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Summary 
 
Microseismic monitoring is a crucial element to 
understanding hydraulic fracturing operations prior to oil 
and gas production. One of the more tedious quality control 
(QC) measures that must often be performed following a 
microseismic processing workflow is a visual inspection of 
seismic data to determine whether the data contain 
microseismic events or only noise. The manual nature of 
these inspections can take many weeks, sometimes over a 
month, to perform for one geophysicist. Automated 
approaches usually use a short-term-average long-term-
average (STA/LTA) ratio, but end up picking false positives 
on noisy data. We propose using a supervised deep learning 
algorithm, a convolutional neural network (CNN), to 
automatically classify microseismic events from noise. 
Using our deep learning approach, we show that the time for 
QC can be reduced from weeks to hours with high accuracy. 
 
Introduction 
 
Microseismic events can be identified visually (after some 
processing) on a seismic image as a high amplitude edge 
over background noise (top of Figure 1a-c). A panel of noise 
has no coherent edge structure (top of Figure 1d-f). The 
bottom portion of Figure 1 shows a heat map of the final 
gradient from the CNN overlaid on the seismic image. The 
classification of “event” or “noise” images makes it a 
suitable candidate for machine learning (ML). Some have 
proposed to predict the presence of certain features in 
seismic data using attribute-based ML (Shin et al., 2005; Qu 

et al., 2018). However, attribute-based studies can be very 
sensitive to noise, producing both false lows and false highs.  
 
Another approach that has historically been used to identify 
microseismic events and earthquakes is a STA/LTA 
algorithm (Allen, 1978; Ruud and Husebye, 1992; Vaezi and 
Van der Baan, 2015; Kalkan, 2016). However, the STA/LTA 
algorithm often triggers on background noise, which varies 
during hydraulic fracturing operations (Song et al., 2010; 
Chen, 2018). The detection of STA/LTA depends on 
predetermined threshold parameters and will often pick up 
on noise spikes, rather than microseismic events. 
 
With the rise in available computational power, deep 
learning and CNNs have proven to be both a very powerful 
and practical tool to solve computer vision problems, 
including classification (Krizhevsky et al., 2012), 
segmentation (Ronneberger et al., 2015), and object 
detection (Ren et al., 2017). One prolific example of the 
successes of CNN in computer vision is Facebook’s 
DeepFace facial recognition technology (Taigman et al., 
2014). The years 2012 onward brought an increasing number 
of convolutional layers in CNNs, from 8 layers in AlexNet 
(Krizhevsky et al., 2012) to 152 layers in ResNet (He et al., 
2016). 
 
In a limited sense, neural networks attempt to imitate the 
brain in how the brain processes, stores, learns, and retrieves 
information. Consider the analogy of an infant who 
processes new images and learns or “trains” on images to be 
able to make classifications in the future. In a similar way, a 

Figure 1: Panels a) – c) are input data labelled as “event”, and panels d) – f) are input data labelled as “noise”. The top portion of each panel is an 
example of seismic data for training, and the bottom half of each panel is the same seismic data with a heatmap of the average gradient from the 
convolutional neural network overlaid. Warmer colors (red) show a higher weighting of the gradient is placed in these pixel regions during training, 
and colder colors (blue) indicate a lower weighting.  
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Microseismic event classification with deep learning 

CNN attempts to train using layers or “neurons” to make 
predictions on images.  
 
In this paper, we approach the microseismic event vs. noise 
classification problem purely from an image-based approach 
with CNNs without using generated attributes or STA/LTA 
algorithms. The main goal of this study is to automate the 
task of microseismic event QC, with greater speed while 
retaining accuracy.  
 
Field Data 
 
In 2018, seismic data were collected from surface geophones 
in a star pattern (Duncan and Eisner, 2010) radiating out 
from a hydraulic fracturing site in west Texas, USA. There 
were 12 arms in the array, and a total of approximately 3,000 
stations. Each station had 6 geophones per channel, giving a 
total geophone count of approximately 18,000. The seismic 
data were recorded at a 2 ms sample rate with a Sercel 428 
recording system. The average target formation depth was 
approximately 7,000 ft below the well kelly bushing.  
 
Preprocessing 
 
Beginning from the raw field data, the following 
preprocessing steps were performed: debias, traveltime 
corrections, noise attenuation, spectral shaping, resampling 
to 4 ms, event triggering, mechanism corrections, and 
normal moveout (NMO) velocity corrections. The steps 
described so far are common in most microseismic 
workflows prior to event QC. Each seismic data panel 
representing a potential microseismic event contained 
approximately 3,000 traces and 249 samples (1 s of data 
sampled at 4 ms). The event triggering stage mentioned 
above is designed to locate microseismic events. However, 
the traditional triggering algorithms often trigger on noise, 
presenting a need for manual QC. The manual event QC that 
follows the preprocessing workflow usually takes many 
weeks to complete for one dataset, as there are often tens of 
thousands of images that need to be classified, either as noise 
or as events. 

 
Before feeding the seismic trace data into the CNN, the data 
were converted and compressed to 128 × 128-pixel images. 
The trace amplitude values were normalized to a number 
between 0 and 255. An antialias filter was also applied 
before input to the CNN model. A total of 4109 images were 
split 60%-20%-20% into training, validation, and test, 
respectively. The images were either labelled as an event or 
as noise based on visual QC (see Figure 1). A single Tesla 
P4 8 GB GPU was used during training. To prevent 
overfitting, three kinds of data augmentation were used on 
the images in our study: rotation (shear), zoom, and 
horizontal flip. These methods of augmentation were fruitful 
toward building a predictive model that could accurately 
classify unseen images in this survey. 
 
CNN Architecture 
 
Figure 2 shows the relative shapes of the CNN architecture 
used during model training. The first and second 
convolutional layers (“Conv”) have 32 filters of size 3 × 3 
pixels with a stride of 1. Akin to a flashlight shining over a 
pixel area of 3 × 3, the convolution slides through the image, 
multiplying filter values with pixel values. The sum of the 
multiplication is the output of convolution. The concept 
behind applying a convolution is to abstract the features in 
the image. The initial filter values are random, but after a 
complete forward pass through the entire network, the filters 
are updated by calculating a gradient in the backward pass. 
 
Following each convolutional layer, the result is passed to a 
nonlinear Rectified Linear Unit (ReLU) activation function, 
written as 𝑓(𝑥) = max (0, 𝑥). The ReLU activation function 
is a successful and widely used activation function in deep 
learning (Jarrett et al., 2009; Nair and Hinton, 2010; Wu et 
al., 2018). The output of the convolution layer is a stack of 
these feature maps. Figure 3 shows the activation outputs for 
a sample image for the first three layers of the CNN. A 
higher value in the activation map indicates that at that 
location the feature is more likely present. 

Figure 2: The convolutional neural network (CNN) architecture used during model training has 3 main convolution blocks, each ending with a max 
pooling operation. Conv is short for Convolution, and MaxPool is short for Max Pooling. The input is an image with 3 channels, and 128 × 128 
pixels. The output is a single value as a categorical predictor, event or noise. The images on the front of the cubes are sample activation outputs. The 
Keras (Chollet, 2015) Python machine learning package was used for the implementation of the architecture. 
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Microseismic event classification with deep learning 

A 2 × 2 max pooling function with a stride of 2 (“MaxPool” 
in Figure 2) is applied after the second convolutional layer 
in each block. The pooling layer is widely used to reduce the 
dimensionality and computation time, while keeping 
important information. Pooling also helps prevent 
overfitting by abstracting the features. The max pooling 
function receives as input 2 × 2 pixels and outputs the single 
maximum value of these pixels. 
 
After the final max pooling layer, the CNN has a “Flatten” 
layer, which compresses the 2D feature maps into a long 1D 
vector. The last two steps in the architecture are two fully 
connected layers (“Dense”). The first fully connected layer 
is followed by a ReLU activation function, and the final fully 
connected layer is followed by a Sigmoid activation 
function.  
 
After each forward pass of images through the network, a 
loss function is calculated. A low value for the loss function 
means that the model’s predictions are accurate. We used a 
binary cross-entropy loss function (Buja et al., 2005), which 
is well suited for binary classification schemes. In order to 
minimize the loss function of the model and calculate the 
gradient, we used the RMSprop optimization scheme 
(Tieleman and Hinton, 2012). Following the calculation of 
the gradient, the filters or ‘weights’ are calculated. The new 
weights are then used to begin the next forward pass of the 
CNN.  
 

The CNN completes a full forward and backward pass for 
each batch. In our test, 40 images were used in a batch, until 
a total of 61 batches were reached (the full image training 
count). The completion of all batches marks the completion 
of one epoch. Other CNN architectures were also tested, 
including the 16-layer VGG Net (Simonyan and Zisserman, 
2015), and another 2-layer CNN. However, the CNN shown 
in Figure 2 outperformed other tested architectures for the 
classification problem described here.  
 
Results 
 
Figure 4 shows the progression of model accuracy over 30 
epochs for both the training and validation data. There was a 
close match in the training accuracy curve and validation 
accuracy curve, which is one indicator that the model was 
not overfitting on training data. Figure 5 shows the 
calculated loss function over the 30 epochs. The loss 
decreased by approximately 60% for both the training and 
validation data. The best model was selected from epoch 28 
for the lowest validation loss value of 0.14, and a validation 
accuracy value of 0.94. 
 
Average gradients for 6 sample images are displayed as 
heatmaps in the bottom of Figure 1, overlaying the seismic 
images. The images in 1 (a-c) were labelled as events and 
the images in 1 (d-f) were labelled as noise. The raw images 
along with the heatmaps of the gradient show that the CNN 
model learned a correlation between detected edges and 
microseismic events. 

Figure 3: For a single sample image input, the activation function outputs are shown for the first three layers of the CNN: a 2D convolution (32 
channels of 128  × 128-pixels), another 2D convolution (32 channels of 128  × 128-pixels), and a 2D max pooling (32 channels of 64  × 64-
pixels). Some of the activations are blank, which indicates that the pattern that is present in the filter is not in the input image (Chollet, 2018). 
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Microseismic event classification with deep learning 

Figure 6 shows a confusion matrix, comparing predicted and 
true labels for the test data (822 images). The matrix shows 
that 401 images were correctly classified as noise, 12 were 
misclassified as noise, 389 were correctly classified as 
events, and 20 were misclassified as events. The overall 
accuracy of the model on the test data was 96%. The 
predictions on 822 images only took 1.4 seconds. 
 
Conclusions 
 
We demonstrated the success of using an automated CNN 
workflow for classifying images of seismic data as either 
microseismic events or noise. The predictions on the test 
data were 96% accurate. One significant benefit of using an 

automated approach is the time savings. The predictions 
only took 1.4 s for 822 test images. Manual QC of these 
images might take 2 hours or more. Another benefit of using 
is the repeatability: the prediction could be completed on 
10,000 images from the same survey, as the data 
distributions would be similar. Manual QC of 10,000 images 
would take weeks, whereas the CNN would take 3-4 hours 
for prediction. If the model needs to be re-trained with more 
data, the computation time is short at only 8 minutes for 2465 
training images on one GPU. 
 
In the future, it may be useful to supplement the training data 
with other survey data to obtain a more generalized model. 
It would also be useful to generate probability distributions 
for each prediction output, to help determine which images 
need to be revisited for manual QC. The approach presented 
here could also be extended to include more categories, as 
there are practical cases where additional categories must be 
used to QC microseismic data. 
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Figure 4: Over 30 epochs, the CNN training accuracy increases 
from 51% to 93%, and the validation accuracy increases from 50% 
to 95%. 

Figure 5: Binary cross-entropy loss function over 30 epochs shows 
an approximately 60% decrease in loss on the training and 
validation data. 
 

Figure 6: A confusion matrix to compare true labels with CNN-
predicted labels for previously unused test data. 401 images were 
correctly classified as noise, and 389 images were correctly 
classified as events. 
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