
 are considered initially. We wish to emphasize the following
 points:

 * From Jeffreys' Bayesian viewpoint, the purpose of hy-

 pothesis testing is to evaluate the evidence in favor of a
 scientific theory.

 * Bayes factors offer a way of evaluating evidence in favor
 of a null hypothesis.

 * Bayes factors provide a way of including other infor-

 mation when assessing the evidence for a hypothesis.
 * Bayes factors are very general. In particular, they do not

 require alternative models to be nested.

 * Several techniques are available for computing Bayes
 factors, including asymptotic approximations that are
 easy to compute using the output from standard pack-
 ages that maximize likelihoods.

 * In "nonstandard" statistical models that do not satisfy

 common regularity conditions, it can be technically
 simpler to calculate Bayes factors than to derive non-
 Bayesian significance tests.

 * The Schwarz criterion (or BIC) gives a rough approxi-
 mation to the logarithm of the Bayes factor, which is

 easy to use and does not require evaluation of prior dis-
 tributions. It is well suited for summarizing results in
 scientific communication.

 * When several models are considered initially, Bayes fac-
 tors can be used to calculate posterior model probabil-
 ities, yielding composite estimates or predictions that
 take account of model uncertainty.

 * Algorithms have been proposed that allow model un-
 certainty to be taken into account when the class of
 models initially considered is very large.

 * Bayes factors are useful for guiding an evolutionary

 model-building process.
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 * It is important, and feasible, to assess the sensitivity of

 conclusions to the prior distributions used. In our ap-

 plications we have found our conclusions to be robust

 to the prior in a qualitative sense, but this is not guar-
 anteed to be the case.

 Bayes factors have many of the strengths and limitations

 of the Bayesian approach generally. The essential strength is

 their solid logical foundation, which offers great flexibility.
 Some of the practical advantages of this were noted earlier;

 another is invariance with respect to stopping rules in clinical

 trials, mentioned in Section 8.2. Recently, advances in com-

 puting and the development of methods that take advantage

 of additional computational power have greatly extended

 the usefulness of Bayesian methods. Bayes factors can now

 be computed for a wide variety of models.

 The chief limitations of Bayes factors are their sensitivity
 to the assumptions in the parametric model and the choice

 of priors. We have discussed ways of doing sensitivity analysis
 in Section 5, which are illustrated in Applications 4 and 5.

 Application 4 illustrates the usefulness of a reference set of
 proper priors for sensitivity analysis, which has been imple-

 mented for generalized linear models in the GLIB software;
 this idea needs to be extended to other classes of models.

 The more situation-specific sensitivity analysis in Appli-
 cation 5 is rather cumbersome. It requires close attention to
 the details of model and prior. It may be argued that this is
 appropriate; we should not be cavalier in making inferences
 that depend on our assumptions. The Schwarz criterion (or
 BIC) may be used for reporting scientific results with other

 analysis omitted but serving as background support. The
 question of how much effort should be made before conclu-

 sions are drawn arises in any data analysis problem. This is
 part of the art of applied statistics, but there is room for
 research that would help the applied statistician decide
 whether or not to proceed with the full Bayesian analysis.

 [Received March 1993. Revised July 1994.]
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