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Summary 
 
Salt interpretation on seismic data has historically been a 
very manual process, requiring weeks or even months to 
complete on one 3D seismic survey. The accuracy of the 
interpreted salt boundary is critical for sub-salt imaging and 
subsequent drilling for oil and gas. The nature of the salt 
problem can be reduced to a binary classification problem 
that is well suited to modern machine learning (ML) 
algorithms: each location on an image either contains salt or 
sediment. Seismic surveys are collected and processed in 
different ways, which poses a challenge to traditional ML 
methods that rely on statistical similarity between training 
data and prediction data, especially where limited training 
data are available. We propose to use a supervised ML 
approach that treats each seismic survey independently. In 
particular, we show that an adaptive U-Net approach yields 
accurate salt bodies in minutes rather than weeks and 
requires minimal training data. 
 
Introduction 
 
Salt interpretation is important for velocity model building 
and seismic migration workflows (Wang et al., 2008). Many 
attempts to automate salt interpretation have been made 
because of the time-consuming nature of the task. Some of 
the recent attempts include attribute-based methods (Guillen 
et al., 2015; Wu, 2016; Shafiq et al., 2017; Wu et al., 2018), 
and convolutional neural networks or CNNs (Shi et al., 
2018; Zeng et al., 2019; Sen et al., 2020).  
 
CNNs have been widely used successfully for object 
classification and detection tasks for photographs 
(Russakovsky et al., 2015). However, seismic images are 
different from photographs in two fundamental aspects: 1) 
acquisition methods and 2) processing techniques applied to 
the data. The amplitude distribution, sampling intervals, 
frequency content, and pixel relationships are also 
fundamentally different between surveys, which presents a 
significant challenge to ML when attempting to use transfer 
learning. A common ML approach is to gather as much 
statistically varying data as possible for training to obtain a 
generalized ML model that would work on any survey. As 
noted by Sen et al. (2020), however, it is impossible to come 
up with an all-encompassing training set for all variations. 
Like many folks in the seismic industry, we had limited 
access to data, and so a different approach was required. We 
treated each survey as an independent ML project with its 
own training and prediction. The adaptive U-Net method we 
chose obtains high accuracy with a limited amount of 
manual picking.  

 
We first explore CNN architectures and our adaptive U-Net 
approach, and second we show overall accuracy rates of 
above 98% as compared to manual picks on two 3D seismic 
surveys from the Gulf of Mexico. In this paper, all the work 
for training and prediction were completed on a single 16 
GB Tesla V100 GPU. 
 
CNN Architectures 
 
CNNs are generally made up of convolutional layers, 
pooling layers, and dropout layers. The convolution step 
involves multiplying filters by small pixel regions in the 
image and summing up these multiplications. Initially, a 
CNN has no knowledge of the relationship between the 
pixels in the input image, and so the filters are random. 
However, during the learning process, the filters become 
representative of abstracted relationships between pixels. 
After a forward pass through the neural network, the filters 
are updated when the gradient is calculated in a backward 
pass. The pooling layer helps reduce computation time, 
abstracts features, and also helps prevent overfitting during 
training. The pooling function we used was ‘max’ pooling—
it takes the maximum value of a pixel region and discards 
the other pixel values moving forward in the network. 
Dropout is a regularization technique used to avoid 
overfitting. Some number of layer outputs are ‘dropped out’ 
of the neural network during training and replaced with 0’s. 
The central idea of a dropout layer is that it introduces noise 
into the network such that the model is less susceptible to 
patterns unique to the training data that might not be present 
in the prediction data (Chollet, 2018). 
 
Three main CNN architectures were tested to automatically 
predict the locations of salt in the subsurface: a 2D patch-
based CNN, a 3D patch-based CNN, and an adaptive 2D U-
Net. The first two approaches use a similar concept of 
feeding many small patches into the CNN. For example, a 
whole image might actually be 1465 × 1601 pixels, but many 
128 ×  128 overlapping patches could be extracted for 
training. Extending to 3D, overlapping mini cubes could be 
extracted for training and prediction. Figure 1 shows a 
representative 2D patch-based CNN architecture.  
 
After Ronneberger et al. (2015) and their U-Net approach, 
we designed and tested an adaptive U-Net architecture 
(Figure 2). The adaptive term signifies that the network can 
receive any size of image as an input and will produce that 
same size as output. Unlike many patch-based networks, our 
adaptive U-Net takes a complete line of the image (an inline) 
of any size as input. We found that the adaptive U-Net 
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Deep learning for salt body detection 

architecture significantly outperformed the patch-based 
CNN approaches in both accuracy and speed.  
  
Case Studies 
 
We now show the application of adaptive U-Net on two case 
studies from the Gulf of Mexico. The first survey is 18 km × 
18 km at the Julia field. Julia is situated about 425 km 
southwest of New Orleans, Louisiana at water depths of 
around 2200 m. The second survey, which we call Ogo, is 
41 km × 47 km, situated about 225 km southwest of New 
Orleans at water depths of around 50 m.  
 
Julia 
 
The Julia survey contains massive salt bodies that are up to 
5 km thick. The input images to the adaptive U-Net 
algorithm were inlines only. There were a total of 1405 
inlines, 1465 crosslines, and 1601 depth samples. Thus, each 
training data point was 1465 × 1601 pixels. The complete 
3D volume had already been hand-picked, making it an ideal 
candidate to test the accuracy of U-Net as compared to the 
manual picks. Five randomly selected inlines were used for 
training. Two additional unseen inlines were used as 
validation data to ensure that the model was not overfitting 
on the training data and to pick the best model.  

Manual picking took around 20 minutes on 5 inlines, and the 
U-Net training time was 11 minutes. Once the model was 
trained, the prediction time took only 3 minutes for all 1405 
inlines. In total, the experiment took 34 minutes, whereas 
completing the manual picking took around 3 weeks on the 
full 3D volume. Only 5 out of 1405 inlines needed to be 
manually picked for the ML model to succeed, or 0.4% of 
the total data. 99.6% of the data were unseen to the neural 
network. Figure 3 shows an example inline and crossline 
from the Julia survey, comparing the manually picked salt to 
the predicted salt. The salt accuracy was 99.4%, the sediment 
accuracy was 98.6%, and the overall accuracy was 98.9%. 
Very few training samples were required to obtain such high 
accuracies, indicating a well-built architecture. A 50% 
distribution of salt to no salt also helped the network to learn 
quickly. 
 
Ogo 
 
The Ogo survey in comparison to the Julia survey contains 
much smaller, dispersed salt bodies with thicknesses closer 
to 1 km. There were a total of 1900 inlines, 1640 crosslines, 
and 1501 depth samples. Each training data point was thus 
1640 × 1501 pixels. Similar to the Julia survey, the complete 
3D volume was already hand-picked, and so it served as a 

Figure 2: An adaptive U-Net architecture was used for training and predicting the locations of salt. The shapes of layers displayed are their true 
relative shapes to the input layer. The example input on the left is one complete inline from the offshore Julia data and the corresponding output 
is a mask of 0’s (no salt as green) and 1’s (salt as yellow).  
 

Figure 1: An example of a patch-based CNN architecture: a small patch of a seismic image is fed into the network, with a corresponding salt 
prediction as the output (Zabihi Naeini and Di, 2018). 
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Deep learning for salt body detection 

good second accuracy measure for the adaptive U-Net 
algorithm.  
 
Initially, we used the same strategy for Ogo as for Julia: only 
5 inlines were used for training. However, because the salt 
to sediment ratio was much smaller for Ogo at around 10%, 
more inlines were required during training to achieve high 
accuracies. Using 45 inlines for training resulted in a salt 
accuracy of 96.6%, a sediment accuracy of 99.9%, and an 
overall accuracy of 99.7%. The discrepancy in the salt 
accuracy and the sediment accuracy is likely due to the fact 
that the network had more sediment to learn from than salt, 
and thus performed better predicting the locations of 
sediment. Figure 4 shows an example inline and crossline of 
the Ogo data with salt picks overlaid. Though more inlines 
in this case would need to be hand-picked for training, only 
2.3% of the total data were needed. The total time of hand-
picking the 45 inlines was 3 hours, training was 1.25 hours, 
and prediction on 1900 inlines was 3 minutes, summing to a 
total of 4.3 hours for the end to end ML workflow. Manually 

picking the entire 3D Ogo volume took around 3 weeks. 
Figure 5 shows a 3D comparison between manual picks and 
ML picks. 
 
Conclusions 
 
The adaptive U-Net was able to distinguish between salt and 
sediment at an overall accuracy of 98.9% on the Julia data, 
and 99.7% on the Ogo data. The Julia data only required 
training on 0.4% of the data, and the Ogo data required 
training on 2.3% of the data. The prediction time for Julia’s 
1405 inlines was 3 minutes and Ogo’s 1900 inlines was also 
3 minutes. For these case studies, we effectively reduced the 
time to pick salt from 3 weeks to 3 minutes. In practice, for 
cases like Ogo, the ML workflow allows one to apply it in 
an “active learning” mode where the practitioner could start 
with five inlines and sequentially add more training data by 
predicting on other inlines and modifying the output for 
more labelled sections.  
 

18 km 

8 
km

 

18 km 

8 
km

 

(b) – Julia Xline (a) – Julia Inline 

Figure 3:  On the Gulf of Mexico Julia data, a comparison is shown between a manually picked salt boundary (red line) and the adaptive U-Net-
predicted salt body (purple). An excellent fit between human and ML exists in the inline direction (a) and the crossline direction (b), even though 
the network only trained and predicted on inlines. The salt bodies in this survey frequently take up approximately 50% of the area and extend 
upward very close to the ocean bottom floor. 
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km

 

(a) – Ogo Inline 

47 km 

9 
km

 

(b) – Ogo Xline 

Figure 4: On the Gulf of Mexico Ogo data, a comparison is shown between a manually picked salt boundary (red line) and the adaptive U-Net-
predicted salt body (purple). An excellent fit between human and ML exists in the inline direction (a) and the crossline direction (b).  The salt bodies 
are much smaller and discrete compared to the Julia survey. 
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Deep learning for salt body detection 

One limitation of this study is that only final migrated 
images were used. In a real-world scenario, salt model 
building occurs in stages, generally as follows: first a top of 
salt boundary is picked, and then the data are migrated; 
second, a bottom of salt is picked, and the data are migrated 
again. This process continues until the lowest body of salt is 
picked. Provided a small percentage of the overall data 
would be hand-picked for training at each stage, we are 
confident that adaptive U-Net can save significant time at 
each iteration of model building. 
 

Should more training data become available in the future, a 
more generalized approach might use patches directly as 
input to U-Net, as model sizes must stay consistent for 
transfer learning. In order to keep the large-scale context, 
large patch sizes of 500 × 500 could be used. 
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(a) – Ogo Manual  

(b) – Ogo ML  

Figure 5: A 3D view of the manually picked salt bodies of the Ogo data (a) and the ML prediction of salt bodies (b). The sliced 3D 
migration volume is shown in grayscale on a sample inline, crossline, and depth slice. The depths displayed here are in feet. 
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