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Summary 
 
Picking first breaks on seismic data has historically been a 
very demanding and time-consuming task. It may take 
several weeks or even months to pick first breaks for a single 
seismic survey. Trace counts for modern 3D seismic surveys 
can now reach into the billions. Manually picking first 
breaks on billions of traces is not feasible. Some automated 
methods for first break picking already exist, but typically 
do not perform well in the presence of noise and azimuthal 
anisotropy. The Permian dataset used in this study contains 
noisy traces and a ‘fill zone’ with strong anisotropy where 
most autopickers fail, requiring weeks of manual 
intervention. Using a combination of physics-based 
tomography and deep learning, we show that we can produce 
accurate first break picks in days rather than weeks, even in 
the presence of noise. 
 
Introduction 
 
Accurate first break picks are important for building the 
velocity structure in the near surface, subsequent depth 
imaging, and eventual drilling for oil and gas. The entire 
seismic image building workflow depends on accurate first 
breaks and their associated tomography results. In order to 
avoid manually picking first breaks on every trace in a 
seismic survey, automated approaches have been introduced 
to simplify the process. The threshold autopicker is one of 
these approaches, and has been used widely in the seismic 
industry for decades—it is based on the Coppens autopicker 
(Coppens, 1985). The threshold approach works well when 
the signal-to-noise ratio is relatively high but tends to fail in 
the presence of noise. The threshold values can be adjusted 
manually to create slightly different pickers; however, the 
result is that the threshold approach only works well for 
certain portions of the survey and fails in other portions 
entirely, particularly with varied geology and noise levels. 
 
Convolutional neural networks (CNNs) have recently 
achieved state of the art results in many image classification 
tasks (Krizhevsky et al., 2012), even in the presence of noise. 
CNNs improve neural image processing results via the 
inductive bias present in their structure - the convolutional 
kernels naturally lend themselves to spatially correlated 
processing, while using far fewer parameters than classical 
fully connected neural networks. We model first break 
picking as an object detection nonlinear regression task and 
use a deep CNN as the function approximator. DeepTrace is 
trained on seismic data with human-labelled first breaks. The 
details of the DeepTrace method are discussed in more detail 
later in the text. 

 
In this paper, we compare the results of two workflows for 
automated first break picking: a traditional threshold 
autopicker and DeepTrace, a CNN autopicker. Given a 
rough moveout trend to flatten the first arrivals in the seismic 
data, DeepTrace picks accurate first breaks. After each stage 
of picking, a physics-based first break tomography is used to 
refine the moveout trend. Qualitatively, we observe that the 
first breaks are of much better quality using deep learning 
than with traditional methods. We also find that the error of 
the deep learning workflow results in an overall modeled 
traveltime error of 10 ms, whereas the result from the 
threshold autopicker workflow results in a worse average 
traveltime error of 21 ms.  
 
Physics-Based Tomography Method 
 
The primary physical model used in this study is called Auto 
Adaptive Node Spacing (AANS), a tomographic algorithm 
that improves on traditional Eikonal traveltime solvers 
(Vidale, 1988, 1990). The subsurface model consists of a 3D 
array of node locations where the vertical node spacing is 
allowed to differ from the horizontal node spacing. In order 
to simulate ray propagation, a dynamically generated subset 
of the master model with regular node spacing (same in all 
directions) is extracted from the full model. When 
computing travel times through the subset, node locations 
along each vertical column are dynamically adjusted to 
minimize traveltime error. The slowness values at each node 
are chosen to minimize a least squared error objective 
function. 
  
Deep Learning Methods and Training 
 
DeepTrace is a set of CNNs that has been trained to predict 
first breaks in seismic data. It is primarily trained on human-
labeled first break picks in a variety of seismic contexts. 
Models are trained directly on raw seismic data, as well as 
data that have been flattened using human-defined moveout 
trends—a generalized linear moveout which varies as a 
function of offset and azimuth. We regularize DeepTrace 
and improve its generalization ability by training it on an 
ancillary seismic data reconstruction task—a form of 
unsupervised learning. During training, we mask part of the 
input seismic data and ask DeepTrace to reconstruct the 
missing input. This allows us to train on seismic data even 
where picks are missing. DeepTrace is further regularized 
with dropout (Hinton et al., 2012), such that certain neural 
pathways are randomly masked during training to encourage 
the network to learn robust and generalizable features. 
 

10.1190/segam2021-3579730.1
Page    1586

© 2021 Society of Exploration Geophysicists
First International Meeting for Applied Geoscience & Energy

D
ow

nl
oa

de
d 

10
/0

6/
21

 to
 7

2.
26

.2
7.

23
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/s
eg

am
20

21
-3

57
97

30
.1



Physics and deep learning for first breaks 

We perform data augmentation to further increase the 
training set size and improve generalization. Data is 
randomly translated, flipped, and noised to increase training 
diversity. We hold some data back to validate the training 
process. We randomly sample ~100 images per batch for the 
gradient update step and perform 50,000 steps per “epoch”. 
Around 25 epochs are needed for good convergence, so the 
number of images is approximately (100 images)*(50000 
steps)*(25 epochs) = 125 million. DeepTrace achieves 
validation errors of less than 8 ms. We note that first arrivals 
are subjective, and that different humans will produce 
different first break picks. We do not believe that our 
training data is more accurate than ~8 ms, so it is difficult to 
judge DeepTrace’s performance gains beyond this point. 
 
We train DeepTrace networks on a variety of seismic image 
sizes. DeepTrace models trained on moved-out data 
typically receive 50-100 traces per image, with 200 samples 
(800 ms) of temporal context. DeepTrace sliding models 
predict only the arrival of the central trace in the image, so 
every trace is predicted using a separate image. The models  
span more than an order of magnitude in terms of number of 
learnt parameters, from 10 million parameters at the small 
end to over 200 million. The models span a range of industry 
standard image recognition architectures. For pick 
prediction we use slightly modified ResNet-like 
architectures (He et al., 2016), and we use modified 
DeepLabv3 architectures (Chen et al., 2017) for the seismic 
reconstruction task. 
 
Field Data 
 
A 265 square-mile 3D land seismic survey was conducted 
on the west side of Texas, USA in the Permian Basin for the 
purpose of oil and gas exploration. Figure 1 shows an 
elevation map of sources and receivers. The survey contains 
approximately 33 million traces, with 41,455 unique shot 
locations and 48,586 unique receiver locations. The source 
station spacing was approximately 165 ft, and the receiver 
station spacing was also approximately 165 ft. 
 
Practical Workflow Steps 
 
We now compare two workflows for automated first break 
picking: the DeepTrace approach, and the threshold 
autopicker approach. Table 1 summarizes the workflow 
steps to arrive at final solutions. The only preprocessing step 
needed prior to predicting picks with either approach is in 
step 1—picking a moveout trend to flatten the seismic 
gathers. However, the moveout does not need to generate 
particularly flat seismic gathers for DeepTrace to accurately 
predict first break locations. If we could produce perfectly 
flat gathers everywhere a priori, the moveout trend would 
already encode the entirety of information contained in the 
first breaks, and there would be no need to produce picks. In 

reality, the subsurface is highly heterogeneous, and it is 
nearly impossible to pick a universally flat moveout trend. 
Figure 2 shows an example of a raw seismic gather before 
and after a moveout trend has been applied. Manually 
picking a moveout trend for a whole 3D survey can be very 
fast (30 minutes or less), as it can be very sparse for use in 
the DeepTrace workflow. In some regions of the survey such 
the fill zone, the variation of moveout with azimuth is 
pronounced; therefore, we picked an azimuthally varying 
moveout trend for a starting point for DeepTrace. To have a 
valid comparison to traditional autopicker tools, we used the 
same azimuthal moveout trend for both workflows. 

 

  
Figure 1: Elevation above mean sea level (MSL) map of sources 
and receivers for the survey. The ‘F’ denotes the fill zone area and 
the dotted black line below it is the location of a 2D velocity model 
cross-section (shown in Figure 3). 

 
Table 1: First Break Prediction Workflows 

DeepTrace and 
Tomography Workflow 

Threshold and 
Tomography Workflow 

1. Pick azimuthal moveout trend 
2. DeepTrace 2. Threshold 
3. AANS tomography 3. AANS tomography 
4. DeepTrace  4. Threshold 
5. AANS tomography 5. AANS tomography 
6. DeepTrace 6. Threshold 

 
Step 2 involved using the automated approaches to predict 
the locations of first break picks. The key difference between 
workflows here is that on the one hand a pre-trained neural 
network model was used to predict the locations of first 
breaks, and on the other hand a threshold autopicker 
approach was used.  
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Physics and deep learning for first breaks 

In step 3, a physics-driven first-break tomographic solution 
was completed for 15 iterations in each respective workflow. 
During tomography, a near-surface (5000 ft deep) P-wave 
velocity model was generated. The goal of running 
tomography here was to produce a better moveout trend for 
subsequent automated first break picking. Once a new model 
was generated, we could use the simulated shot-receiver 
travel times to flatten the traces like a moveout trend, 
producing a different time-shift for each trace. 
 

 
Figure 2: An example of before and after a moveout trend is applied 
to a raw seismic gather. 

 
The remainder of the workflow (steps 4-6) was a continued 
iterative attempt that mimicked steps 2-3 to produce accurate 
first break picks. Each iteration of tomography produced a 
slightly better moveout trend, which allowed DeepTrace to 
predict more accurate picks. In step 4 of the DeepTrace 
workflow, instead of only using one deep learning model to 
predict first break locations, an average of two prediction 
models were used. By ensembling different DeepTrace 
model predictions, we can get a quantitative picture of 
convergence and reliability and eliminate outliers in which 
the models strongly disagree about the first arrival. 
 
For the DeepTrace predictions, a 16 GB Tesla V100 GPU 
was used. The DeepTrace prediction took around 3 hours to 
complete for all 33 million traces. The threshold predictions 
each took 1 hour to complete on 4 72-thread CPUs. The 
tomography runs each took around 48 hours on the same 72-
thread CPUs. Both complete workflows took approximately 
4 days. However, the computation time could be 
significantly reduced by using a larger cluster of CPU nodes 
during tomography. It is not unreasonable to assume that the 
complete workflows could take less than a day to complete 
given access to greater computing resources. 
 
Results 
 
Figure 3 shows a 2D profile of the initial velocity model and 
final velocity models after tomography. The final model 
from the threshold auto picker workflow produced picks 
with an average error of 21 ms, whereas the final model from 

the DeepTrace workflow produced picks with an average 
error of 10 ms, about half of the threshold approach. The 
error is a measure between the forward modelled picks from 
the physics-based tomography and each respective auto 
picker. In theory, it would be helpful to compare picks to 
human picks; however, no such picks were available, and 
they would likely take over a month for one person to 
complete for the whole survey. These errors are not the “true 
error” as modeling errors will also be reflected in this value. 
 
Beyond considering the overall traveltime error, we also 
qualitatively examined a subset of shots. Figure 4 shows two 
sample shot locations of final picks produced by the 
traditional threshold approach and final picks produced by 
DeepTrace. Overall, the DeepTrace picks are better aligned 
with the actual first arrival than the threshold picks. The 
DeepTrace picks resulted in a more accurate tomographic 
solution and produced a flatter moveout correction to the 
seismic data. We believe that the combination of first-break 
tomography and deep learning was the key to our success in 
producing high quality first break picks. 

 
Figure 3: Velocity model profiles from west to east. The starting 
model (a); the final model after tomography using the threshold 
autopicker workflow (b); and the final model after tomography 
using the DeepTrace workflow (c). The ‘F’ represents a fill zone, 

and the black curve represents ray penetration extents. 

 
Conclusions 
 
Using physics-based first-break tomography and deep 
learning, we produced accurate first-break picks and a 10 ms 
average tomography error in only 4 days on a survey with 
approximately 33 million traces. With added CPU capacity, 
the workflow could be reduced to under a day. The workflow 
time of 4 days does not include the training time required for 
DeepTrace; however, the same ‘out-of-the-box’ model 
employed here could theoretically be reused in a wide 
variety of surveys without retraining. The traditional 
threshold approach resulted in more misplaced picks and a 
tomography solution with 21 ms average error. Our 
qualitative observations are that the deep learning workflow 
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Physics and deep learning for first breaks 

produced significantly better first breaks than the traditional 
threshold workflow. In order to produce satisfactory results 
using the threshold workflow, at least three additional weeks 
of manual intervention would be required. Extending the use 
case to a dense 3D seismic survey with billions of traces, 
months of picking time could be reduced to days. There is 
often a tension in near-surface geophysical modeling 
between taking human time to manually produce high 
quality picks, and quickly producing lower-quality picks 
using automated methods. We find that the deep learning + 
physics workflow described in this paper resolves this 
tension, freeing human time that is normally spent picking 
to focus on more complex geophysical modeling tasks. We 
were especially pleased with the prediction results from 

DeepTrace given that only data from outside the survey were 
used during training. The model generalized well to unseen 
data, which is one of the primary challenges in deep learning.  
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Figure 4: A comparison of first break picks using the threshold and the DeepTrace workflows at two different locations: a southern area in the fill 
zone (a and b), and a central area (c and d). The threshold workflow produces some accurate picks in high signal-to-noise areas but produces 
inaccurate picks on noisy traces (pink). DeepTrace however produces very accurate picks, even when noise is present (red). 
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