

TM Forum 2015. All Rights Reserved.

Frameworx Specification

REST API Design Guidelines
Part 1

Practical guidelines for RESTful APIs naming, CRUD,
filtering, notifications

 TMF630

 Release 14.5.1

 March 2015

Latest Update: Frameworx Release 14.5 TM Forum Approved

Version 1.1.1 IPR Mode: RAND

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 2 of 55

Notice

Copyright © TM Forum 2015. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published, and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this section are included on all such copies and derivative
works. However, this document itself may not be modified in any way, including by removing the
copyright notice or references to TM FORUM, except as needed for the purpose of developing
any document or deliverable produced by a TM FORUM Collaboration Project Team (in which
case the rules applicable to copyrights, as set forth in the TM FORUM IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and TM
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

TM FORUM invites any TM FORUM Member or any other party that believes it has patent
claims that would necessarily be infringed by implementations of this TM Forum Standards Final
Deliverable, to notify the TM FORUM Team Administrator and provide an indication of its
willingness to grant patent licenses to such patent claims in a manner consistent with the IPR
Mode of the TM FORUM Collaboration Project Team that produced this deliverable.

The TM FORUM invites any party to contact the TM FORUM Team Administrator if it is aware of
a claim of ownership of any patent claims that would necessarily be infringed by
implementations of this TM FORUM Standards Final Deliverable by a patent holder that is not
willing to provide a license to such patent claims in a manner consistent with the IPR Mode of
the TM FORUM Collaboration Project Team that produced this TM FORUM Standards Final
Deliverable. TM FORUM may include such claims on its website, but disclaims any obligation to
do so.

TM FORUM takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this TM FORUM Standards Final Deliverable or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort to
identify any such rights. Information on TM FORUM's procedures with respect to rights in any
document or deliverable produced by a TM FORUM Collaboration Project Team can be found
on the TM FORUM website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a
general license or permission for the use of such proprietary rights by implementers or users of
this TM FORUM Standards Final Deliverable, can be obtained from the TM FORUM Team

http://www.tmforum.org/IPRPolicy/11525/home.html

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 3 of 55

Administrator. TM FORUM makes no representation that any information or list of intellectual
property rights will at any time be complete, or that any claims in such list are, in fact, Essential
Claims.

Direct inquiries to the TM Forum office:

240 Headquarters Plaza,
East Tower – 10th Floor,
Morristown, NJ 07960 USA

Tel No. +1 973 944 5100

Fax No. +1 973 944 5110

TM Forum Web Page: www.tmforum.org

http://www.tmforum.org/

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 4 of 55

Table of Contents

Notice ... 2

Table of Contents ... 4

List of Figures ... 6

List of Tables .. 6

Executive Summary .. 7

1. General ... 8
API Resource Archetypes ...8
REST Levels ..9
REST API SPECIFICATION INFORMATION ..9
API implementation technology ... 10
HTTP HEADER .. 10

2. Domain and URI Naming Standards ... 11
Managed Entity Model ... 11
Resource Model and Naming ... 11
Resource ID and href ... 12
Resource Naming Convention .. 13
Identifier syntax and uniform contract verbs .. 13
Resource collection naming .. 13

3. Uniform Contract Methods and Media Types ... 14
Uniform Contract Operations ... 14
API Media Types .. 15
API RESPONSE STATUS and EXCEPTION CODES .. 16
Representations .. 17
Common Information Model ... 18

4. Query Resources Patterns ... 19
Query single Resource all attributes .. 20
Querying multiple Resources .. 21
Query partial Resource representation or attribute selection ... 24
Query Resources with attribute filtering ... 26
Query Resources with attribute filtering and Iterators ... 30
Query Resources with attribute filtering and attribute selection... 32

5. Modify resources patterns .. 33
Uniform contract operations for modifying resources ... 33
Replace all attributes of a resource .. 33
Modify Attribute subset of a resource ... 35
Modify Multi-Valued Attribute .. 37

6. Create Resource Patterns .. 39
Creating a single Resource .. 39
Creating Multiple Resources ... 41

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 5 of 55

7. Task Resource Pattern ... 44
Modeling Complex operations with task resources .. 44

8. Notification Patterns ... 46
Register Listener .. 46
Unregister Listener .. 47
Publishing Events ... 48

9. Versioning .. 50
API Versioning .. 50

10. Appendix A: Terms and Abbreviations Used within this Document 52
Terminology ... 52
Abbreviations and Acronyms .. 52

11. References .. 53
References ... 53

12. Administrative Appendix .. 54
Document History ... 54

12.0.1. Version History ... 54
12.0.2. Release History .. 54

Company Contact Details .. 55
Acknowledgments ... 55

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 6 of 55

List of Figures

N/A

List of Tables

N/A

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 7 of 55

Executive Summary

This document, “REST API Design Guidelines” provides information for the
development of TM Forum APIs using REST. It provides recommendations
and guidelines for the implementation of Entity CRUD operations and Task
operations.

It also provides information on filtering and attribute selection. Finally it
does provide information on supporting notification management in REST
based systems.

The uniform contract establishes a set of methods that are expected to be
reused by services within a given collection or inventory.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 8 of 55

1. General

API Resource Archetypes

The following section describes the resource archetypes supported by the
TMF REST APIs

A REST API is composed of 3 distinct resource archetypes and should
align each resource to just one of these:-

1. Resource Collection – server managed collection of resources. In
the TMF REST API DP collections are anonymous. A resource with
no identifier represents the resource collection (matching the
resource type).

2. Managed Resource – e.g. a database record or a managed entity–.
Its representation includes: fields with values and links to related
resources. Can have child resources, of different resource types.
Client can create, query, update and delete resources.

3. Tasks – resources that are executable functions – with associated
input and output parameters. Necessary where the required action
cannot be mapped to standard CRUD methods. Tasks play the role
of Controllers in Rails.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 9 of 55

REST Levels

All APis must implement Level 2 of the Richardson Maturity Model
http://www.crummy.com/writing/speaking/2008-QCon/act3.html

The Level 3 is not mandatory and not specified in this part of the Design
Pattern Guideline. Level 3 issues are addressed in the Advanced
Patterns sections as they relate to workflow oriented patterns.

REST API SPECIFICATION INFORMATION

For each REST API specification, the following information MUST be
included:

 Purpose of the API.

 URL of resources and API including version number.

 HTTP verbs supported.

 Representations supported. JSON and XML

 Response schema (and where PUT, POST, PATCH are

supported – request schema).

 Links supported (Optional in L2 APIs)

 Response status codes supported.

 WADL

http://www.crummy.com/writing/speaking/2008-QCon/act3.html

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 10 of 55

API implementation technology

APIs are not technology implementation dependent.

REST APIs embrace all aspects of the Hypertext Transfer Protocol,
version 1.1 (HTTP/1.1) including its request methods, response codes, and
message headers.

HTTP HEADER

The following describe the header protocol elements that MUST be used by the TMF
REST APIs:

 Content-Type must be used when the message includes body

 Content-Length should be used. Client can thus know whether it has read
the correct number of bytes from the connection and can make a HEAD
request to find out how large the entity-body is, without downloading it.

 Last-Modified should be used in responses

 ETag should be used in responses. The entity tag may be any string value,
so long as it changes along with the resource’s representation.

 If a resource is designed to be manipulated by more than one different
client (i.e. application) then it must support conditional PUT requests.

 Location must be used to specify the URI of a newly created resource and
may be used to direct clients to the operational status of an asynchronous
controller resource. This is the preferred method to implement
asynchronous behavior.

 Cache-Control, Expires, and Date response headers should be used to
encourage caching.

 Cache-Control and Expires response headers may be used to discourage
caching.

 Caching should be encouraged.

 Expiration caching headers should be used with 200 (“OK”) responses to
GET and HEAD requests.

 Expiration caching headers may optionally be used with 3xx and 4xx
responses - this helps reduce the amount of redirecting and error-
triggering load on a REST API.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 11 of 55

2. Domain and URI Naming Standards

Resources represents managed entities acted upon by the REST API. Resource
identifiers represent the actual resources that a service exposes. A resource can be
a trouble Ticket, a Logical Port , an Order, a Task etc...

A resource identifier is like a unique ID assigned to one or more service resources
(also know as a key in OSS/J and entity identifier in TIP). The Resource Identifiers
recommendation standardizes the syntax used to represent them. The most
common syntax used to express resource identifiers is the Web’s Uniform Resource
Identifier (URI) syntax.

Managed Entity Model

Resources represent managed entities. Resources are acted upon by the
REST API using the Uniform Contract Verbs (POST, GET, PUT, DELETE,
PATCH, etc.…) . Operations on Resources affect the state of the
corresponding managed entities.

There is a direct mapping between the managed entities and the
corresponding Resources in the REST model.

The mapping between the managed entity types and the corresponding
Resource model MUST be included in the API specification.

Resource Model and Naming

A resource identifier is like a unique ID assigned to one or more service
resources (also know as a key in OSS/J and entity identifier in TIP).

The URI path may convey the REST API’s resource model, with each
forward slash separated path segment corresponding to a unique resource
within the model’s hierarchy.

The URI of a resource also be represented by an ID which contains the
sequence of RDN without having the RDNs to be necessarily encoded as
individual resources with an URI.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 12 of 55

Individual resources MUST have a unique identifier field called id.

If the Id is a composite key then it should be split into the following elements:
key = {part}-{part}*.

For example if the key is a combination of managementSystem and name
then the id would be represented as:

 id = {managementSystem}-{name}

The structure of a Resource Path URI is given by the following expression:

{resourcePath} = {resourceName} [(/ {resourceID*} [/ {resourcePath} or
{taskResource}]) Or (/{taskResource})]

For example in our sample Report Management application:

{reportPath} = report/reportID

Resource URIs SHOULD be formed according to the following base
pattern:

{apiRoot} /{resourcePath}

Resource ID and href

Every Resource have two mandatory attributes:

 id: A unique identifier in the context of the application collection

“id=42”

 href: The full URI of the resource as per Location header

“href=http://api/report/42”

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 13 of 55

Resource Naming Convention

Names in URI (tasks, individual resources, etc.) MUST be camel case or
lower case.

e.g.  /account/billSummary/billDetail  /account/billSummary/billdetail

Identifier syntax and uniform contract
verbs

URI names MUST NOT contain the names of HTTP verbs (task resources
should be used if needed for clarity)

Resource collection naming

Collection names SHOULD not use a Collection postfix. Collections are
implicit when the resource name is used.

For example API/report represents the Report Collection and GET
API/report retrieves all the items from the Report Collection (i.e. all the
resources of type Report contained within the application).

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 14 of 55

3. Uniform Contract Methods and Media Types

HTTP provides us with a set of generic methods, such as GET, PUT, POST,
DELETE, HEAD and OPTIONS, that are pre-defined in the HTTP specification.
The complete protocol interactions include a set of response codes, plus syntax
for expressing various parameters that can be encoded in HTTP messages.

The REST uniform contract is based on three fundamental elements:

 resource identifier syntax – How can we express where the data is being

transferred to or from?

 methods – What are the protocol mechanisms used to transfer the data?

 media types – What type of data is being transferred?

The following section describes the guidelines for modeling operations and for

specifying what media types to use.

Uniform Contract Operations

All API operations are based on the REST Uniform Contract operations.

 GET and POST must not be used to tunnel other request

methods.

The following describe the relationships between the elements of the API
and the Uniform Contract.

Operations on Entities are mapped to operations on the corresponding
resources.

Operation on Entities Uniform API

Operation

Description

Query Entities GET Resource GET must be used to
retrieve a
representation of a

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 15 of 55

resource.

Create Entity POST Resource POST must be used to

create a new resource

Partial Update of an

Entity

PATCH Resource PATCH must be used

to partially update a

resource

Complete Update of an

Entity

PUT Resource PUT must be used to

completely update a

resource identified by its

resource URI

Remove an Entity DELETE Resource DELETE must be used

to remove a resource

Execute an Action on

an Entity

POST on TASK

Resource

POST must be used to

execute Task

Resources

Other Request

Methods

POST on TASK

Resource

GET and POST must

not be used to tunnel

other request methods.

 HEAD must be used to retrieve response headers. HEAD support
is always optional.

API Media Types

When defining methods for REST services, we can further specify the
types of data a given method can process. For example, a GET method

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 16 of 55

may be able to transfer a Trouble Ticket representation in XML or
JSON. Each is represented by its own media type.

 REST APIs MUST support the JSON media type

 The default for resource representation MUST be JSON.

 An API MUST only use the ACCEPT HEADER and CONTENT-

TYPE (POST) to control the representation media types. Other

mechanisms are not supported.

API RESPONSE STATUS and EXCEPTION
CODES

THE REST APIs MUST use the exception and response codes
documented at http://www.iana.org/assignments/http-status-codes/http-
status-codes.xml.

In particular the following response codes must be used:

 Status

Code
Rule

2xx Success

Indicates that the client’s request was accepted successfully.

200 OK - should be used to indicate nonspecific success

200 OK - must not be used to communicate errors in the response
body

201 Created - must be used to indicate successful resource creation.
Return message SHOULD contain a resource representation and a
Location header with the created resource’s URI

202 Accepted - must be used to indicate successful start of an
asynchronous action

204 No Content - should be used when the response body is
intentionally empty

3xx Redirection

Indicates that the client must take some additional action in order to
complete their request.

301 Moved Permanently - should be used to relocate resources

302 Found - should not be used

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 17 of 55

303 See Other - should be used to refer the client to a different URI –
can be used with a Location header containing the URI of a resource
that shows the outcome of an asynchronous task.

304 Not Modified - should be used to preserve bandwidth

307 Temporary Redirect - should be used to tell clients to resubmit the
request to another URI

4xx Client Error

This category of error status codes points the finger at clients.

400 Bad Request - may be used to indicate nonspecific failure.

The request could not be understood by the server. The client
SHOULD NOT repeat the request without modifications

401 Unauthorized - must be used when there is a problem with the

client’s credentials

403 Forbidden - should be used to forbid access regardless of authorization
state. For example, a client may be authorized to
interact with some, but not all of a REST API’s resources. If the client
attempts a resource interaction that is outside of its permitted
scope, the REST API should respond with 403.

404 Not Found - must be used when a client’s provided URI cannot be
mapped to a resource URI

405 Method Not Allowed - must be used when the HTTP method is not
supported

Representations

 (Well formed) JSON MUST be the default for resource

representation

 XML and other formats may optionally be supported via content

negotiation with the client

 Media type selection MUST be signalled with the Accept header.

 Documents (individual resources) MUST have a unique identifier

field called ID.

 All documentation SHOULD link to a schema (JSON schema or

W3C XML Schema)

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 18 of 55

 Additional envelopes must not be created. A REST API must

leverage the message “envelope” provided by HTTP.

Common Information Model

When applicable, the data types used to define the information model in
API parameters SHOULD follow the SID Information Framework reference
model from TM Forum.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 19 of 55

4. Query Resources Patterns

The following section describe the structure and constraints of query
operations.

All examples are relative to the management of Report entities having the
following JSON representation.

{
 “id”: « 42 »,
 “href”: “/api/report/42”,

 "datetime": "2012-12-20 15:00:00",
 "health_state": "operational",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
],
 "failures": [
 {
 "failure_id": "0bec4420-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "24b2bc00-4b01-11e2-bcfd-0800200c9a66"
 },
 {
 "failure_id": "3b687c50-4b01-11e2-bcfd-0800200c9a66",

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 20 of 55

 "detail": "Network authentication failure",
 "source_id": "462f1f40-4b01-11e2-bcfd-0800200c9a66"
 }
]

}

Query single Resource all attributes

GET {apiRoot} /{resourceName}/{resourceID} MUST be used to retrieve
the representation of a resource named resourceID.

If the resource exist the complete resource representation (with all the
attributes) must be returned.

The returned representation must contain a field called « id» and that field
be populated with the resourceID.

If the request is successful then the returned code MUST be 200.

The exceptions code must use the exception codes from
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
as explained in section 4.3.

 Retrieving a Single Report with an ID of 42:

REQUEST

GET /api/report/42

RESPONSE

200

Content-Type: application/json

{
 “id”: « 42 »,
 “href”: “/api/report/42”,

 "datetime": "2012-12-20 15:00:00",
 "health_state": "operational",
 "metrics": [
 {

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 21 of 55

 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
],
 "failures": [
 {
 "failure_id": "0bec4420-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "24b2bc00-4b01-11e2-bcfd-0800200c9a66"
 },
 {
 "failure_id": "3b687c50-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "462f1f40-4b01-11e2-bcfd-0800200c9a66"
 }
]
}

Querying multiple Resources

The following section describe how to use the GET operation to retrieve
multiple resources without specifying id’s.

GET {apiRoot} /{resourceName} must be used to retrieve the
representation of all the resource for a resource type corresponding to
/{resourceName}

The complete resource representations (with all the attributes) of all the
matching entities must be returned.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 22 of 55

The returned representation of each entity must contain a field called « id»
and that field be populated with the resourceID.

If the request is successful then the returned code MUST be 200.

The exceptions code must use the exception codes from
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
as explained in section 4.3.

The Content-Range header is used to indicate the presence of more
elements in the collection and the current position of the elements in the
overall collection.

Example :

Retrieving all reports.

REQUEST

GET /api/report

RESPONSE

200

Content-Type: application/json
Content-Range: items 1-2/2

[{
 “id”: « 42 »,
 “href”: “/api/report/42”,

 "datetime": "2012-12-20 15:00:00",
 "health_state": "operational",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 23 of 55

 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
],
 "failures": [
 {
 "failure_id": "0bec4420-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "24b2bc00-4b01-11e2-bcfd-0800200c9a66"
 },
 {
 "failure_id": "3b687c50-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "462f1f40-4b01-11e2-bcfd-0800200c9a66"
 }
]
},
{
 “id”: « 52 « ,
 “href”: “/api/report/52”,

 "datetime": "2012-12-20 15:00:00",
 "health_state": "operational",
 "metrics": [
 {
 "code": "456",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 24 of 55

 }
],
 "failures": [
 {
 "failure_id": "0bec4420-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "24b2bc00-4b01-11e2-bcfd-0800200c9a66"
 },
 {
 "failure_id": "3b687c50-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "462f1f40-4b01-11e2-bcfd-0800200c9a66"
 }
]
}
]

Query partial Resource representation or
attribute selection

The following section describes how to select a subset of the attributes of
an entity to be present in a returned representation.

An attribute selector directive called “fields” MUST be used to specify the
attributes to be returned as part of a partial representation of a resource.

GET {apiRoot} /{resourceName}/{resourceID}/?fields={attributeName*}
MUST be used to retrieve the partial representation of a resource with the
attributes named resourceID*.

If the no attribute selector directive is provided then the complete resource
representation (with all the attributes) must be returned.

If there is a name clash between the attribute name and the name of a
resource directly under the parent then /:fields={attributeName*} should be
used.

The returned representation must contain a field called « id» and that field
be populated with the resourceID.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 25 of 55

If the request is successful then the returned code MUST be 200.

The exceptions code must use the exception codes from
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
as explained in section 4.3.

Example:

Retrieve the report with an « id » of 5 and populate the representations with the
failures and metrics attributes. Note that the « id » attribute is always present.

REQUEST

GET /api/report/5/?fields=failures,metrics

RESPONSE

200

Content-Type: application/json

{
 “id”: 5,
 “href”: “/api/report/5”,
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
],

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 26 of 55

 "failures": [
 {
 "failure_id": "0bec4420-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "24b2bc00-4b01-11e2-bcfd-0800200c9a66"
 },
 {
 "failure_id": "3b687c50-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "462f1f40-4b01-11e2-bcfd-0800200c9a66"
 }
]
}

Query Resources with attribute filtering

The following section describe how to retrieve resources using an attribute
filtering mechanism. The filtering is based on using name value query parameters
on entity attributes.

The basic expression is a sequence of attribute assertions being ANDED to
formulate a filtering expression :

GET {apiRoot} /{resourceName}?[{attributeName}={attributeValue}&*]

Note that the above expressions match only for attribute value equality.

Attribute values ORING is supported and is achieved by providing a
filtering expression where the same attribute name is duplicated a number
of times [{attributeName}={attributeValue}&*] different values.

Alternatively the following expression [{attributeName}={attributeValue},{
attributeValue }*] is also supported. ORING can also be explicit by using “ ;
“ many time [{attributeName}{attributeValue};*]

For example :=

 GET /report?state=active&state=suspended
 GET /report?state=active;state=suspended
 GET /report?state=active,suspended

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 27 of 55

More complex filtering expressions involving non-equality operators are
also supported and described in the “Advanced Patterns” document.

 The following operators may be used :

.exact = Description to be provided

.gt >

.gte >=

.lt <

.lte <=

.regex *=

 Complex attribute value type may be filtered using a “.” notation.

 [{attributeName.attributeName}={attributeValue}&*]

The complete resource representations (with all the attributes) of all the
matching entities must be returned.

The returned representation of each entity must contain a field called « id»
and that field be populated with the resourceID.

If the request is successful then the returned code MUST be 200.

The exceptions code must use the exception codes from
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
as explained in section 4.3.

The Content-Range header is used to indicate the presence of more

http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 28 of 55

elements in the collection and the current position of the elements in the
overall collection.

Example:

Retrieve all Reports with date_time greater than 2013-04-20 and
health_state operational.

REQUEST

GET /api/report?date_time.gt=2013-04-20&health_state =operational or
GET /api/report?date_time>2013-04-20&health_state = operational

RESPONSE

200

Content-Type: application/json
Content-Range: items 1-2/2

[{
 “id”: « 42 »,
 “href”: “/api/report/42”,

 "datetime": "2012-12-20 15:00:00",
 "health_state": "operational",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
],

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 29 of 55

 "failures": [
 {
 "failure_id": "0bec4420-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "24b2bc00-4b01-11e2-bcfd-0800200c9a66"
 },
 {
 "failure_id": "3b687c50-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "462f1f40-4b01-11e2-bcfd-0800200c9a66"
 }
]
},
{
 “id”: « 52 « ,
 “href”: “/api/report/52”,

 "datetime": "2012-12-20 15:00:00",
 "health_state": "operational",
 "metrics": [
 {
 "code": "456",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
],
 "failures": [
 {
 "failure_id": "0bec4420-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "24b2bc00-4b01-11e2-bcfd-0800200c9a66"
 },

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 30 of 55

 {
 "failure_id": "3b687c50-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "462f1f40-4b01-11e2-bcfd-0800200c9a66"
 }
]
}
]

Query Resources with attribute filtering
and Iterators

Some operations may return a very large amount of data. The content Range
header MUST be used to control the amount of data returned. This header is
present in the request and control the minimum and maximum values returned.

Filtered queries returns collections and the content range header is relative to the
entities in the returned collection.

The following example shows how to use the Range header to iterate a collection
of reports. The example assume that 50 reports match a filtering criteria and that
the maximum amount of reports being retrieved by calls is set by default to 10.

Example:

REQUEST

GET /api/report?date_time.gt=2013-04-20&state.execution=suspended

RESPONSE

200

Content-Type: application/json
Content-Range: items 1-10/50

[{
 “id”: « 42 »,
…

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 31 of 55

},
{
 “id”: « 43 « ,
 …
}
…
{
 “id”: « 62 « ,
 …
}

]

Retrieving the next elements:

REQUEST

GET /api/report?date_time.gt=2013-04-20&state.execution=suspended
 Range:: items=11-20

RESPONSE

200

Content-Type: application/json
Content-Range: items 11-20/50

[{
 “id”: « 72 »,
…
},
{
 “id”: « 73 « ,
 …
}
…
{
 “id”: « 82 « ,
 …
}

]

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 32 of 55

Query Resources with attribute filtering
and attribute selection

Attribute filtering and attribute selection may be combined in a single request as
per the following example:

REQUEST

GET /api/report/fields=failures,health_state&report.date_time.gt=2013-04-
20&report.state.execution=suspended

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 33 of 55

5. Modify resources patterns

The following section describe the patterns used to modify resources.

Uniform contract operations for modifying
resources

TMF REST API’s MUST only uses PUT and PATCH to modify the attributes of an
entity.

The TMF REST Design Guideline is strict about the usage of PUT versus
PATCH.

 PUT should be used when the semantic of the operation is replace all.

 PUT MUST NOT be used for the partial updates of attributes.

 PATCH MUST be used if a partial update is required.

Replace all attributes of a resource

A PUT replaces the current object with the provided object.

If the intent is to update a limited subset of properties of the resource then
PATCH MUST be used update an object.

One approach to using PUT to facilitate a partial “replace” functionality is to first
GET the object, modify it in memory, then to PUT the modified object back.

Example:

Change the health_state of the report with ID= 42 to non operational.

REQUEST

PUT /api/report/42
{
 “id”: “42”,
 "datetime": "2012-12-20 15:00:00",
 "health_state": "nonop",
 "metrics": [
 {
 "code": "123",

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 34 of 55

 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
}

RESPONSE

200

Content-Type: application/json

{
 “id”: “42”,

 “href”:=”/api/report/42”,

 "datetime": "2012-12-20 15:00:00",
 "health_state": "nonop",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 35 of 55

 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
}

Note that using PUT with only the "health_state": " nonop " attribute subset
 will result in all other attributes being set to null or to empty.

REQUEST

PUT /api/report/42
{

"health_state": " nonop "
}

RESPONSE

200

Content-Type: application/json

{
 “id”: 42
 "datetime": null,
 "health_state": "nonop",
 "metrics": [],
 "failures": []
}

Modify Attribute subset of a resource

PATCH MUST be used to update a limited subset of the attributes of an entity as
described in http://tools.ietf.org/html/rfc5789

Example:

Change the health_state of the report with ID= 42 to non operational.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 36 of 55

REQUEST

PATCH /api/report/5
Content-Type: Application/json

{
 “health_state”: “nonop”
}

RESPONSE

200

Content-Type: Application/json

{
 “id”: 5,

 “href”:=”/api/report/5”,
 "datetime": "2012-12-20 15:00:00",
 "health_state": "nonop",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
],
 "failures": [
 {
 "failure_id": "0bec4420-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "24b2bc00-4b01-11e2-bcfd-0800200c9a66"
 },

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 37 of 55

 {
 "failure_id": "3b687c50-4b01-11e2-bcfd-0800200c9a66",
 "detail": "Network authentication failure",
 "source_id": "462f1f40-4b01-11e2-bcfd-0800200c9a66"
 }
]
}

Modify Multi-Valued Attribute

The modification of list based attributes can be performed using :

 PATCH per http://tools.ietf.org/html/rfc5789

 JSON PATCH as per http://tools.ietf.org/html/rfc5789

When PATCH is used with Content-Type: application/json the semantic of the
operation is the replacement of the whole list with the supplied list.

When JSON PATCH is used the Content-Type must be set to Content-Type:
application/json-patch+json and the directives for changing, adding, removing array
elements follow the directives stated in the JSON PATCH specification.

The HTTP PATCH method is atomic, as per [RFC5789]

The response message MUST contain the representation of the modified resource.

Example : Add a related party entry to the relatedParty array of an individual
resource.

REQUEST

PATCH partyManagement/individual/11

Content-type: application/json-patch+json

{

http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/rfc5789

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 38 of 55

 {
 "op": "add",
 "path": "/relatedParty",
 "value":
 {
 "role": "Employee",
 "href": "http://serverlocation:port/partyManagement/organizati
on/1",
 "validFor": {
 "startDateTime": "2013-04-19T16:42:23-04:00",
 "endDateTime": ""
 },
 "status": "Active"
 }
 }

}

RESPONSE

201
Content-Type: application/json

{ JSON Resource Representation with ALL Attributes

}

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 39 of 55

6. Create Resource Patterns

The following section describe the patterns used to create resources.
Batch resource creation is addressed in the Advanced Patterns document.

Creating a single Resource

POST must be used to create single resources.

Return message SHOULD contain a resource representation and a
Location header with the created resource’s URI.

Not all the attributes of the entity must be specified but all the attributes of
the created entity MUST be populated by default values (could be null).

A successful creation must return a 201 code.

Example:

Create a Report

REQUEST

POST /api/report
Content-Type: application/json

{
 “id”: 5,
 "datetime": "2012-12-20 15:00:00",
 "health_state": "nonop",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 40 of 55

 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
}

RESPONSE

200

Location: /api/report/5

Content-Type: application/json

{
 “id”: 5,
 "datetime": "2012-12-20 15:00:00",
 "health_state": "nonop",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
 {
 "code": "321",
 "category_id": "48",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "c50f3e90-4b00-11e2-bcfd-0800200c9a66"
 }
}

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 41 of 55

The resource created is identified by a service generated URI. Alternatively
an ID can be provided. The ID in the resource representation and the URI
are related.

Creating Multiple Resources

JSON PATCH MUST be used to create multiple resources. POST can’t be
used for that purpose.

The JSON PATCH operation is relative to the container collection for the
entity types to be created. Alternatively “/path” in the PATCH directive can
be use to scope a specific collection. Entities are added to the targeted
collection.

Return message SHOULD contain the resource representation of all the
resource created.

Not all the attributes of the entity must be specified but all the attributes of
the created entity MUST be populated by default values (could be null).

A successful PATCH must return a 200 code.

Note that the Internet media type for a JSON Patch document is
application/json-patch+json.

The HTTP PATCH method is atomic, as per [RFC5789] i.e all operations
MUST be successful otherwise the application of the full PATCH is
unsuccessful.

Example:

Create a multiple Reports

REQUEST

PATCH /api/report
 Content-type: application/json-patch+json

http://tools.ietf.org/html/rfc5789

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 42 of 55

 {
 {
 "op": "add",
 "path": "/",
 "value":
 {
 “id”: 5,
 "datetime": "2012-12-20 15:00:00",
 "health_state": "nonop",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 }
 } ,

 {
 "op": "add",
 "path": "/",
 "value":
 {
 “id”: 6,
 "datetime": "2012-12-20 15:00:00",
 "health_state": "nonop",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },

 }
 }

RESPONSE

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 43 of 55

201

Content-Type: application/json

{
 “id”: 5,
 "datetime": "2012-12-20 15:00:00",
 "health_state": "nonop",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 },
{
 “id”: 6,
 "datetime": "2012-12-20 15:00:00",
 "health_state": "nonop",
 "metrics": [
 {
 "code": "123",
 "category_id": "45",
 "date_time": "2012-12-20 14:30:00",
 "reference": "4321",
 "source_id": "8f27ce50-4b00-11e2-bcfd-0800200c9a66",
 "value": 50,
 "metric_id": "b0dbbc50-4b00-11e2-bcfd-0800200c9a66"
 }

}

The resources created are identified by a service generated URI.
Alternatively an ID can be provided. The ID in the resource representation
and the URI are related.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 44 of 55

7. Task Resource Pattern

This section describe the use of Task resources to expose complex operations
not easily or not decomposable to CRUD Entity based operations.

Modeling Complex operations with task
resources

If proper REST design is limited during translation from action-based operational
interfaces to REST interfaces it is allowable to define a resource for the
operation and POST to that operation to execute.

A TASK resource name is a verb representing the task to be executed. TASK
creation may result in the creation of a number of related resources or other
tasks.

Example:

Given is the step-by-step process of establishing a call via MTNM, but this can be
abbreviated as one POST to a call TASK with all of the related information for
connections included.

Create a call

REQUEST

POST /call

{ // <callSNC::CallCreateData_T>
 "name": {}, // <globaldefs::NamingAttributes_T> callName
 "user_label": "...", // <string> userLabel
 "owner": "...", // <string> owner
 "network_access_domain": "...", // <string> networkAccessDomain
 "aEnd": { // <CallEndT> aEnd
 "tna": "...", // <mLSNPP::TNAName_T> tNANameOrGroupTNAName
 "snpp": "...", // <string> sNPPid
 "snp": "...", // <string> sNPid
 "tp": {} // <globaldefs::NamingAttributes_T> tpName
 },
 "zEnd": {}, // <CallEndT> zEnd
 "parameters": { // <CallParameterProfile_T> callParameters

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 45 of 55

 "severely_degraded_threshold": "...", // <string> severelyDegradedThreshold
 "degraded_threshold": "...", // <string> degradedTreshold
 "class_of_service": "...", // <string> classOfService
 "class_of_service_parameters": {}, // <globaldefs::NVSList_T>
classOfServiceParameters
 },
 "diversity": { // <Diversity_T> callDiversity
 "corouting_level_of_effort": "...", // <LevelOfEffort_T> coroutingLevelOfEffort
 "node_diversity_level_of_effort": "...", // <LevelOfEffort_T>
nodeDiversityLevelOfEffort
 "link_diversity_level_of_effort": "...", // <LevelOfEffort_T>
linkDiversityLevelOfEffort
 "node_srg_type": "...", // <string> nodeSRGType
 "link_srg_type": "..." // <string> linkSRGType
 },
 "additional": {} // <globaldefs::NVSList_T> additionalCreationInfo
}

RESPONSE

201

Location: /call/e21cc459-0f4d-49c3-bc12-36c418c71c5f

{ // <CallT> with additional properties from <callSNC::CallCreateData_T> when
available
 "id": "e21cc459-0f4d-49c3-bc12-36c418c71c5f", // <string> callId
 "state": "...", // <CallState_T> callState
 "native_name": "...", // <string> nativeEMSName
 "diversity_synthesis": "...", // <string> diversitySynthesis
 "user_label": "...", // <string> userLabel
 "owner": "...", // <string> owner
 "network_access_domain": "...", // <string> networkAccessDomain
}

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 46 of 55

8. Notification Patterns

The following section describe the publish subscribe pattern supported by REST
based APIs supporting eventing.

Register Listener

The registration of a listener is done by creating a HUB resource unique to the
listener (equivalent of a subscription). The HUB resource is attached or bound to
the API and its attribute specify the POST event callback address of the listener.

The hub is created via a POST api/hub call.

The POST call sets the communication endpoint address the service instance
must use to deliver notifications (by default on all supported events). Note that a
query expression may be supplied. The query expression may be used to filter
specific event types and/or any content of the event. The query expression
structure used for notification filtering is the same than the one used for queries
i.e GET.

subs
criber

api/hub

Hub
Resource

<create>

subs
criber

api/hub

Hub
Resource

<notify>

POST api/hub

POST /listener

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 47 of 55

Subsequent POST calls may be rejected by the service if it does not support
multiple listeners. In this case DELETE /api/hub/{id} must be called before the
endpoint can be created again.

Returns HTTP/1.1 status code 204 if the request was successful.

Returns HTTP/1.1 status code 409 if request is not successful.

Example: Create a Hub to receive events on the “http://in.listener.com"

REQUEST

POST /api/hub
Accept: application/json

{"callback": "http://in.listener.com"}

RESPONSE

201
Content-Type: application/json
Location: /api/hub/42

{"id":"42","callback":"http://in.listener.com","query":null}

Unregister Listener

To unregister a listener the HUB resource corresponding to the listener must be
destroyed.

DELETE hub/{id}

This clears the communication endpoint address that was set by creating the
Hub.

Returns HTTP/1.1 status code 204 if the request was successful.

Returns HTTP/1.1 status code 404 if the resource is not found.

REQUEST

DELETE /api/hub/{id}
Accept: application/json

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 48 of 55

RESPONSE

204

Publishing Events

Publishing an event is done by posting the event to the listener address.

The structure of the event is:

{

 "event": {

 EVENT BODY

 },

 "eventType": "eventType"

}

Returns HTTP/1.1 status code 201

For example posting a ManagementReport event:

REQUEST

POST /client/listener
Accept: application/json

{

 "event": {

 "dateTime": null,

 "id": "42",

 "state": {

 "healthState": "UNKNOWN",

 "executionState": "ACTIVE"

 },

 "metrics": {"item": [

 {

 "code": "76e27e2b-644e-11e2-8ea1-5c260a86d1e4",

 "categoryID": null,

 "dateTime": 1367266835571,

 "reference": null,

 "sourceID": null,

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 49 of 55

 "value": "20",

 "metricID": null

 },

 {

 "code": "7987c7bc-644e-11e2-8ea1-5c260a86d1e4",

 "categoryID": null,

 "dateTime": 1367266835573,

 "reference": null,

 "sourceID": null,

 "value": "60000",

 "metricID": null

 },

 {

 "code": "7c7d6e22-644e-11e2-8ea1-5c260a86d1e4",

 "categoryID": null,

 "dateTime": 1367266835573,

 "reference": null,

 "sourceID": null,

 "value": "12",

 "metricID": null

 },

 {

 "code": "7c98ea37-644e-11e2-8ea1-5c260a86d1e4",

 "categoryID": null,

 "dateTime": 1367266835573,

 "reference": null,

 "sourceID": null,

 "value": "70000",

 "metricID": null

 },

 {

 "code": "7dd589b2-644e-11e2-8ea1-5c260a86d1e4",

 "categoryID": null,

 "dateTime": 1367266835573,

 "reference": null,

 "sourceID": null,

 "value": "89",

 "metricID": null

 }

]},

 "failures": null

 },

 "eventType": "ManagementReport"

}

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 50 of 55

9. Versioning

API Versioning

REST APIs MUST state version with “v” following the API Name, e.g.:
APIName/v1/resource.

The schema associated with a REST API must have its version number aligned with
that of the REST API.

For minor modifications of the API, version numbering must not be updated, provided
the following backward compatibility rules are respected:

 New elements in a data type must be optional (minOccurs=0)

 Changes in the cardinality of an attribute in a data type must be from
mandatory to  optional or from lower to greater

 New attributes defined in an element must be optional (absence of
use=”required”).

 If new enumerated values are included, the former ones and its meaning
must be kept.

 If new operations are added, the existing operations must be kept

 New parameters added to existing operations must be optional and
existing parameters must be kept

For major modifications of the API, not backward compatible and forcing client
implementations to be changed, the version number must be updated.

The format for the API version number is defined as :

{serverRoot}/{apiName}/{apiVersion} 

where

{apiName} is the name of the API  {apiVersion} is the version of the

API (e.g. v1)  {serverRoot} is implementation specific (e.g.:
https://api.service.company.com)

https://api.service.company.com/

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 51 of 55

The versioning is applied uniformly to all the entities under a versioned
API. That is it is assumed that entities under the management scope of the
API are all aligned with the same version of the SID for example.

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 52 of 55

10. Appendix A: Terms and Abbreviations Used within this

Document

 Terminology

Term Definition TMF or Outside Source

<<BA Specific Term 1>> <<Definition 1>> <<Source>>

<<BA Specific Term n>> <<Definition n>> <<Source>>

 Abbreviations and Acronyms

Abbreviation/
Acronym

Abbreviation/
Acronym Spelled

Out

Definition TMF or External
Source

<<Abbreviation/
Acronym 1>>

<<Expansion of
abbreviation/acrony
m 1>>

<<Definition 1>> <<Source>>

<<Abbreviation/
Acronym n>>

<<Expansion of
abbreviation/acrony
m n>>

<<Definition n>> <<Source>>

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 53 of 55

11. References

References

Reference Description Source Brief Use Summary

Project
Charter

<<PROJECT name>>
Project Charter

 <<summary>>

Link To
Models

<< Hyperlinks to or
location of associated
models>>

 <<summary>>

<<Reference
1>>

<<Type, Title, Number,
Revision, Date>>

 <<summary>>

<<Reference
n>>

<< Type, Title, Number,
Revision, Date>>

 <<summary>>

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 54 of 55

12. Administrative Appendix

This Appendix provides additional background material about the TM Forum and this
document. In general, sections may be included or omitted as desired, however a
Document History must always be included.

Document History

12.0.1. Version History

<This section records the changes between this and the previous document
version as it is edited by the team concerned. Note: this is an incremental number
which does not have to match the release number and used for change control
purposes only>

Version Number Date Modified Modified by: Description of
changes

0.1 23/06/2013 Pierre Gauthier
TM Forum

Description e.g.
first issue of
document

0.2 July 2013 Tina O'Sullivan Updated branding

0.3 8 Oct, 2013 Pierre Gauthier Further updates

1.0 9 October 2013 Tina O'Sullivan Minor corrections

1.1.0 November 2014 Pierre Gauthier Updates for Fx14.5

1.1.1 March 2015 Alicja Kawecki Updated cover,
footer and Notice
to reflect TM
Forum Approved
status

12.0.2. Release History

< This section records the changes between this and the previous Official
document release. The release number is the ‘Marketing’ number which this
version of the document is first being assigned to >

Release Number Date Modified Modified by: Description of
changes

1.0 DD/MMM/YY <<name>> first release of
document

REST API Design Guidelines Part 1

 © TM Forum 2015. All Rights Reserved. Page 55 of 55

 Company Contact Details

Company Team Member
Representative

Include all involved
companies adding lines as
necessary.

Name
Title
Email
Phone
Fax

 Name
Title
Email
Phone
Fax

 Acknowledgments

This document was prepared by the members of the TM Forum <<team name>>
team:

o Pierre Gauthier, TM Forum, Editor and Team Leader

o John Morey Ciena

o Maxime Delon Orange

Additional input was provided by the following people:

o John Wilmes, TM Forum

