
Nikoloudakis Michael
michnik@csd.uoc.gr

Porting Maxine VM to MS Windows

Introduction

The goal of this project was the addition of Windows support to the Maxine VM without the use of any
virtual environment or additional DLL dependencies (eg. Cygwin). Windows constitutes one of the
most popular OSes for Java developers (regarding both Java VMs and Java aps in general) so, in my
opinion, Maxine VM should support it along with the rest OSes. Additionally, Maxine VM, being a
meta-circular Java VM, has the biggest part of it written in Java while a (relatively) small part of the
VM is implemented in native C. Currently, Maxine VM fully supports Linux, Darwin and Solaris OS.
As it is expected, native C code consists of many OS specific libraries and function calls ,thus, the main
challenge was the porting of the native code making it eligible to run on a Windows environment,
making use of Windows native shared libraries and functions. Some changes were also needed in some
parts of Java code as well as in some Makefiles. At the current state, all the native source coude is
sucessfulyy ported to Windows except code regarding Tele.dll, the library used in order to make the
Maxine Inspector functional. The purpose of this report is to mention all the steps one needs to follow
in order to reproduce the porting process on his local Windows machine, describe ,in some detail, the
changes that were made and also state the problems and difficulties met in the process.

Initial Setting Up

1. First of all, we need a version of Git for Windows in order to be able to pull the Maxine-VM
and mx repositories. It’s advisable to not use the app of a specific Git platfrom (eg. Github,
Gitlab etc) since it is not certain that they contain a git.exe executable which can be used from
any command line terminal. You can download Git for Windows from
https://git-scm.com/download/win If you choose the portable version, make sure to add the
path to the bin folder it includes to the PATH Windows system Environment Variable. This will
enable “git” command to work from Windows Command line as well. If you choose to install
Git normally, make sure to check the respective option (to modify PATH system environment
variable) during the installation (might be the default option).

2. Afterwards, we can use either the terminal included with Git or the common Windows
Command Line (cmd.exe) or any other terminal you wish to clone the required repositories
using:

git clone https://github.com/graalvm/mx
git clone --recursive https://github.com/beehive-lab/Maxine-VM.git

Instead of the official repository in the second command above, you can clone
https://github.com/mihalis341/Maxine-VM which already contains all the changes made for
Windows

mailto:csdp1175@csd.uoc.gr
https://github.com/mihalis341/Maxine-VM
https://www.java.com/en/download/help/path.xml
https://git-scm.com/download/win

Also, don’t forget to add the cloned mx folder to the PATH system environment variable as
well.

3. We need a supported version of OpenJDK 8 for Windows. You can download any JDK version
>=2.2.2 from https://adoptopenjdk.net/archive.html?variant=openjdk8&jvmVariant=hotspot . It
is recommended to choose Binary (which downloads a .tar.gz file) and not Installer in the above
page. After the download, you must extract the tar.gz file (it contains just the JDK folder) to
any location you want and also create a new Windows Environment Variable called
JAVA_HOME which should point to the JDK folder.

Caution: Make sure that the path you choose for the JDK folder does not contain any spaces.
All the mx scripts make use of GNU executables (eg. make) which don’t like spaces at all.
Also, make sure that the path of the JAVA_HOME environment variable you created uses
Linux path separator (‘/’) instead of Windows separator (‘\’). Windows allows Linux
separators too so there is no problem with that practice. If one used Windows separator, the
makefiles are able to locate the necessary JDK files, however, GCC for Windows faces some
problems with it as it handles Windows separators as escape characters resulting in peculiar
errors like:

Another Windows compiler may not have such a problem. Below, is an example of the path that
must be used for JAVA_HOME environment variable

JAVA_HOME path containing no spaces and using Linux seperators

https://docs.oracle.com/en/database/oracle/r-enterprise/1.5.1/oread/creating-and-modifying-environment-variables-on-windows.html#GUID-DD6F9982-60D5-48F6-8270-A27EC53807D0
https://adoptopenjdk.net/archive.html?variant=openjdk8&jvmVariant=hotspot

4. We also need a collection of Windows ports of common Linux commands (cp, mkdir, uname,
make etc) used by mx scripts and Makefiles available for download here . Those exes rely on
native Windows DLLs as well and they do not require the use of any virtual environment or
extra dependency. We only need one folder from UnixUtils.zip ,we downloaded, called “wbin”
which we must extract anywhere we wish and add its path to the PATH system environment
variable as well. There are Windows commands equivalent to cp and mkdir we could use but
the makefiles use “uname” command to determine the OS and ISA we are using and there is no
other way other than “uname” to see if we are running on Windows from within a Makefile.
Additionally, we need the make.exe executable from UnixUtils for which we have found no
alternative until now. (Update: On a third PC with Windows 10, make.exe produces The
syntax of the command is incorrect error on Windows Command Line for unknown reason
but it works correctly with Git’s Bash instead so it is advisable to prefer it over cmd. This error
does not appear on Windows Command Line of two other machines the port was tested.)

5. We also need a version of GCC for Windows. One can download it from here . The exact same
GCC compiler may come with some Windows IDEs like CodeBlocks. During the installation
make sure to choose correctly your ISA. In the “Threads” option choose “Win32” and no
“posix” since we make no use of POSIX threads in our work. (Even if one chooses POSIX
everything will work fine as well but you download an extra useless library)

 After the installation is over, we must also add the folder that contains gcc.exe (typically
something like this on 64bit windows: C:\Program Files\mingw-w64\x86_64-8.1.0-win32-
seh-rt_v6-rev0\mingw64\bin\ once again to the PATH environment variable.

Note: One can use any compiler they want. However, the makefiles are configured for
GCC. Should anyone need to use a different C compiler, they must also edit the
respective Makefiles

6. Python should be downloaded and installed from the official website. All python scripts used
are Python 2.7 scripts so that Python version should be enough. However, we have noticed that
at some cases Python 2.* cannot handle paths bigger than MAX_PATH_LENGTH defined on
Windows. As a result, some maxine classes with a very long name failed to get found and an
error mentioning that the file did not exist was arising. Python 3 offers the option to abolish that
Windows limit during its installation so if ones has such a problem, they should use Python 3

https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/installer/mingw-w64-install.exe/download
https://sourceforge.net/projects/unxutils/

instead. This Windows limit was supposed to disappear in a specific Windows 10 version,
however, at one of the two machines that I tested the port on, the limit did continue to exist at
the past. Today, though, I am unable to reproduce the error with Python 2.7 so maybe a
Windows update has fixed it. In any case, should one face such an error and need to use Python
3 they should also use 2to3.py script included in Python 3 tools folder in order to convert mx.py
to Python 3. One should also ensure that Python is added in PATH environment variable as
well. (The installation should take care of it)

7. Finally, we can compile Maxine VM and build a boot image from Windows Command Prompt
(cmd.exe) or any other terminal of your choice by executing

mx build
mx image

Summary of changes regarding Makefiles

First of all, there was no need for any change at any Python script (excluding the optional
transformation of Python 2.7 to Python 3.8.2 described in step 6 of the previous section).

The central makefile (com.oracle.max.vm.native/makefile) which constitutes the starting point of the
whole native building process needed to get changed in order to exclude Tele from the building process
as it was not implemented as stated in the introduction. The reason for this is that Tele source files
make extensive use of the ptrace syscall that has no equivalent for Windows. Also, complete UNIX
emulating virtual environments like Cygwin do not support it. It’s also worth mentioning that the
Maxine Inspector itself is an obsolete and abandoned part of Maxine VM receiving no active
development. In order to make the makefile runnable on windows we should make the following
change:

The value of $OS is checked and if it equals windows, tele is not included in “all” target.

The variable OS is determined in platform.mk located at com.oracle.max.vm.native/platform.mk at the
following lines:

 Initially, the platform.mk makefile invokes umame -s command which returns a string
containing the name of the OS. If that value equals WindowsNT” or xontains “MINGW” (the
provider of GCC for windows) then the OS is determined as “windows” and ISA as “amd64” as it is
the only architecture we tested our port on". Afterwards the value of OS is once again used in
platform.mk in order to define specific compile and link flags as well as suffixes (eg.”dll”) for
Windows shared libraries.

As seen in the above image, at Line 325 the compile flags are defined. In general, those flags resemble
the ones used in the Linux case, however, we need to include -DWINDOWS. Defining this macro helps
the compiler determine the OS we are using and decide which segments of code to include in the
compilation process. (There is much code in the source files which is inside #ifdef sentences). In

addition, we need the flag -D__int64 = int64_t because GCC is not aware of the daatype __int64 used
in some JDK’s header files. Thus, we replace it with the equivalent int64_t. At line 332 one can also
notice two libraries (lole32 and lws2_32) included in the link flags that are put at the end of the linking
command (LINK_LIB_POSTFIX). Those two libraries are native in Windows and we mus link them at
runtime if we want to use functions like CoTaskMemFree or socket functions that are described further
in the report.

Also, at line 337 we define the suffix a shared library must have on Windows which is .dll
Furthermore, a small change was needed at com.oracle.max.vm.native/launch.mk which regards the
executable maxvm which is the basic launcher of MaxineVM. Specifically, the suffix “.exe” has been
added to target “MAIN” which gets automatically added by GCC in the executable’s name and then
“cp” command must be able to detect it.

Finally, com.oracle.max.vm.native/javatest.mk is a Makefile responsible for the building of javatest.dll
which, as the name suggests, contains some tests for the JVM. Inside, the original javatest.mk are used
sources which invoke functions that are implemented in other sources not included in javatest.mk
makefile. Generally, this is allowed on Unix OSes where you can have as many undefined references
(ie. function calls without implementation) as you wish inside a shared library and hope that another
library loaded at runtime will provide them. However, on Windows DLLs needsto have all external
dependencies resolved during linking and no undefined references are allowed. That’s why we added
more source files in that makefile if the detected OS is Windows. In that way, the DLL contains
implementations for any function called within it. The rest of shared libraries of Maxine include by
default all sources that are needed to ensure the absence of unresolved symbols so no change was
needed.

Summary of some of the changes that got applied in native Code

The native code of Maxine VM can be segmented to 5 parts by taking into account the final shared
libraries or executable it produces. More specifically, the final products of the native code are

hosted.dll

A library containing functions that reveal characteristics of the host system (eg. endianess, page size,
path to jni.h etc). It is used by Boot Image Generator in order to produce a working boot image for a
specific target.

javatest.dll

https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cotaskmemfree

A library containing some Java tests in order to test the integrity of Maxine VM (eg. Print “Hello
World” or return and print the name of a Java Class in C code etc). All of those functions are exported
using JNI and can be called by a Java application that loads that DLL.

jvm.dll

The DLL constituting the implementation of the so called substrate. It makes extensive use of POSIX
methods (eg.threads, mutexes, semaphores(not available on Windows), memory mapping methods,
Signal handling, socket reading, shared Library loading etc. It is the actually the tool that JVM uses to
interact with the host system (eg for allocating heap, loading the boot image file etc). It is also the
“bootloader” of the whole VM itself.

maxvm.exe

It is the only executable that emerges from the building process and its main purpose is to load jvm.dll
(substrate) and run its main function (maxine())

tele.dll UNIMPLEMENTED

It is the main part (non- visual) part of the Maxine Inspector. It can debug Java programs, provide info
about running threads (eg. how much memory is allocated, the status of its registers etc.) Its code is
highly ISA specific and it relies almost exclusively to the UNIX ptrace() function whose equivalent
most likely does not exist for Windows.

Below there is a table showing the source files needed for each executable/ shared library (except for
tele.dll)

hosted.dll c.c log.c platform.c relocation.c dataio.c mutex.c

javatest.dll jvmni.c tests.c threads.c jnitests.c jvm.c jni.c threadLocals.c
image.c log.c virtualMemory.c mutex.c c.c trap.c time.c jmm.c
jvmti.c relocation.c signal.c dataio.c

jvm.dll c.c condition.c log.c image.c $(ISA).c jni.c jvm.c maxine.c
memory.c mutex.c relocation.c dataio.c snippet.c threads.c
threadLocals.c time.c trap.c virtualMemory.c jnitests.c sync.c
signal.c jmm.c jvmti.c barrier.c

maxvm.exe maxvm.c

It is apparent that some source files are present in more than one product of the building process (eg.
relocation.c , c.c, mutex.c etc) those belong to a folder called “share” and we will refer to them just
once (the first time they appear) while describing the changes that took place durig the porting process.
If a source file is not mentioned it means that it did not include any OS specific code thus it can be
used without changes on any OS or that the changes it includes are already described in other files or
are not that important. So the choice of which changes will be included in the report is somewhat
subjective. The full repository with all the changes can be found here

https://github.com/mihalis341/Maxine-VM/

Changes regarding the creation of hosted.dll

platform.c

This source file provides functions that reveal information about the Host OS. For example
Java_com_sun_max_platform_Platform_nativeGetOS(JNIEnv *env, jclass c);

or

Java_com_sun_max_platform_Platform_nativeGetPageSize(JNIEnv *env, jclass c); etc.

From those functions, the only OS specific one is that regarding the memory page size. In UNIX s
ytems the system call sysconf(_SC_PAGESIZE); is available. On the other hand, on Windows, we have to
use a struct of type SYSTEM_INFO which includes many field describing the page size, number of
processors etc. We fill that struct using GetSystemInfo win32 call. The obvious field describing page
size is DWORD dwPageSize;. However, Maxine VM needs this number in order to allocate addresses nd
offsets that are multiples of it. (many functions such as mmap accept offsets and addresses that are
multiples of page size) This works for UNIX,however, on Windows all functions that require aligned
addresses or offsets (eg. MapViewOfFileEx) as arguments want this alignment to be done not in
accordance to the page size but according to AllocationGranularity . That’s why we return DWORD
dwAllocationGranularity; instead of page size

 (why things are different on windows: https://devblogs.microsoft.com/oldnewthing/20031008-00/?
p=42223)

m utex.c

https://devblogs.microsoft.com/oldnewthing/20031008-00/?p=42223
https://devblogs.microsoft.com/oldnewthing/20031008-00/?p=42223
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffileex
https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/ns-sysinfoapi-system_info
https://github.com/mihalis341/Maxine-VM/

On Windows, there are objects that are also called Mutexes. However, for various reasons, it turns out
that the real equivalent of POSIX mutexes are win32 Critical Sections .Windows Mutexes are shared
between processes, not threads. That’s why they are quite different from POSIX ones. Also, win32
Critical Sections can be used as arguments to Condition Variables just like POSIX mutexes are used as
arguments in POSIX conditions. Initially, we should define the following in mutex.h

At line 39 we define mutex_Struct as CRITICAL_SECTION while at line 41 Mutex is defined as a
pointer to mutex_Struct (the latter happens for all OSes). In mutex.c
we make this change regarding function

 void mutex_initialize(Mutex mutex);

We see that in Linux, it is needed to create a mutex_atttribute object first in order to specify that the
mutex will be recrusive (ie. the thread that has locked can relock it without udefined behavior). On
windows, critical sections are by default recursive so a call to InitializeCriticalSection is enough.

Similarly, regarding the next function int mutex_enter_nolog(Mutex mutex) the Linux statement
return pthread_mutex_lock(mutex); replaced by

 EnterCriticalSection(mutex);
return 0;

https://docs.microsoft.com/en-us/windows/win32/sync/critical-section-objects

on Windows. (EnterCriticalSection returns nothing on Windows, so we return 0 which means success
in Linux and is what ou program would expect.

Similarly, in function int mutex_try_enter(Mutex mutex) the Linux statement
 return pthread_mutex_trylock(mutex); gets replaced by
return !TryEnterCriticalSection(mutex); Both of these calls try to lock mutex/cs without blocking.
On Windows we use ‘!’ before returning the result because Windows return non-zero on success while
the Linux equivalent returns 0 so out program expects 0 for success (since it was built for Unix
orginally).

With the same thinking, the rest of changes were applied in the rest of the mutex functions (Linux left,
Windows right)

 →
 return pthread_mutex_unlock(mutex); LeaveCriticalSection(mutex);

return 0; //because leavecriticalsection

does not return anything

pthread_mutex_destroy(mutex); DeleteCriticalSection(mutex);

Changes regarding the creation of jvm.dll and javatest.dll (they have many sources in common
on Windows)

tests.c

Inside this source file the only OS specifc action taking place is the creation of a Thread.

On Linux, the developers first create an attributes variable (creation not shown in image) and set the
thread’s detached state as JOINABLE (ie. main() can wait for it using pthread_join). The strange part is
that this process is also redundant on Linux since threads are by default joinable so the setting of
attributes just for that has no meaning. After that the thread is created using pthread_create on Linux
and CreateThread on Windows. Windows Threads are also by default Joinable. CreateThread returns
a HANDLE (ie void *) to the thread however, we do not need to return it. Also, on Linux, thread_id is
created inside the function and never returned. The signature of thread_functions is also changed on

Windows form void * thread_function(void * args) to DWORD thread_function(void * args) in
order to avoid compiler warnings since this is the required signature for Windows (DWORD is int)

threads.c

Apart from the previous changes described in the previous file regarding thread creation, this file
provides also some other implementations like JNIEXPORT void JNICALL
Java_com_sun_max_vm_thread_VmThread_nativeYield(JNIEnv *env, jclass c) which makes the
current thread yield. So the Linux pthread_yield(); is replaced by the Windows SwitchToThread();
which yields the CPU if there is another thread asking for CPU time.

Additionally, an interesting function contained in that file is also
jboolean thread_sleep(jlong numberOfMilliSeconds)
which on Linux calls the following

While on Windows it is simply implemented as Sleep(numberOfMilliSeconds); since win32 Sleep()
accept milliseconds as argument.

A more interesting function is void thread_getStackInfo(Address *stackBase, Size* stackSize)
which return the base of the stack (ie. lowest address) and the stack size available for use be the VM
while on Linux there are pthread_attr_getstack(&attr, (void**) stackBase, (size_t *) stackSize)
which can directly return the requested values.

Unfortunately, on Windows there is no direct way to find either of these.

First, we use NtCurrentTeb(); call which returns info about the current thread. Inside, the returned
struct there is a field called StackBase BUT unfortunately, windows define as StackBase the highest
address of the stack instead of the lowest. This part caused many errors and bugs that got fixed
eventually. In order to find the real StackBase (ie the lowest stack address) we can call virtual query
anywhere inside the stack. This takes as argument MEMORY_BASIC_INFORMATION struct and
upon return it contains a field called allocation base. This is the real stack base. So stacksize =
StackBase – allocation base. Since the last page of the stack is always a guard page, we want to move
the pointer to stackbase a bit upwards so we add dwAllocationGranularity value and we substract it
from stack_size. We could have used dwPageSize instead but as explained earlier Windows want
addresses to be aligned according to dwAllocationGranularity and not page size so we sacrifice some
Kbs of available memory. (The returned stackbase is later used bu windows functions that require such
kind of allocation) (page size is tpyically 4kb while allocation granulrity is 64kb)

j vm.c

In this file there are native functions supposed to be used by Java program. Those functions concern
many different things. For example,

jint JVM_ActiveProcessorCount(void) which returns the number of processors.

On Linux and Darwin a call to sysconf(_SC_NPROCESSORS_ONLN) is utiized which in Windows
is replaced with

SYSTEM_INFO systemInfo = {0};
 GetSystemInfo(&systemInfo);
return systemInfo.dwNumberOfProcessors;

Also there are functions used to load shared libraries like

Other functions include signal sending which unfortunately is not supported on Windows. Windows
signals can only get from the same process/ thread that sent (ie. raised) them (just like exceptions). In
order to achieve this the win32 Raise() function was used.

There also functions regarding file descriptor syncing

As well as socket handling (those are exactly the same in all OSes)

On windows we must also link with Library lws2_32 at run time (remember the changes at Makefiles
where we included 2 libraries at Linking Flags)

One can also notice this macro on the top of that file

Here, 0x0600 means Windows Vista and we define it in order to be able to use attributes that are
available from that OS and on. Windows Header Files put some of their datatypes and structs inside
#if WIN32_WINNT >= something
….
#endif

in order to prevent users running Windows Versions older than the oldest supported one from using
unsupported attributes so we need to define this macro in order to “tell” the compiler that we can/want
to use them.

threadLocals.c

This source file regards Thread Local Storage which is in simpler words the ability to use local
variables without them constituting arguments to the thread function or being created inside the
function. However, at the same time, they are not global variables either. Only the thread that creates
them can see them.

Below follows a table showing win32 functions equivalent to TLS Linux functions used in the source
file

pthread_key_create TlsAlloc()

pthread_getspecific(theThreadLocalsKey); TlsGetValue(theThreadLocalsKey);

pthread_setspecific(theThreadLocalsKey, (void *)
tlBlock);

TlsSetValue(theThreadLocalsKey, (LPVOID)
tlBlock);

TheThreadLocalKey is defined as DWORD (int) on Windows and pthread_key_t on Linux

image.c

This source file is responsible for opening the boot image file, reading its info and map into memory.

An interesting thing to mention is that on Linux
 fd = open(imageFileName, _O_RDWR);

is used to open the file. The same exact call exists on Windows. However, on Windows it opens the file
in text mode. What’s interesting with Windows and text mode is that Ctrl-Z character is interpreted as
the EOF character. Our boot image file happened to contain such characters so it led the read() function
to return before reading all the available bytes. In order to resolve the issue we must open the image
using
 fd = open(imageFileName, _O_RDWR|_O_BINARY); on Windows

We also need to open once more the image file using CreateFileA function because that’s the only way
to allow execution rights to the image. On linux it is enough to open with open() while on Windows
one must do something like it in order to be allowed to map the image to a page with execution rights

virtualmemory.c
This where all the function responsible for file mapping reside. Linux uses mmap() and mprotect() for
mapping and protecting pages while on Windows we need VirtualAlloc when mapping memory
without using any file and a combination of CreateFileMapping and MapViewOfFile while mapping
actual files. For protecting pages we use VirtualProtect.

The code of this file is really lenthy and complex so you can see it
here :https://github.com/mihalis341/Maxine-VM/blob/develop/com.oracle.max.vm.native/share/
virtualMemory.c with all the necessary comments.

maxine.c

Contains the maxine() function loaded by maxvm.c using windows loadlibrary functions shown in
jvm.c
It also provides a function for getting user’s home dir, current working directory and user’s name
which is implemented using getpwuid() on Linux

and a combination of GetUserNameA(), SHGetKnownFolderPath() and GetCurrentDirectory() on
Windows

https://github.com/mihalis341/Maxine-VM/blob/develop/com.oracle.max.vm.native/share/virtualMemory.c
https://github.com/mihalis341/Maxine-VM/blob/develop/com.oracle.max.vm.native/share/virtualMemory.c

It’s also worth noting that the “maxine” function must be “decorated” using this annotation
__declspec(dllexport) right before its signature.

This makes the symbol visible inside the DLL and accessible by others who load jvm.dll (in that case,
maxvm.exe)

 These were some of the source files changed. There others containing interesting changes like
conditions.c
Also the full native code can be found here
https://github.com/mihalis341/Maxine-VM/tree/develop/com.oracle.max.vm.native

Boot Image Creation

In order to get able to create the image file we had to go through a lot. Initially, we faced
many unexplainable errors during the compilation of some classes with no sufficient
info about it. During this process it was needed some interceptions inside the class
JDKInterceptor.Java. This class is responsible for resetting the values of some fields of
specific classes that for some reason cause crashes while running the boot image file. An
example of some interceptions is here

https://github.com/mihalis341/Maxine-VM/tree/develop/com.oracle.max.vm.native

Finally, I found out that the main reason behind the strange compilation errors of the boot image was
the inability to load that class https://github.com/beehive-lab/Maxine-VM/blob/develop/com.sun.max/
src/com/sun/max/config/jdk/Package.java . This class contains info about known problematic classes
that break compilation and adds those to a blacklist. However, on Windows this class failed to load
during image generation so nothing was added to the compilation blacklist. As a result, we faced many
needless and most likely unsolvable errors for a pretty big period of time. That class attempts to get
loaded here
https://github.com/beehive-lab/Maxine-VM/blob/develop/com.sun.max/src/com/sun/max/config/
BootImagePackage.java#L246 however, all exceptions are handled silently so they are not visible on
output. The reason that previous class failed to load, is its dependency on java.lang.UNIXprocess class
which is visible on lines 153-154. Those classes do not exist on any windows JDK for obvious reasons
so trying to load a class that depends on them throws NoClassDefFoundError

changing those lines like that did the trick

https://github.com/beehive-lab/Maxine-VM/blob/develop/com.sun.max/src/com/sun/max/config/BootImagePackage.java#L246
https://github.com/beehive-lab/Maxine-VM/blob/develop/com.sun.max/src/com/sun/max/config/BootImagePackage.java#L246
https://github.com/beehive-lab/Maxine-VM/blob/develop/com.sun.max/src/com/sun/max/config/jdk/Package.java
https://github.com/beehive-lab/Maxine-VM/blob/develop/com.sun.max/src/com/sun/max/config/jdk/Package.java

so now, the boot image gets compiled successfully.

Reading and loading the boot image from the native machine code works well. Image.c maxine.c and
virtualmemory.c contain much defensive code (eg. asserts) to ensure that the file is correctly loaded and
mapped into memory. However, we currently get a crash just after the “reached here” print inside the
maxine() function in maxine.c just when the VMRun Java method gets invoked

Before that point, many checks have been performed inside the code that everything is correct. In
addition, I have also used my code to execute a small memory mapped file with machine code and it
appears to work correctly so I believe my code, regarding the loading and mapping of the image file in
memory, is correct.
(test: https://github.com/mihalis341/Maxine-VM/blob/develop/com.oracle.max.vm.native/
windows_tests/memory_map_test.c)

In addition, we further looked into com.sun.max.vm.MaxineVM.run() function to understand more
about the crash.

We tried commenting out some of the code in that function in order to figure out where it crashes and
found out that the Java code is successfully executed until (including) the line where the
bootHeapRegion gets set. After that, some of the next functions (eg. VMLog.vmLog().initialize())
cause the crash.
In my understanding, there is not some problematic code in those function that make the program crash
but rather the “location” of those functions in memory is the problem. The same crash occurs even if I
completely replace the body of VMLog.vmLog().initialize() with a simple “return;” and rebuild maxine
and its image.

 The reason behind the crash might be some needed interception for the new OS the VM is getting
ported to.

As a test one can try the following:

Comment all the code after the setting of bootheap region start in com.sun.max.vm.MaxineVM.run()

 and then return a random number (eg.128). (as depicted below)

https://github.com/mihalis341/Maxine-VM/blob/develop/com.oracle.max.vm.native/windows_tests/memory_map_test.c
https://github.com/mihalis341/Maxine-VM/blob/develop/com.oracle.max.vm.native/windows_tests/memory_map_test.c

Rebuild maxine and image.
Afterwards, go back to maxine.c and after the line that invokes the VMRunFunction

(exitCode = (*method)(tlBlock, ntl->tlBlockSize, image_heap(), openLibrary, loadSymbol, dlerror,
getVMInterface(), jniEnv(), getJMMInterface(-1), getJVMTIInterface(-1), argc, argv);
)

add code to print exitCode value (eg.with printf). Recompile and run maxvm.exe in the native code
directory (you can also try mx helloworld from base directory) You will see that 128 (or the number
you used) gets printed which indicates that the Java Code of VMRun gets indeed correctly executed
until the point we have left it uncommented. This proves that the image file is correctly created and
mapped into memory, the offset of the VMRun function in it is correctly calculated in our C code etc. It
remains unknown why the commented Java code causes a segmentation fault (when not commented
out of course!) even if all the classes it uses are included in the image file.

