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Summary

Salt interpretation on seismic data has historically been a
very manual process, requiring weeks or even months to
complete on one 3D seismic survey. The accuracy of the
interpreted salt boundary is critical for sub-salt imaging and
subsequent drilling for oil and gas. The nature of the salt
problem can be reduced to a binary classification problem
that is well suited to modern machine learning (ML)
algorithms: each location on an image either contains salt or
sediment. Seismic surveys are collected and processed in
different ways, which poses a challenge to traditional ML
methods that rely on statistical similarity between training
data and prediction data, especially where limited training
data are available. We propose to use a supervised ML
approach that treats each seismic survey independently. In
particular, we show that an adaptive U-Net approach yields
accurate salt bodies in minutes rather than weeks and
requires minimal training data.

Introduction

Salt interpretation is important for velocity model building
and seismic migration workflows (Wang et al., 2008). Many
attempts to automate salt interpretation have been made
because of the time-consuming nature of the task. Some of
the recent attempts include attribute-based methods (Guillen
et al., 2015; Wu, 2016; Shafiq et al., 2017; Wu et al., 2018),
and convolutional neural networks or CNNs (Shi et al.,
2018; Zeng et al., 2019; Sen et al., 2020).

CNNs have been widely used successfully for object
classification and detection tasks for photographs
(Russakovsky et al., 2015). However, seismic images are
different from photographs in two fundamental aspects: 1)
acquisition methods and 2) processing techniques applied to
the data. The amplitude distribution, sampling intervals,
frequency content, and pixel relationships are also
fundamentally different between surveys, which presents a
significant challenge to ML when attempting to use transfer
learning. A common ML approach is to gather as much
statistically varying data as possible for training to obtain a
generalized ML model that would work on any survey. As
noted by Sen et al. (2020), however, it is impossible to come
up with an all-encompassing training set for all variations.
Like many folks in the seismic industry, we had limited
access to data, and so a different approach was required. We
treated each survey as an independent ML project with its
own training and prediction. The adaptive U-Net method we
chose obtains high accuracy with a limited amount of
manual picking.
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We first explore CNN architectures and our adaptive U-Net
approach, and second we show overall accuracy rates of
above 98% as compared to manual picks on two 3D seismic
surveys from the Gulf of Mexico. In this paper, all the work
for training and prediction were completed on a single 16
GB Tesla V100 GPU.

CNN Architectures

CNNs are generally made up of convolutional layers,
pooling layers, and dropout layers. The convolution step
involves multiplying filters by small pixel regions in the
image and summing up these multiplications. Initially, a
CNN has no knowledge of the relationship between the
pixels in the input image, and so the filters are random.
However, during the learning process, the filters become
representative of abstracted relationships between pixels.
After a forward pass through the neural network, the filters
are updated when the gradient is calculated in a backward
pass. The pooling layer helps reduce computation time,
abstracts features, and also helps prevent overfitting during
training. The pooling function we used was ‘max’ pooling—
it takes the maximum value of a pixel region and discards
the other pixel values moving forward in the network.
Dropout is a regularization technique used to avoid
overfitting. Some number of layer outputs are ‘dropped out’
of the neural network during training and replaced with 0’s.
The central idea of a dropout layer is that it introduces noise
into the network such that the model is less susceptible to
patterns unique to the training data that might not be present
in the prediction data (Chollet, 2018).

Three main CNN architectures were tested to automatically
predict the locations of salt in the subsurface: a 2D patch-
based CNN, a 3D patch-based CNN, and an adaptive 2D U-
Net. The first two approaches use a similar concept of
feeding many small patches into the CNN. For example, a
whole image might actually be 1465 x 1601 pixels, but many
128 x 128 overlapping patches could be extracted for
training. Extending to 3D, overlapping mini cubes could be
extracted for training and prediction. Figure 1 shows a
representative 2D patch-based CNN architecture.

After Ronneberger et al. (2015) and their U-Net approach,
we designed and tested an adaptive U-Net architecture
(Figure 2). The adaptive term signifies that the network can
receive any size of image as an input and will produce that
same size as output. Unlike many patch-based networks, our
adaptive U-Net takes a complete line of the image (an inline)
of any size as input. We found that the adaptive U-Net
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Figure 1: An example of a patch-based CNN architecture: a small patch of a seismic image is fed into the network, with a corresponding salt

prediction as the output (Zabihi Naeini and Di, 2018).
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Figure 2: An adaptive U-Net architecture was used for training and predicting the locations of salt. The shapes of layers displayed are their true
relative shapes to the input layer. The example input on the left is one complete inline from the offshore Julia data and the corresponding output

is a mask of 0’s (no salt as green) and 1’s (salt as yellow).

architecture significantly outperformed the patch-based
CNN approaches in both accuracy and speed.

Case Studies

We now show the application of adaptive U-Net on two case
studies from the Gulf of Mexico. The first survey is 18 km x
18 km at the Julia field. Julia is situated about 425 km
southwest of New Orleans, Louisiana at water depths of
around 2200 m. The second survey, which we call Ogo, is
41 km x 47 km, situated about 225 km southwest of New
Orleans at water depths of around 50 m.

Julia

The Julia survey contains massive salt bodies that are up to
5 km thick. The input images to the adaptive U-Net
algorithm were inlines only. There were a total of 1405
inlines, 1465 crosslines, and 1601 depth samples. Thus, each
training data point was 1465 x 1601 pixels. The complete
3D volume had already been hand-picked, making it an ideal
candidate to test the accuracy of U-Net as compared to the
manual picks. Five randomly selected inlines were used for
training. Two additional unseen inlines were used as
validation data to ensure that the model was not overfitting
on the training data and to pick the best model.
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Manual picking took around 20 minutes on 5 inlines, and the
U-Net training time was 11 minutes. Once the model was
trained, the prediction time took only 3 minutes for all 1405
inlines. In total, the experiment took 34 minutes, whereas
completing the manual picking took around 3 weeks on the
full 3D volume. Only 5 out of 1405 inlines needed to be
manually picked for the ML model to succeed, or 0.4% of
the total data. 99.6% of the data were unseen to the neural
network. Figure 3 shows an example inline and crossline
from the Julia survey, comparing the manually picked salt to
the predicted salt. The salt accuracy was 99.4%, the sediment
accuracy was 98.6%, and the overall accuracy was 98.9%.
Very few training samples were required to obtain such high
accuracies, indicating a well-built architecture. A 50%
distribution of salt to no salt also helped the network to learn
quickly.

Ogo

The Ogo survey in comparison to the Julia survey contains
much smaller, dispersed salt bodies with thicknesses closer
to 1 km. There were a total of 1900 inlines, 1640 crosslines,
and 1501 depth samples. Each training data point was thus
1640 x 1501 pixels. Similar to the Julia survey, the complete
3D volume was already hand-picked, and so it served as a
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Figure 3: On the Gulf of Mexico Julia data, a comparison is shown between a manually picked salt boundary (red line) and the adaptive U-Net-
predicted salt body (purple). An excellent fit between human and ML exists in the inline direction (a) and the crossline direction (b), even though
the network only trained and predicted on inlines. The salt bodies in this survey frequently take up approximately 50% of the area and extend
upward very close to the ocean bottom floor.

good second accuracy measure for the adaptive U-Net
algorithm.

Initially, we used the same strategy for Ogo as for Julia: only
5 inlines were used for training. However, because the salt
to sediment ratio was much smaller for Ogo at around 10%,
more inlines were required during training to achieve high
accuracies. Using 45 inlines for training resulted in a salt
accuracy of 96.6%, a sediment accuracy of 99.9%, and an
overall accuracy of 99.7%. The discrepancy in the salt
accuracy and the sediment accuracy is likely due to the fact
that the network had more sediment to learn from than salt,
and thus performed better predicting the locations of
sediment. Figure 4 shows an example inline and crossline of
the Ogo data with salt picks overlaid. Though more inlines
in this case would need to be hand-picked for training, only
2.3% of the total data were needed. The total time of hand-
picking the 45 inlines was 3 hours, training was 1.25 hours,
and prediction on 1900 inlines was 3 minutes, summing to a
total of 4.3 hours for the end to end ML workflow. Manually

picking the entire 3D Ogo volume took around 3 weeks.
Figure 5 shows a 3D comparison between manual picks and
ML picks.

Conclusions

The adaptive U-Net was able to distinguish between salt and
sediment at an overall accuracy of 98.9% on the Julia data,
and 99.7% on the Ogo data. The Julia data only required
training on 0.4% of the data, and the Ogo data required
training on 2.3% of the data. The prediction time for Julia’s
1405 inlines was 3 minutes and Ogo’s 1900 inlines was also
3 minutes. For these case studies, we effectively reduced the
time to pick salt from 3 weeks to 3 minutes. In practice, for
cases like Ogo, the ML workflow allows one to apply it in
an “active learning” mode where the practitioner could start
with five inlines and sequentially add more training data by
predicting on other inlines and modifying the output for
more labelled sections.

Figure 4: On the Gulf of Mexico Ogo data, a comparison is shown between a manually picked salt boundary (red line) and the adaptive U-Net-
predicted salt body (purple). An excellent fit between human and ML exists in the inline direction (a) and the crossline direction (b). The salt bodies

are much smaller and discrete compared to the Julia survey.
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One limitation of this study is that only final migrated
images were used. In a real-world scenario, salt model
building occurs in stages, generally as follows: first a top of
salt boundary is picked, and then the data are migrated;
second, a bottom of salt is picked, and the data are migrated
again. This process continues until the lowest body of salt is
picked. Provided a small percentage of the overall data
would be hand-picked for training at each stage, we are
confident that adaptive U-Net can save significant time at
each iteration of model building.

(a) — Ogo Manual

Should more training data become available in the future, a
more generalized approach might use patches directly as
input to U-Net, as model sizes must stay consistent for
transfer learning. In order to keep the large-scale context,
large patch sizes of 500 x 500 could be used.
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migration volume is shown in grayscale on a sample inline, crossline, and depth slice. The depths displayed here are in feet.
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