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ABSTRACT

The GrooveToolbox is a new Python toolbox implementing
various algorithms, new and pre-existing, for the analysis
and comparison of symbolic drum loops, including rhythm
features, similarity metrics and microtiming features. As
part of the GrooveToolbox we introduce two new metrics
of rhythm similarity and four features for describing the
significant properties of microtiming deviations in drum
loops. Based on a two-part perceptual evaluation, we show
these four new microtiming features can each correlate to
similarity perception, and be used with rhythm similarity
metrics to improve personalized similarity models for
drum loops. A new measure of structural rhythmic
similarity is also shown to correlate more strongly to
similarity perception of drum loops than the more com-
monly used Hamming distance. These results point to
the potential application of the GrooveToolbox and its
new features in drum loop analysis for intelligent music
production tools. The GrooveToolbox may be found at:
https://github.com/fredbru/GrooveToolbox

1. INTRODUCTION

Growing attention has been drawn to the applications of
Music Information Retrieval (MIR) within the realm of
music creation to improve upon conventional workflows
and enhance creativity [13]. Due to their popularity in con-
temporary music, research into the analysis of drum loops
is a field with strong potential to provide genuine value in
real-world music production applications.

The problem of similarity modelling is a key element
of this research. The ability to compare drum loops ac-
cording to perceptually relevant qualities is an essential en-
abling factor in many plausible systems, such as drum loop
recommendation systems, automatic drum loop generation

systems and interfaces for navigating drum loop libraries.
For the purposes of this paper, one example use case

for drum loop similarity modelling is to enable intelligent
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drum loop searching tools within BFD3, a virtual drum kit
plugin [8]. BFD3 generates realistic drum sounds based on
audio renderings of expressive and unquantized symbolic
sequences recorded by real drummers on an electronic
drum kit. Including third-party expansions, over 7000 of
these symbolic loops are available, providing rich poten-
tial for intelligent navigation or recommendation tools.

In Section 2, we give an overview of work related to in-
telligent drum production tools (IDPTs) and discuss possi-
ble improvements to their methods of drum loop analysis.
In Section 3 we introduce the Grooveloolbox, a Python
toolbox primarily aimed towards use in drum loop analy-
sis research. It contains implementations of many existing
rhythm features and similarity measures for the analysis
and comparison of symbolic drum loops with fixed tempo
and metre. New algorithms are also provided: models of
rhythmic structural similarity, and models of microtiming
accounting for timing styles and mixtures of metrical sub-
divisions. This section gives an overview of the algorithms
implemented in the GrooveToolbox.

In Section 4, we investigate the effectiveness of the al-
gorithms contained within the GrooveToolbox via applica-
tion to modelling similarity for drum loops. We test the ef-
fectiveness of our new polyphonic rhythm similarity mea-
sures against the commonly used Hamming distance, and
test to what extent high-level rhythm feature-based simi-
larity models can be improved with low-level rhythm sim-
ilarity metrics and microtiming features to build individu-
alized predictive models that could be used in user-aware
IDPTs. In Section 5 we summarize conclusions of this
work, and detail further work required on the GrooveTool-
box itself and in drum loop analysis generally.

2. BACKGROUND
2.1 Intelligent tools for drum loop production

The primary application of the GrooveToolbox is towards
research into IDPTs. Much of this centres on the sym-
bolic level rather than audio, and it largely centres on two
applications: automatic generation of drum loops, and in-
telligent interfaces for exploring libraries of drum loops.
In general the goals of automatic drum loop genera-
tion in a music production context can be both to speed
up the production process and help stimulate new ideas in
the producer [17]. Much of the work in this area aims to
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generate variations on existing patterns to help producers
create evolving drum parts. Genetic algorithms have been
applied to achieve this, with the target vector derived from
similarity metrics like the Hamming distance [21] or a fea-
ture set [16]. Also using genetic algorithms, [15] presents
a system that interpolates between two existing drum pat-
terns via a feature space. Variational autoencoders have
also been used, generating loop variations that adapt to fit
structural changes in an existing song [32] or to fit within a
musical trio alongside melody and bass instruments [23].
A second area is in intelligent interfaces for exploring
drum loop libraries. The design of intelligent user inter-
faces for improved music collection exploration is a well
researched area with many successful applications [18].
Similarly, the mapping of drum loops on a 2D space via
a similarity measure or dimensionality reduction of a fea-
ture space has potential to enable improved navigation of
a large library. In [3], the authors map a large library of
drum loops via the Self-Organizing Map, using a modified
version of the Hamming distance as the similarity mea-
sure. In [11], the authors present a continuous, genera-
tive 2D space for drum patterns based on applying Multi-
dimensional Scaling (MDS) to a set of rhythm features.

2.2 Improving drum loop analysis

In the IDPTs described above, symbolic drum loops are an-
alyzed using rhythm features, such as density and syncopa-
tion, or thythmic similarity measures such as the Hamming
distance [30]. These may not capture all the important
characteristics of complex loops. Two possible areas of
improvement, informed by recent musicological research,
are in the analysis of microtiming and rhythmic structure.

2.2.1 Microtiming

Microtiming can be defined as sub-rhythmic quasi-random
or systematic timing deviations from a metrical grid in hu-
man performance. Representations of rhythms that are fit
to a metrical grid are a requirement for many rhythm simi-
larity measures, such as the Hamming distance, or features
relying on metrical profiles like syncopation [20]. How-
ever, fitting rhythms to a grid removes microtiming infor-
mation, which can be musically significant.

The timing ‘feel’ or ‘groove’ of a performance may be
an important perceptual factor of drum loops; it has been
shown that drummers can control the ‘pushed’ or ’laid-
back’ feel of their performance [5]. In [25], timing strate-
gies in drumming for ‘laid-back’, ‘ontop’ and ‘pushed’
styles are measured for a group of drummers based on
the typical back-beat rhythmic structure. It was found that
their strategies can be formalized as specific timing inter-
actions occurring on downbeat metrical positions. These
are between the kick or snare and the hi-hat, or the met-
rical grid (or metronome) when there is no hi-hat present.
The reference to hi-hat as well as grid was based on the un-
derstanding that when present the hi-hat usually acts as the
time-keeper of the pattern. Detecting these timing inter-
actions may be important for analysing groove in human-
performed (or human-imitating) drum loops.
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Secondly, gridded representations of rhythms do not ac-
count for swung rhythms, or loops where multiple subdivi-
sions of a beat occur. Calculating a pattern-based rhythm
similarity metric may still be desirable in these cases how-
ever. For example, a swung and unswung version of the
same rhythm will be somewhat similar. Or, a loop in 4/4
time may have one instance of a triplet rhythm, in a fill for
example. By incorporating a measure of deviation outside
of a grid, we can manage these cases, whilst keeping the
metrical reference required by other rhythm features.

2.2.2 Rhythmic Structure

The Hamming distance for rhythm similarity works by
stepping through each metrical position in two rhythms,
and counting the distance (difference) as the number of in-
stances where rhythms contain different values (one a rest
and the other an onset) in the same positions. Hence, in
Figure 1, the Hamming distance would be 3. This measure
is adapted to variable dynamics by using the difference in
intensity or velocity as a weighting factor.

Though possibly the most popular rhythm similarity
metric, the Hamming distance’s stepwise nature fails to
pick up regional rhythmic similarities. Onsets in similar
but non-identical positions do not register as similar in the
Hamming distance, even though perceptually they may be.

A measure of structural similarity may pick this up but
requires the derivation of a structural representation. The
recent rhythmic transformation model of [26] provides a
means of doing so. In [26], an algorithm is described for
characterizing rhythms as combinations of three types of
ornamentation: syncopation, pickup (anacrusis) and den-
sity. Each of these is classified in terms of its position
within a metrical profile and surrounding onsets. Syncopa-
tions are onsets placed in weak metrical positions, not fol-
lowed immediately by an onset in a stronger position. Den-
sity ornamentations are placed in weak positions between
two events in stronger positions. Pickups are placed in
weak positions but followed immediately by an onset on a
stronger position. Any rhythm can be defined as an ordered
combination of these ornamentations against metrical pro-
file, and any rhythm can be decomposed to a ‘metronome’
- an onset on each downbeat - in the same manner by re-
versing (removing) these ornamentations. This decompo-
sition process can be used to simplify rhythms in a musi-
cologically sound manner, where the simplified rhythmic
representation is analogous to a structure.

3. GROOVETOOLBOX

GrooveToolbox is a Python toolbox for analysing and com-
paring rhythmic and microtiming qualities of drum loops
in various formats. The toolbox contains functions for a
variety of pre-existing features and new ones that account
for rhythmic structure and microtiming. They fall within
three groups: rhythm features, microtiming features and
similarity measures. As the toolbox is designed to work
with loops of fixed tempo, it does not contain features for
tempo tracking or conventional metre detection. Nor does
it provide timbral analysis as it works on a symbolic level.
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Figure 1. Measuring similarity of two short rhythms.
Hamming distance = 3. With 16" note steps at 120BPM
fuzzy Hamming distance = 2.26

o | |

+1

o] |

Two Python toolboxes in the public domain relate to
the GrooveToolbox. The Rhythm Toolbox [10] presented
as part of [9] provides a starting point for drum loop analy-
sis, with functions for two different types of syncopation
features plus density features. However the feature set
is limited, and it only supports MIDI files. The Groove-
Toolbox adds many algorithms to this set. It also supports
BFD3 [8] format Groove files as an alternative to MIDI,
MIREX format [1] and audio files through the integrated
ADTLib drum transcription library [29].

The SynPy toolbox [28] also provides related function-
ality, consisting of implementations of seven syncopation
models. While useful, the toolkit is designed for use on
monophonic rhythms, and as such do not immediately ap-
ply to drum loops. In the GrooveToolbox, we implement
one syncopation model [20] also found in SynPy, and add
another designed specifically for drum patterns [34].

The algorithms implemented in the GrooveToolbox
are collected from a range of research, with the aim of
enabling comprehensive modelling of the perceptual qual-
ities of drum loops. For re-implemented algorithms, we
chose those which were experimentally verified as percep-
tually relevant and ensured they could account for variable
onset velocities. The algorithms currently provided in
the GrooveToolbox are listed in Table 1. In this section,
we will describe the two new similarity models and
four microtiming features. More details may be found at:

https://github.com/fredbru/GrooveToolbox.

3.1 New Rhythm Similarity Models
3.1.1 Fuzzy Hamming distance

The fuzzy Hamming distance extends the Hamming dis-
tance by incorporating one metrical step of displacement
along with the microtiming deviations of each onset.
Where there is an onset in one rhythm but not the other,
the algorithm looks ahead one step to look for a nearby on-
set. An instance of this is shown in Figure 1. If there is
a nearby onset, the distance is reduced depending on how
close that onset is. The microtiming deviations are also
considered when two onsets occur at the same metrical po-
sition. In each case the timing difference between the two
nearby onsets is incorporated in the similarity calculation.
If present, the difference in onset velocity may also be used
as a weighting factor as with the Hamming distance.

For the example of Figure 1, the value 1 in position 3 is
the same as for the Hamming distance. The final two po-
sitions add 1 each to the Hamming distance, but the fuzzy
Hamming counts the first of these as the timing difference
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between the two onsets, divided by the time of two metri-
cal steps. At 120BPM, one 16" note lasts 125ms, so the
similarity at this position = (125 — 20 — 40)/250 = 0.26.

With this proximity accounted for, the final position is
calculated as usual, adding 1 to the distance. The overall
distance is therefore 2.26 - close to the Hamming distance
(3) but scored as more similar due to the proximity of the
last two onsets. In a different case where the microtim-
ing deviations in the two nearby onsets were removed, the
fuzzy Hamming distance would be 2.50, higher to reflect
the increased distance between the two onsets.

By accounting for possible similarity between nearby
onsets, this method reduces the Hamming distance’s lim-
itation in detecting regional similarities. It also accounts
for rhythms with microtiming deviations, such as swung
rhythms, by not discarding them. Accounting for micro-
timing differences between onsets in the same position
may also capture the overall difference in microtiming feel.

3.1.2 Structural Similarity

The structural similarity metric measures the similarity of
a structural representation of two loops, derived follow-
ing [26]’s transformation model (see Section 2.2.2). First,
we remove any ‘ghost notes’, below a loudness threshold.
Ornamentations are then found and reversed (removed) un-
til any onsets only occur on downbeats. This results in
representations of rhythmic structure at the downbeat level
upon which the Hamming distance can be calculated.

3.2 Microtiming features

To develop features that describe the perceptual properties
of microtiming deviations in drum loops, the first stage is
to represent them in a form from which features can be ex-
tracted. In the context of drum pattern analysis, a sparse
matrix format has been used by [12] to express microtim-
ing. Here a matrix shows the timing deviation from the
grid in milliseconds, positive (behind the beat) or negative
(in front of the beat), for each onset. Figure 2 shows this
for a simple 2 beat pattern. The features extracted from
this representation measure two types of microtiming ef-
fect: swing or metrical feel and performance styles.

1 2 3 4 5 6 7 8

K| s |- | -]|-1]-1]-1-:
s |-l - - -Tlat] -1 -
HH | -4 8| - |[-10] - |3

Figure 2. Matrix representation of timing deviations (ms)
from 16" note positions in a 2 beat 120BPM kick, snare
and hihat pattern (Laid-back event highlighted).

3.2.1 Swing and metrical feel

Using a sparse matrix representation of microtiming devi-
ations alongside a rhythmic representation, swing can be
detected along with the presence of triplets in a quadruple-
time pattern. Swung onsets are detected as significantly
delayed second eighth-notes, approximating the typically
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Type Feature Name Description
Syncopation Monophonic Comparing onset pattern with hierarchical metrical profile [20]
Polyphonic Comparing interaction between instruments with metrical profile [34]
Weak-Strong Ratio Number of onsets not occurring on downbeats vs on downbeats [15]
Density Absolute Density Total onsets divided by number of possible onsets for any number of parts
Relative Density Density of one part divided by total density (cf. hiness feature [9])
Syncopation Density Syncopation divided by total number of onsets (cf. hisyness feature [9])
Complexity Rhythmic Complexity Quadratic mean of density and syncopation [27]
Periodicity Autocorrelation Skewness Skewness of autocorrelation curve [22]
Autocorrelation Max Amplitude | Maximum amplitude of autocorrelation curve [22]
Harmonicity Harmonicity of autocorrelation curve, (primarily pulse clarity) [19]
Symmetry Proportion of onsets at the same position in 1* and 2* half of pattern. [22]
Intensity Average Mean of all velocity values in pattern [15]
Standard Deviation Standard deviation of all velocity values in pattern [15]
Swing and Swing-ness Whether loop is swung, weighted by number of swung notes
metrical feel Triplet-ness Whether loop contains any triplets, weighted by number of triplet notes
Microtiming Laidback-ness Microtiming style as number of push/laid-back events
style Timing accuracy Mean of absolute timing deviation from grid of all onsets
Similarity Hamming distance Counting number of metrical positions where values (onset/rest) are different
measures Fuzzy Hamming distance Hamming with 1 step lookahead, distance weighted by microtiming
Structural similarity Similarity of patterns simplified using [26]’s transformation algorithm

Table 1. List of features and similarity measures currently implemented in the GrooveToolbox. New features are in bold.

1 5
Deviation 10‘ - ‘ - -45‘ 5 ‘40‘ - ‘-45‘

Figure 3. Matrix representation of timing deviations
(ms) for 16™ note metrical positions in a 2 beat 120BPM
rhythm. Red = swung events, green = triplet events.

understood 2:1 eighth-note swing ratio. Although musi-
cally these are considered as eighth notes, they fall into
sixteenth note positions when quantized, with significant
negative (ahead of the position) deviations. The ‘swing-
ness’ feature first records whether these timing deviations
occur or not, returning 0 for no swing or 1 for swing. This
is then weighted by the number of swung onsets to model
perceptual salience of the swing. The deviation thresh-
old for swing is calculated dependent on the tempo of the
rhythm. The ‘triplet-ness’ feature is calculated in the same
way, but also records the second note of a triplet as signif-
icantly delayed second eighth note. A triplet note detected
from a microtiming matrix is shown in green in Figure 3.

3.2.2 Microtiming style

Overall timing accuracy is calculated as the mean of all
absolute timing deviations per onset in a loop. For on-
sets classed as swung or triplets, the deviation is calculated
from the ‘ideal’ triplet or swung note position.

Following the timing interaction classification of [25] as
described in Section 2.2.1 the laidback-ness feature counts
the number of laid-back timing events subtracted from
pushed events, with a negative score meaning an overall
‘pushed’ loop and positive a ‘laid-back’ loop. Thus a pat-
tern’s feel is calculated based on the detection of specific
timing discrepancies above a perceptual threshold, known
to impart a given feel from drumming performance analy-
sis. We modified [25] by also counting for ride cymbal in
place of hihat due to their similar musical roles.

Based on analysis of timing accuracy in BFD3’s library,
we chose a threshold of 12ms as a one that would disregard
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performance noise. However, ideally this would be calcu-
lated per drummer as in [25]. An example ‘laid-back’ pat-
tern is shown in Figure 2. The highlighted event is ‘laid-
back’, as there is a discrepancy on the downbeat between
(in this case) snare and hihat that is above the threshold.
For this pattern, the timing accuracy value would be 8.5,
and laidback-ness 1.

4. EVALUATION

To evaluate our new algorithms and address open questions
in drum loop analysis, a two-part experiment was carried
out into modelling similarity for BFD3’s drum loops, using
perceptual data from humans collected via listening test.
Three research questions were addressed:
1. Should models of similarity for drum loops rely on
rhythm similarity metrics, feature sets or both?
One approach to modelling drum loop similarity is
to adapt rhythm similarity metrics [30] that mea-
sure distances between onset patterns, used for ex-
ample in [3,21,31]. An alternative is to model sim-
ilarity as a combination of higher-level rhythm fea-
tures [11, 16]. While the two are not usually com-
bined, both may be important as they emphasize dif-
ferent information.

2. Can the models of microtiming proposed be used in
modelling similarity of drum loops?
Existing IDPTs, described in Section 2.1, tend to as-
sume simpler quantized and unswung rhythms. To
apply this work to complex loops that are unquan-
tized or swung, or include multiple subdivisions of
the metre, models that can account for microtiming
deviations could be important.

3. How do the new rhythm similarity models compare
to the Hamming distance?
We investigate alternate ways of measuring rhythmic
similarity by testing the two new rhythm similarity
measures proposed against the Hamming distance.
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4.1 Data collection

The dataset consisted of similarity ratings for 80 pairs of
BFD3’s drum loops (160 total) as provided by 21 partici-
pants in a listening test, first collected in [4]. Loops were
generated through the same virtual kit, BFD3’s 70s Rock
kit, chosen due to its generic timbre. Loops were collated
equally from 8 genre groups: Blues/Country, Rock, Metal,
Jazz, Funk, Reggae/Latin, Pop and Dance/Hiphop. Tempo,
metre and loop length were fixed at 120bpm, 2 bars and 4/4
time. Some were swung, and a small number contained
triplet rhythms. The test was distributed online using the
Web Audio Evaluation Tool [14], with participants repre-
senting a range of musical and technical experience.

The listening test used a pairwise comparison method-
ology. Participants rated how similar two loops were on a
continuous scale with five equally spaced markers (Com-
pletely Different, Different, Slightly Different/Slightly Sim-
ilar, Similar, Identical). This was to maximize the number
of loops in the study, whilst keeping the test length rea-
sonable (30-40 minutes), ensuring multi-genre validity but
giving more fine similarity ratings than in the common tri-
adic comparison test design [2]. 5 training pairs were given
at the start of the test, and 10 pairs were repeated at the
start and end to test participants’ internal consistency. The
inter-rater reliability (IRR) calculated for all raters across
all comparisons using the intraclass correlation coefficient
(ICC) in (2,1) form, was 0.73, a moderate-to-good agree-
ment. This is expected, as it is known that musical similar-
ity perception is very individualized [33], with low IRR a
challenge in musical similarity studies [7]. The average in-
ternal consistency of all participants, calculated as the me-
dian ICC (2,1) between ratings for the 10 repeated pairs,
was 0.85, equal to good consistency.

4.2 Evaluation Design

Based on this perceptual data, our evaluation was formed
in two parts to address the three research questions. The
evaluation was designed with consideration of the individ-
ualized nature of similarity perception.

4.2.1 Overall perceptual relevance of new models

First we evaluated the new similarity and microtiming
models based on their correlation to listeners’ similarity
ratings. The extent to which the models relate to perceived
similarity was measured as the Pearson correlation be-
tween the feature score and median similarity rating of the
21 participants. The spread of ratings per pair was approx-
imately normally distributed (D’ Agostino-Pearson test p >
0.01) so the median across raters is used. While this in-
dicates if the features proposed relate to overall perceived
similarity, limited IRR means that more precise analysis of
the performance of these features against an average of rat-
ings may not be valid. The second part of the experiment
therefore uses individuals’ ratings instead.

4.2.2 Building Individualized Similarity Models

In this part, the third research question is addressed. This
experiment will find to what extent rhythm feature-based

models can be adapted for use in complex drum loops
when combined with microtiming features, and whether
a combination of rhythm similarity metric and feature set
can offer a better similarity model than either alone can.
The aim here is to build similarity models that are predic-
tive, investigating the utility of the models in practical use-
cases that may require precise, fine-grained models. Due
to low IRR, this requires we develop models for individu-
als’ ratings separately, echoing the concept of ‘user-aware’
MIR [24]. The models are tested against individual ratings
of 7 participants, chosen as those with highest internal con-
sistency (for repeated pairs median ICC = 0.92), and whose
ratings were normally distributed (D’ Agostino and Pear-
son test p > 0.01), meaning regression models were appli-
cable. Not all participants’ individual ratings fit a normal
distribution, and not all had high enough internal consis-
tency for precise prediction, so not all could be used.

For each participant we tested seven feature combina-
tions: rhythm features, microtiming features, the best sim-
ilarity metric from Section 4.3.1 and each combination of
the three. We used all features in Table 1. The density fea-
tures were calculated across three instrument groups sep-
arately: low (kick), mid (snare and toms) and high (cym-
bals) as in [11]. All other features were calculated with all
instruments combined. Fitting a regression model to the 7
participants for 7 conditions, we measured the predictive
power of the models as the explained variance (R-squared)
for each feature combination and participant.

For the single similarity measure we used linear regres-
sion. For the feature sets, Partial Least-Squares (PLS) re-
gression was chosen [35]. This was chosen because the
features exhibit a high degree of colinearity, due to the
large number of features and the inherent co-dependence of
musical qualities. This combined with the high predictor-
cases ratio means that linear modelling does not work.
PLS regression combines elements from multiple linear
and principal component regression, and has been found
to work well in multidimensional musical emotion predic-
tion [6]. Its use of principal component analysis to cre-
ate latent prediction variables alleviates the problems of
colinearity and high predictor-cases ratio, but limits inter-
pretability of the significance of specific features. This
is partly why we evaluate features differently in Section
4.3.1. To choose the best number of principal components
for each model consistently, we used the Bayesian Infor-
mation Criterion (BIC), which accounts for overfitting by
penalising model complexity against model performance.

4.3 Results & Discussion
4.3.1 Overall perceptual relevance of new models

The correlation between the features and median similarity
ratings is shown in Table 2. All models exhibited statisti-
cally significant correlation (p < 0.05).

The structural similarity measure exhibits higher cor-
relation to the median similarity ratings than the ordinary
velocity-weighted Hamming distance (1=1.69, p=0.046). It
could therefore be the case for complex drum loops that
listeners compare rhythms at a more global structural level
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Feature/Model Correlation r )/

Hamming Distance 0.59 9.7e-9
Structural Similarity 0.65 6.1e-11
Fuzzy Hamming Distance 0.56 6.1e-8
Swing-ness 0.46 1.9e-5
Triplet-ness 0.49 3.4e-6
Timing accuracy 0.33 2.9¢e-3
Laidback-ness 0.22 0.046

Table 2. Pearson r and p-value between median similarity
ratings and model difference values.

rather than a precise low level. Alternatively, the structural
representation could indicate shared genre between loops
by showing the approximate locations of events. Given this
seemingly strong performance, using the structural similar-
ity measure over Hamming distance may be advantageous.

For the laidback-ness feature, an issue was that values
were typically low, as there is often not a significant dif-
ference in microtiming styles between loops. Based on the
12ms deviation threshold, in only 21 of the 80 compar-
isons was there a difference between timing styles, with
the remaining three quarters of the comparisons returning
0. Looking at the correlation between the laidback-ness
feature and similarity ratings just for these 21 comparisons
where timing style is different, correlation is stronger (r
= 0.47, p = 0.0033). One interpretation is that a feature
like this, which models a precise low-level quality, is only
relevant for a similarity comparison when there is a signif-
icant difference in this quality. While further investigation
is required, this may point to the use of adaptive feature
weightings for similarity comparisons that select features
based on the relevance to a particular comparison.

The other microtiming features exhibited moderate to
good correlation, with the swing-ness and triplet-ness fea-
tures being approximately the same. This may be because
loops in our dataset with onsets matching to second triplet
positions likely have notes in swung positions too, so there
is little practical difference in their values. For a larger
dataset this difference may be more significant. The fuzzy
Hamming distance did not differ significantly from the reg-
ular Hamming distance. The correlations of both the swing
and microtiming style features indicate that a better way to
incorporate microtiming in similarity models could be as a
separate set of features modelling global characteristics of
microtiming, rather than being inserted into rhythmic sim-
ilarity measures. Overall, it appears that these features are
able to some extent to capture perceptually salient features
of microtiming deviations in drum loops.

4.3.2 Building Individualized Similarity Models

The results of this part are shown in Figure 4. Comparing
the median 72 score for the 7 participants, it can be seen
that the combination of rhythm and microtiming features
with structural similarity measure results in the best pre-
dictive model (#* = 0.56), closely followed by rhythm fea-
ture and microtiming model (+* = 0.51). This confirms that
both microtiming and structural similarity models can im-
prove rhythm feature-based similarity models in this case.
However, there is still improvement required before they
can accurately predict similarity perception.
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1 0Individualised similarity model performances for 7 participants
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Figure 4. Model performance as R-squared value for com-
binations of thythm R and microtiming MT feature sets
with structural similarity feature SS for each participant.

There are a few possible reasons for this. As mentioned
in Section 4.3.1, the system of deriving a fixed weight-
ing of features in a multidimensional similarity model may
not be the best way to model similarity; instead, adaptive
weighting schemes may be required that weigh features ac-
cording to their relevance in a given comparison. While the
feature set seems comprehensive, there may be some qual-
ities of drum loops that are not effectively being modelled,
in particular features that explicitly detect style or genre.
Similarity ratings from more listeners should be collected
in the future to construct further personalized models and
verify these findings for a wider range of listeners.

S. CONCLUSIONS & FURTHER WORK

We presented a new toolbox for drum loop analysis, with
implementations of pre-existing algorithms and new ones
for analysing and comparing rhythmic structure and micro-
timing. These were found to correlate to perceived similar-
ity of drum loops. The rhythmic structural similarity met-
ric was shown to correlate at least as well as the conven-
tional Hamming distance to similarity perception in drum
loops. It has been shown that the ideal model of similarity
for complex drum loops combines rhythm and microtim-
ing features with a rhythm similarity metric. These results

all have implications in future work on IDPTs.
As further work, new algorithms should be developed

to improve similarity models in the GrooveToolbox, in
particular ones that explicitly model stylistic similarity.
Here more investigation into rhythmic grouping or struc-
ture could be useful. Due to the complex nature of simi-
larity perception it is difficult to infer the practical utility
of similarity models from this evaluation. For a more eco-
logically valid understanding, we will next evaluate them
in the context of an IDPT. An approach to combining fea-
tures that accounts for the possibly attention-based nature
of similarity perception could also be a valuable direction.
Given the added requirement for personalized models, the
next step is to investigate methods such as active learning
to learn an adaptive similarity model from a user.
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