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ABSTRACT
This paper reports on thedesign andevaluationof drum rhythmspaces as interactive bi-dimensional
maps used for the visualisation, retrieval and generation of drum patterns. We carry out two experi-
ments exploringhumanprocessingof polyphonic drumpatterns concludingwith a list of descriptors
that significantly influence similarity sensations. These features are used to build spaces based on
drum pattern collections, where patterns are organised by similarity, modelled according to human
perception. A drum-interpolation algorithm is introduced (and evaluated) to enhance rhythm space
functionality by means of patterns that bound it, converting a discrete space to a continuous
generative one.
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1. Introduction

Rhythm, considered one of the main dimensions of
music, appears when events are detected, compared and
tracked for their repetition or variation across time. Stud-
ies on music cognition have shown that rhythm sen-
sations are not just the result of processing objective
information extracted from the physical data. It is in the
combination of such data and processes of making sense
of them (bymeans of entrainment, anticipation, previous
knowledge, and hypotheses testing), that pulses, tempi
and metric hierarchies ‘emerge’ (Clark, 2013; London,
2012; van der Weij et al., 2017). When human listen-
ers and performers try to encode rhythmic information,
pattern comparison becomes a powerful strategy to aid
decisions on possible critical features, attention resources
allocation, or preparation for the ‘next’ moment. Decid-
ing on the likeness or the contrast between just processed
patterns or between a recent one and some retrieved
from memory is crucial. As we can judge how simi-
lar two scenes, melodies, or colours are, we can do the
same for rhythm patterns. The mechanisms operating in
rhythm similarity decisions have not been fully charac-
terised yet, specially for the case of polyphonic rhythms,
which involve many layers of sounds and events. That
knowledge is fundamental for the sake of expanding
our comprehension of rhythm cognition in humans, and
it can also be profitable in music creation contexts by
embedding rhythmic intelligence inside music composi-
tion tools. The research reported here follows this path

CONTACT Daniel Gómez-Marín dgomez@icesi.edu.co Universidad ICESI, Calle 18 No. 122-135 Cali, Colombia
1This paper is a continuation of previous research published as a conference paper included in the correspondent proceedings compiled in Lecture Notes For
Computer Science volume.

that, from music theory and music cognition, leads to
music composition.

One of the techniques to study the way humans
organise their memories and their pattern processing
is by explicitly asking them about the degree of sim-
ilarity between stimuli. Typically, a group of subjects
assesses the similarity between each pair of elements
within a collection of stimuli and, after analysing these
results, new hypotheses or models (usually referred to
as ‘conceptual spaces’, ‘perceptual spaces’ or ‘mental
maps’) can be proposed to explain the mechanisms
and relevant features behind the resulting similarity
relations (Gärdenfors, 2000). Such models, although
descriptive in nature, can also generate predictions about
human similarity ratings for new, previously unseen,
patterns.

This paper presents the research towards a model
for understanding polyphonic rhythm similarity and
its implementation in music composition tools.1 Our
research is based on experiments on similarity ratings
between polyphonic drum patterns. Most of the patterns
used here are characteristic of electronic dance music
(EDM), a term referring to music created with electronic
instruments and specifically designed for inciting peo-
ple to dance. EDM is an umbrella term where different
sub-genres avidly coexist, most of them differentiated by
rhythm, timbre and the type of technology used to gen-
erate and process sounds (Collins et al., 2013; Reynolds,
2012).
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The article is organised in the following sections: first
we provide some definitions and research context on per-
ceptual and conceptual spaces; then we focus on rhythm
spaces and rhythm similarity. A discussion of potentially
relevant features to compute polyphonic rhythmic simi-
larity is followed by their validation using existing data
and literature. We then address the characterisation of
rhythm spaces for EDMsub-genres bymeans of an exper-
iment with human listeners. Our results show the general
capabilities of our proposed features to capture rhythm
similarity relations. Once we have created reliable and
robust rhythm spaces, we further stretch their capabilities
by using them as a music generation tool. A final experi-
ment validating the rhythm space generative algorithm is
presented. Our discussions and observations provide the
expected closure to the paper.

2. Perceptual spaces

Perceptual spaces have a scientific tradition for repre-
senting human knowledge. There are examples in many
domains such as timbre (Grey, 1977), colour (Shep-
ard, 1964), wine (Ballester et al., 2008), texture (Hollins
et al., 2000), or even Dutch shirts! (Zwarts, 2015). Spaces
derived from subject-based research reveal how the
semantic memory for those domains could be organ-
ised. Such spaces are used to geometrically understand
relationships between their elements. In these spaces,
the concept of similarity becomes analogous to that of
distance, where a small separation between elements sug-
gests the perceptual closeness of such elements, and thus
a high degree of similarity (Gärdenfors, 2000). In a per-
ceptual space, each of its spanning dimensions repre-
sents a fundamental feature for the apprehension of the
domain, a characteristic that can be measured and quan-
tified in all the elements of the domain. The degree in
which a characteristic is found determines its position
in the given dimension. Thus, perceptual spaces can be
composed of several dimensions, all of them revealing
essential characteristics for the human cognition of a
domain.

2.1. Spaces in sound andmusic

The use of conceptual spaces as a framework to model
different music-related domains has led to the creation
of new knowledge. Conceptual spaces have been used in
musical domains such as timbre (Grey, 1977) and tonal-
ity (Krumhansl, 1979), where geometric models of how
these domains could be organised in human minds are
presented. For example, Grey (1977) found that human
perception of timbre similarity could be characterised
using threemain dimensions: the spectral fluctuation, the

centroid of the spectrum and the attack time. This geo-
metric model of timbre supports a framework that can
be used to understand essential aspects of timbre cogni-
tion and it has been further explored by other researchers
(Halpern et al., 2004; Hourdin et al., 1997; McAdams
et al., 1995; Yee-King, 2011), but it also allows, by quan-
tifying certain objective properties of those sounds, the
prediction of how similar a group of sounds will be per-
ceived by subjects. The structure of the domain-specific
space (e.g. a timbre space) creates relations among ele-
ments that act as a human-optimized interface into the
domain. That is, a timbre space can be used as an inter-
face for controlling timbre. For example, Grey’s timbre
spaces were the foundation for a new research field on
spatial timbre interaction, led by Wessel (1979) and fur-
ther continued by other researchers (Graham et al., 2017;
Turquois et al., 2016). Conceptual spaces proved to be
robust enough to be used not only for organisation and
visualisation, but also for retrieval of the musical ele-
ments (sounds in the case of timbre) (Einbond et al.,
2009).

3. Rhythm spaces

The experiments ofGabrielsson (1973a, 1973b) are one of
the first and most important precedents for establishing
experimental procedures and providing results on poly-
phonic rhythm similarity. One of his main contributions
is the development of conceptual rhythm spaces, where
he locates polyphonic drum patterns in bi-dimensional
and three-dimensional spaces as the result of subject-
based similarity experiments.

3.1. Rhythm similarity

The first clues on how rhythmic similarity is processed
can be found in the simpler case of monophonic rhythm.
In this area there are two parallel approaches to derive
similarity metrics, one is the use of rhythm-agnostic
information-based metrics (Post & Toussaint, 2011; Tou-
ssaint, 2004), and the other involves using cognitive and
perceptual knowledge of rhythm processing (Cao et al.,
2014; Johnson-Laird, 1991).

The approach for measuring monophonic rhythm
similarity using information-based metrics is based on
simple algorithms. The edit distance, for example, has
been reported to be correlated withmonophonic similar-
ity assessment (Guastavino et al., 2009; Post & Toussaint,
2011; Toussaint et al., 2011), and its algorithm is based
on measuring the number of transformations needed
for a string to become another one (by means of inser-
tion, deletion and addition of characters). This metric,
although straightforward to measure, ignores important
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Figure 1. A pulse-reinforcing pattern and a highly syncopated pattern at small edit distance of 1. The pulse is represented by a grey bar
and onsets by black squares.

cognitive aspects, allowing two patterns that can be per-
ceived as very different rhythmically to have a very small
edit distance value (Figure 1). The disentanglement of
these rhythm-agnosticmetrics from the basic concepts of
rhythm cognition, namely pulse, meter (London, 2012),
metric salience (Palmer & Krumhansl, 1990) and synco-
pation (Longuet-Higgins & Lee, 1984) is clearly noted
by Paiement et al. (2007), suggesting they are not the
ideal candidates to be expanded to measure similarity in
polyphonic scenarios.

The other approach, cognition-based monophonic
similaritymetrics, is based upon current scientific knowl-
edge on human rhythm processing. One of these metrics
is that of rhythm families proposed by Cao et al. (2014),
where the concepts of syncopation and identical regions
are at play. Syncopation families arise as the result of
classifying intra-pulse sub-patterns into three categories
defined by their relation to the pulse (pulse reinforce-
ment: R, syncopation: S or nothing: N). The concept of
identical regions refers to sub-patternswhich are common
to two differentmonophonic patterns, but shifted in posi-
tion (see Figure 2). Cao et al. report that both concepts
(syncopation families and identical regions) influence
similarity sensations in subjects. The existence of iden-
tical regions shifted in position, and the presence of same
syncopation families in the same position, maximises the
similarity sensations between two monophonic patterns.

Figure 2. Identical regions and syncopation families as described
by Cao et al. (2014) influence the similarity sensation when two
monophonic patterns are compared. Syncopation families are
analysed within pulses and can be classified as R: pulse reinforce-
ment, S: syncopation, N: nothing.

In experiments previously reported (Gómez-Marín et al.,
2015a, 2015b), syncopation families have proven use-
ful for predicting subjective similarity sensations specif-
ically in the case when the pulse is induced. That is,
in a pulse-induced scenario (as most rhythmic music is
experienced), measures based on syncopation are use-
ful for predicting similarity sensations. Syncopation, and
thus knowledge on rhythm processing, has proven fun-
damental for the prediction of monophonic similarity.
We suggest that an extension of this approach using these
rhythmic fundamentals can be useful as part of a model
to measure polyphonic similarity.

Other advances have also been made in the direction
of understanding how rhythm polyphony is processed
by humans. For the specific case of polyphonic drum
arrangements, it is proposed that the frequency range
of the percussive instruments influence how the com-
plete polyphonic stream is processed. Specifically, the
patterns performed by instruments with a low-frequency
range (i.e. kick drum) seem to have a higher impor-
tance in the induction or disruption of the pulse than
instruments in a high-frequency range such as the hi-
hats (Bouwer et al., 2014; Burger et al., 2017; Hove
et al., 2014; Witek, Clarke, Kringelbach, et al., 2014).
These observations have been used by researchers to
propose a metric for measuring syncopation in poly-
phonic drum patterns. This polyphonic syncopation
metric is used to find how a medium dose of syncopa-
tion maximises pleasure and desire to dance when lis-
tening to drum patterns (Witek, Clarke, Wallentin, et al.,
2014).

As we already mentioned at the beginning of this
section, another seminal reference in polyphonic simi-
larity is the research carried out by Gabrielsson (1973a,
1973b) who performed several experiments in poly-
phonic similarity judgments.

These three sources, the polyphonic syncopationmea-
sure, the relevance of the frequency-range of percussive
instruments (Bouwer et al., 2014; Burger et al., 2017;
Hove et al., 2014;Witek, Clarke, Kringelbach, et al., 2014)
plus Gabrielsson’s experiments constitute the foundation
of the novel method for measuring polyphonic similarity
presented in this paper.
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3.2. Spaces for visualising rhythm

As visualisation techniques were used to explore differ-
ent relations between percussive rhythms, other rhythm
research involving spaces has emerged. Desain and Hon-
ing have an extensive body of work on modelling human
rhythm perception from a cognitive perspective. In sev-
eral papers they use a three dimensional space for visu-
alising rhythms. Each axis of the space represents one of
the three inter-onset intervals (IOI) which exist between
the four notes of their rhythms. In this informative
space, a rhythmic structure is recognised by its posi-
tion (Desain & Honing, 1999, 2003). Other authors
have dealt with rhythm spaces and rhythm similarity in
a polyphonic music audio (retrieval) context. Rhythm
spaces are present inmanyMIR studies involving rhythm
descriptors (Ellis & Arroyo, 2004; Makris et al., 2017;
Paulus & Klapuri, 2002; Rocamora et al., 2014). Here,
spaces are rarely depicted or used as such, probably
because of their high dimensionality and because the
aims lean more towards automatic music classification
(Chen & Chen, 1998).

3.3. Rhythm in electronic dancemusic

As we mentioned above, the context of our research
is electronic dance music (EDM). EDM evolves from
African American dance music genres as disco and funk,
as they were reinterpreted using a new generation of
affordable synthesisers and drummachines released dur-
ing the 1980s (Reynolds, 2012; Sicko, 2010). One of
the main musical elements through which EDM rhythm
sophistication is expressed is drumming, which consti-
tutes the backbone of this type of music (Butler, 2006).
Drum arrangements in EDM, also called drum sequences
or drum tracks, are typically presented as the progressive
concatenation of different polyphonic patterns of short
duration (one or two bars), which are the focus of minute
detail from music producers. In the context of EDM,
knowledge of polyphonic drum similarity becomes of
main relevance, and the rhythmic essence of this music
becomes an excellent framework in which to do research
on polyphonic rhythm cognition.

4. Features for polyphonic rhythm similarity
computation

In order to understand the mechanisms underlying
human processing of polyphonic rhythm, three differ-
ent sources of knowledge are here revised and integrated
into one main research methodology: the experiments
of Gabrielsson (1973b), contemporary experiments on
polyphonic processing of rhythms (Bouwer et al., 2014;

Burger et al., 2017; Hove et al., 2014; Witek, Clarke,
Kringelbach, et al., 2014) and our previous research on
syncopation and similarity in polyphonic scenarios. One
of Gabrielsson’s main contributions is presenting the
results of his similarity experiments as rhythm spaces.
Gabrielsson asked subjects to rate the similarity between
different rhythms, obtained low dimensional spaces from
those ratings. According to his research, rhythm similar-
ity judgments are influenced by:

• The meter induced by the sequence.
• The onset density of the patterns.
• The simplicity-complexity of the patterns.
• The syncopations.
• The number of different instruments in a sequence.
• The ‘movement character’ of the rhythms.

The second source of knowledge that we consider
is recent research on how humans process polyphonic
rhythms Bouwer et al. (2014); Burger et al. (2017); Hove
et al. (2014); Witek, Clarke, Kringelbach, et al. (2014). In
these studies, the prominence of the main frequency of
the different instruments of a polyphonic drum pattern
is reported to influence listeners’ rhythm processing. The
predominant frequency of a drum sound can affect its
power to disturb or to confirm the meter of a polyphonic
pattern. All these studies conclude that the instruments
with the lowest frequency (e.g. the kick drum) have a
higher impact than high-frequency instruments (i.e. the
hi-hats)in the establishment of a pulse or in its alter-
ation (e.g. a syncopation). This view is experimentally
backed by Witek, Clarke, Kringelbach, et al. (2014), who
devise a new polyphonic syncopation metric based on
three different instrument ranges: low, mid and high,
represented by the kick drum, the snare and the hi-hat
respectively. Thismetric is then successfully used to study
the impact of syncopation in the desire to dance. Finally,
as a third knowledge source for guiding our research,
the importance of syncopation is aligned with our pre-
vious results (Gómez-Marín et al., 2015a, 2015b), where
it was reported how the syncopations present in a mono-
phonic rhythm are a useful source of pattern differenti-
ation, influencing subjects when assessing the similarity
between two rhythmic patterns.

Some conclusions can be drawn from incorporating
these sources of knowledge into a unified perspective on
polyphonic rhythm similarity. There is a clear relevance
of syncopation and meter in the processing of mono-
phonic and polyphonic patterns that is transversal to the
three different research approaches presented above. A
differentiation between three frequency ranges for per-
cussive sounds (low, mid and high) is also useful, as the
most energetic frequency bands of a sound affect the way
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in which the rhythm it produces is processed. This seems
intuitively related to human perception as a mechanism
to provide distinction between sources while avoiding
frequency overlapping. From Gabrielsson’s fundamental
factors influencing the similarity of two rhythms we can
keep the density, or the amount of onsets in a pattern,
along with the number of different instruments in a pat-
tern, and the ‘character’ of a rhythm. This combination of
factors is used here to define a new comprehensive set of
descriptors which can be extracted from symbolic rhyth-
mic sequences. These descriptors are designed to capture
the different qualitative factors mentioned (frequency
ranges, syncopation, density, number of instruments and
the simplicity/complexity of the patterns), by means of
simple and straightforward algorithms.

Our focus on symbolic patterns resides in the need to
discard the effect of timbre in subjective similarity mea-
surements, as other researchers (Gabrielsson included)
remarked. The use of consistent timbres when render-
ing percussive patterns allows the subjects to just focus
on the symbolic interpretation of rhythm when under-
taking experiments. Thus, we have devised a new set of
symbolic rhythmdescriptors, that differ fromothers used
in automatic rhythm classification research (for example
Gouyon et al., 2004; Paulus & Klapuri, 2002) as the ones
that will be presented here are (i) based on notions of
human rhythmic processing, and (ii) not based on audio
signal analysis. We use the MIDI (Musical Instrument
Digital Interface) protocol to represent drum patterns,
coding instruments, notes, durations and dynamics in
symbolic format.

4.1. Symbolic drum pattern descriptors

Herewe will adapt some ideas reviewed above, where the
factors influencing polyphonic similarity sensations are
related to metrical weight2 and also to the frequency
range of the instruments involved in the polyphonic
arrangement. Consequently, wewill take advantage of the
typical acoustics of percussion sounds by mapping the
General MIDI Level 1 Percussion KeyMap1 (GMPKM)3

to three instrument categories (low, mid and high),4

based on the typical spectral centre of each sound (i.e.
a low tom belongs to low frequency, a snare and a clap
to the mid frequency instruments and all cymbals to

2 Lerdahl and Jackendoff (1985) propose a hierarchy of accents within a rhyth-
mic pattern, where onsets coinciding with higher divisions of the pattern
obtain higher metrical values.

3 The MIDI association provides a list of percussion instruments and
their suggested MIDI note values: https://www.midi.org/specifications-
old/item/gm-level-1-sound-set.

4 The complete mapping list is at https://github.com/danielgomezmarin/
rhythmtoolbox/blob/master/MIDI-mapping.md.

the high instruments). This mapping allows a drum pat-
tern compliant with the GMPKM to be converted from
an arbitrary number of parallel instrument patterns into
three streams of monophonic percussive patterns: low,
mid and high. This procedure of using only three streams
is an adaptation of the methodology used by Witek,
Clarke, Kringelbach, et al. (2014) backed in experiments
by Hove et al. (2014), Bouwer et al. (2014),Witek, Clarke,
Kringelbach, et al. (2014) and Burger et al. (2017). It also
resonates with the Auditory Scene Analysis theory (Breg-
man, 1994) in which the multiple and concurrent data
generated during the parallel analysis processes in the
auditory pathways and auditory cortex are simplified into
a small number of auditory streams.

Once a symbolic drum pattern is converted into a
combination of three band-wise patterns, these patterns
are characterised according to different factors pointed
out by Gabrielsson to influence similarity at a polyphonic
level: syncopations, densities, number of instruments,
meter, and the simplicity-complexity of the patterns. The
crossover between the three frequency streams (low, mid
and high) and the sources of information (presented in
Table 1) encouraged us to define equations for these
concepts, which can be extracted from symbolic drum
patterns. Gabrielsson articulated his ideas just verbally,
and we here attempt to turn some of them into MIDI-
based computable features. The different equations for
the descriptors are presented below.

The computation of these descriptors assumes a sym-
bolic and polyphonic drum pattern in which the percus-
sive instruments are compliant with the GMPKM, and
which has a minimum time resolution of 1/16th note. In
order to compute the descriptors, a polyphonic pattern is
converted to a triad of symbolic monophonic percussive
streams using the mapping presented in the complemen-
tary material. The descriptors are quantified as presented
in the following subsections.

4.1.1. Number of instruments (noi)
This is the simplest metric to compute as it is just the
amount of different instruments in the symbolic poly-
phonic pattern.

4.1.2. Hisync, midsync, and losync
Syncopations are quantified following Longuet-Higgins
and Lee (1984), who propose amethod based on a nested
metric profile similar to the one presented by Lerdahl and
Jackendoff (1985), where onsets coinciding with higher
divisions of a pattern obtain higher metrical values. For
each stream (low, mid and high), a metrical value is
extracted when an onset is followed by a silence to com-
pute a syncopation value for each stream. These values

https://www.midi.org/specifications-old/item/gm-level-1-sound-set
https://github.com/danielgomezmarin/rhythmtoolbox/blob/master/MIDI-mapping.md
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Table 1. This table presents our descriptors resulting from combining the three different polyphonic
research contexts: Gabrielsson’s conclusions (thefive columns), threedifferent frequency layers (three rows:
low, mid and high) and syncopation (second and third columns).

Gabrielsson’s factors

Frequency Syncopation Density Instruments Complexity

High polysync Hisync hiD, hiness stepD noi hisyness
Mid midsync midD, midness midsyness
Low losync lowD, lowness losyness

Figure 3. Block diagram description of hisync,midsync and losync descriptors computation.

Figure 4. Block diagram description of polysync descriptor com-
putation. Three different monophonic patterns (low, mid and
high) are extracted form the polyphonic pattern. Polyphonic syn-
copation is then computed, based on these three monophonic
patterns, as described by Witek, Clarke, Kringelbach, et al. (2014).

are reported as thehisync,midsync and losync respectively
(see Figure 3).

4.1.3. Polysync
Polyphonic syncopation is computed following the
method proposed by Witek, Clarke, Kringelbach, et al.
(2014) to obtain a single value from a polyphonic
drum pattern (see Figure 4). Their algorithm computes
monophonic syncopation values for three instrumen-
tal frequency ranges (low, mid and high frequency),
then assigns an inversely proportional weight to the
instrumental frequency range (low-frequency range has
higher weight than mid-frequency and high-frequency),
and then these three weighted values are added to
obtain a single value. The algorithm is fully docu-
mented in the Supporting Information section of their
paper.5

5 https://journals.plos.org/plosone/article/file?type= supplementaryid=
info:doi/10.1371/journal.pone.0094446.s012.

4.1.4. HiD, midD, loD
Sum of onsets for each different instrument group,
divided by the total number of steps in the pattern (see
Figure 5).

4.1.5. Losyness, midsyness, hisyness
Quotient of the syncopation value and the sum of onsets
for each instrument group (see Figure 6).

Figure 5. Block diagram description of hiD, midD and loD,
descriptors computation. Three different monophonic patterns
(low, mid and high) are extracted form the polyphonic pattern.
The number of onsets of each monophonic pattern is divided by
the pattern length in steps.

Figure 6. Block diagram description of hisyness, midsyness and
losyness, descriptors computation. Three different monophonic
patterns (low, mid and high) are extracted form the polyphonic
pattern. The syncopation value of each monophonic pattern is
divided by the number of onsets.

https://journals.plos.org/plosone/article/file?type=supplementaryid=info:doi/10.1371/journal.pone.0094446.s012
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Figure 7. Block diagram description of stepD, descriptor compu-
tation. The number of steps that contain at least one onset is
divided by the pattern length in steps.

Figure 8. Block diagram description of hiness, midness and low-
ness, descriptors computation. Three different monophonic pat-
terns (low, mid and high) are extracted form the polyphonic pat-
tern. The number of onsets of eachmonophonic pattern is divided
by the polyphonic pattern’s sum of onsets.

4.1.6. StepD
Sum of the steps in the pattern which contain at least one
onset, divided by the total amount of steps (see Figure 7).

4.1.7. Lowness, midness, hiness
Share of the total density of patterns that belongs to each
of the different instrument categories. Computed as the
quotient between the densities per instrument category
and the total density (see Figure 8).

5. Experiment 1: Validation of rhythm features
in Gabrielsson’s space

Once a set of polyphonic drum descriptors has been
defined, the next step is to test their performance in
different real-life musical scenarios. As we mentioned
above, Gabrielsson published a study on polyphonic
drum rhythms’ similarity (Gabrielsson, 1973b) which
will be the starting point for our first experiment. Spe-
cially, the results of Gabrielsson’s experiments 1 and 2
(GE1 andGE2) will be analysed, given the peculiarities of
the rhythms selected for his experiment: all of them are
reproduced with the same synthetic timbres of a drum
machine, and with the same tempo (120 BPM). These
factors reduce the intrusion of tempo and timbre in lis-
tener’s similarity assessment. These experiments are also
suitable as they resemble the same natural conditions of
compositional work in EDM, where the tempo of a dance
track (or even a DJ session concatenating several dance
tracks) is kept constant (Collins et al., 2013).

The patterns used byGabrielssonwere the factory pre-
sets of the Ace Tone Rhythm Ace FR-3 drum machine

which were recorded to magnetic tape. The patterns
used in GE1 and GE2 were foxtrot, rockn’roll, rhumba,
beguine, habanera and Waltz. These two experiments
(GE1 and GE2) were designed to explore similarity
between polyphonic drum rhythms and to create sim-
ilarity matrices. For experiment 1 (GE1) 16 subjects (6
female and 10 male, with more than four years of ama-
teur experience performing music) listened to triads of
rhythms, and then selected which pair was the most sim-
ilar. Summing across all subjects a similarity matrix was
obtained. For GE2, 13 subjects (5 female and 8 male with
same experience as subjects in GE1) listened to all possi-
ble pair combinations and rated ‘how similar are the pat-
terns among themselves’, having 10 as perfect similarity.
Sixteen subjects (6 women, 4 men), rated the stimuli.

The similarity matrices gathered by Gabrielsson
from his two experiments (GE1 and GE2) were pro-
cessedwith aMultidimensional Scaling (MDS) algorithm
(Kruskal, 1964). With this procedure he obtained two
low-dimensional spaces where the drum patterns were
located according to the distance reported by subjects.
MDS was used to create a small dimensional represen-
tation of a dissimilarity matrix while minimising the dis-
tortion of the distances among instances of the matrix.
The spaces obtained by Gabrielsson are a graphic repre-
sentation of this dissimilarity matrix (Figure 9). While
Gabrielsson’s interpretations of the axes spanning the
spaces are educated guesses without strong grounding on
empirical data, our experiment will be devised to take
advantage of the above-presented rhythm descriptors to
interpret these axes.

In Gabrielsson’s paper the patterns from the FR-
3 drum machine are transcribed to symbolic musical
notation. Our proposed polyphonic descriptors will be
extracted from these transcribed patterns obtaining a
descriptor vector for each pattern used in GE1 and GE2.
These vectors will be used to approach the positions of
each pattern in the rhythm space resulting fromGE1 and
GE2 (Figure 9). A Lasso regression (Tibshirani, 1996)will
be used to discriminate which descriptors are sufficient
(and how important they are) to predict the position of
each pattern in both spaces. Lasso regression is a method
typically used for variable selection as it helps to reduce
the number of variables needed to get accurate predic-
tions, hence enhancing both the interpretability and the
accuracy of amodel. Thus, the resulting set of descriptors
should capture the essence of subjects’ ratings revealed
through the structure of the spaces.

Our hypothesis is that such a set of descriptors can
be good predictors of Gabrielsson’s spaces. If this is the
case, then we could further ask if they can be gener-
alised to predict other spaces with patterns from different
drumming styles.
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Figure 9. Gabrielsson’s rhythm spaces from experiments 1 and 2. F: Foxtrot, RR: Rockn’roll, R: Rhumba, B: Beguine, H: Habanera,W: waltz
(Gabrielsson, 1973b).

5.1. Methods

5.1.1. Materials
The resulting low-dimensional spaces fromGabrielsson’s
first two experiments (GE1 andGE2) are used as a source
fromwhich the coordinates of each pattern are extracted.
These coordinates are presented in Table 2.

5.1.2. Procedure
Each pattern used inGE1 andGE2 is transcribed toMIDI
format and all our symbolic descriptors are extracted
from them. Then a Multi Task Lasso regression is used
(alpha 0.03), setting the coordinates of the patterns in
each space as a target (X) and the matrix of descriptors as
variables (Y1, Y2, Y3 . . . ). The Lasso regression returns
a subset of variables and weights that maximise correla-
tion of a subset of descriptors with the positions of the
patterns in each low-dimensional space resulting from
Gabrielsson’s experiments (GE1 and GE2).

5.2. Results

The output of the Lasso analysis shows that using this set
of descriptors {midD, hiD, hiness, lowsync, hisyness} the
results of both axes of GE1 are perfectly linearly corre-
lated, yielding a Spearman correlation of 0.999 (p-value
< .005) for both GE1 X and Y axes. The weights of

Table 2. Patterns used in GE1 and GE2 with their coordinates.

Coordinates

Pattern GE1 GE2

foxtrot −0.64, 0.55 −0.4,−0.58,−0.1
rockn’roll −0.27, 0.09 −0.3,−0.1, 0.1
rhumba −0.06,−0.55 −0.09, 0.3, 0.55
beguine 0.24,−0.49 0.0, 0.4, 0.41
habanera 0.7, 0.45 −0.18, 0.41,−0.61
waltz – 0.85,−0.51,−0.36

Table 3. Descriptors and their weights for perfect correlation
with GE1, after Lasso analysis.

Axis weight

Descriptor X Y

midD 1.735 −0.66
hiD −0.089 −0.86
hiness −0.09 −0.068
lowsync 0.102 −0.266
hisyness −0.357 0.118

Figure 10. Variances of each symbolic descriptor aftermeasuring
the set of patterns used inGabrielsson’s experimentsGE1(left) and
GE2(right).

each descriptor are shown in Table 3 and the variances
in Figure 10 (left).

For the space resulting from GE2, the Lasso analy-
sis shows that the descriptor set {midD, hiness, lowsync,
midsync, hisync, losyness, hisyness} yields perfect correla-
tions with its three axes: Spearman correlation is 0.999
(p-value <0.005), 0.942 (p-value < 0.005) and 0.999 (p-
value < 0.005) for axes X, Y, and Z, respectively. The
weights of each descriptor are shown in Table 4 and the
variances in Figure 10 (right).
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Table 4. Descriptors and their weights for perfect correlation
with GE2, after Lasso analysis.

Axis weight

Descriptor X Y Z

midD 0.784 0.333 0.313
hiness −0.072 −0.07 −0.032
lowsync 0.242 0.21 −1.12
midsync 0.574 −0.031 0.104
hisync −0.708 1.005 0.81
losyness 0.0446 0.002 −0.052
hisyness 0.505 −1.411 −0.723

5.3. Leave-one-out descriptor analysis for GE1 and
GE2

In order to scrutinise the set of descriptors obtained by
fitting the patterns on GE1 and GE2, we performed a
leave-one-out validation. One drum pattern was left out
iteratively and a Multi Task Lasso regression was com-
puted to obtain five different predictive models for both
pattern collections used in GE1 and GE2. The result-
ing sets of descriptors from each predictive model was
compiled in a histogram (Figure 11), as well as the pre-
dicted position of the complete set of patterns using each
different model (Figure 12).

From the 15 descriptors available, 7 of them (47%) are
never used as predictors for anymodel based onGE1 and
6 of them (40%) never used for any model based on GE2.
Each resulting leave one out set is presented on Figure
11, ordered by the descriptors used in most models. The
most common descriptors resulting from leave one out
models of GE1 and GE2 and also belonging to the regres-
sionswith the complete set of patterns (GE1 andGE2) are
{lowsync, hisyness, hiness} (Figure 11).

Comparing the precisions of the leave one out mod-
els (Figure 12) when predicting original positions of the

patterns in GE1 and GE2, two trends can be observed:
one where the left out pattern is the most distant to
its original position (models 1, 3, 4 and 5 for GE1 and
models 1, 5 and 6 for GE2), and another trend where
some models are good predictors of the complete set
(see flat response for models 2 in GE1 and 2, 3 and 4
for GE2 in Figure 12). Models in the first trend seem to
have memorised the patterns of the training set and fail
when predicting patterns not in the training set. Mod-
els in the second trend (good predictors) contain most
of the descriptors that belong to the sets resulting from
the regressions with the complete set of patterns. The set
from model 2 and GE1 is {lowsync, hiD, hisyness, midD,
polysync} and the set of the complete GE1 is {lowsync,
hiD, hisyness, midD, hiness}. The same occurs in GE2,
the set of the complete GE2 regression is {midD, hiness,
lowsync, midsync, hisync, losyness, hisyness} and models
2, 3 and 4 are {fhiness, lowsync, midsync, losyness, hisy-
ness hiDg}, {fmidD, hiness, lowsync,midsync, hisync, hisy-
nessg}, {hiness, lowsync, midsync, hisyness noig}, respec-
tively.

In general it can be observed that every good predic-
tive model (either from the complete GE1 or GE2 sets of
patterns or the good predictors of the leave one out mod-
els) contains the subset of patterns {lowsync, hisynessg}.
Additionally, every good predictive model is either a
subset or a very similar set to the one resulting from
the regressions with the complete set of patterns (GE1
and GE2).

5.4. Discussion

Results show how syncopation is clearly a main fac-
tor for differentiating the patterns at the three different
instrumental levels. Syncopation on the low-frequency

Figure 11. Models, descriptors and frequencies after performing the leave-one-out experiment for GE1 andGE2. Eachmodel is a column
where a square represents presence of a descriptor. A histogram summarises the presence of each descriptor. Descriptor names in b bold
indicate the descriptor belongs to the set obtained by using the complete list of GE1 or GE2 patterns.
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Figure 12. Distances from each original pattern to its predicted position by models created using the leave-one-out methodology for
GE1 and GE2.

instrumental group {lowsync} is used to predict both axes
of GE1 (Table 3). The quotient between the syncopation
and the density is found relevant in the high and low fre-
quency instrumental group {losyness, hisyness} (Tables 3
and 4). For both axes of GE1, the high density quotient is
found relevant {hiD}. The density of the high and mid
category of instruments is relevant, both axes coincid-
ing in the importance of density in the mid instrumental
level {hiD, midD}. The density percentage (instrumen-
tal density divided by total density) is found relevant
for both axes in the high instrumental category {hiness}.
Descriptors in the three instrumental categories are used
to predict GE1 suggesting that they are useful for human
similarity judgements of polyphonic rhythms. This vali-
dates the approach of mapping instruments to categories
in the symbolic domain as discussed in section 4.

The importance of the low syncopation {lowsyncg},
given its usefulness to predict both GE1 and GE2 spaces,
is a confirmation of its significant role in similarity. The
role of low frequency instruments in the definition of
a syncopation sensation in a polyphonic context, dis-
cussed by different authors (Bouwer et al., 2014; Burger
et al., 2017; Hove et al., 2014; Witek, Clarke, Kringel-
bach, et al., 2014), has also been corroborated in this
experiment. This fact is also aligned with Gabrielsson’s
results, as he argues that syncopations are one impor-
tant driver for discrimination of rhythms in polyphonic
contexts.

Pattern density, another of the factors described by
Gabrielsson to influence similarity, is definitive for pre-
dicting the positions of the patterns in both experiments.
Density, in the form of {midD, highD, hiness}, is a relevant
factor for perceiving similarities. It is important to note
that, contrastingly, the densities of low frequencies {lowD,
lowness} are not present in the sets of relevant descriptors.

Although the number of different instruments in a
sequence {noi} is another factor proposed by Gabriels-
son to influence similarity and it is one of the descriptors
computed, it had no relevance for the prediction of space
GE1 or GE2, according to our analysis.

Given the results of the leave one out validation, we
presume that the sets obtained by the Lasso analysis with
the complete set of patterns for both GE1 and GE2might
not result as an overfitting artefact but instead, are the
best possible sets. Therefore, in the next section we will
explore how good predictors these sets are for a different
collection of drum patterns.

6. Experiment 2: Generalisation of our feature
set to EDM spaces

In the previous experiment, small sets of descriptors were
found to quantitatively describe andpredictGabrielsson’s
GE1 andGE2 (Gabrielsson, 1973b) results (similarity rat-
ings and the perceptual space computed from them).
The question here is how general these features can be.
Are these descriptors fitted to the particularities of the
rhythms used by Gabrielsson, or would they work when
other, quite different, rhythm patterns are rated? Com-
putationally, this would mean that if we have a new set
of drum patterns and their location in a human-based
rhythm space, by extracting only the descriptors defined
on the previous experiment (Section 5), and by using a
dimensional reduction technique (as Gabrielsson did),
the rhythm space could be configured with some accu-
racy. Two very well known dimensional reduction algo-
rithms will be used, namely PCA and MDS. PCA finds
a principal vector in the descriptors space in which the
values of all descriptors are maximally dispersed, and
then additional orthogonal vectors are found to conform
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the predicted rhythm space. The other alternative, MDS,
used by Gabrielsson, is based on the dissimilarity matrix
of the patterns, which is computed as the Euclidean dis-
tance between the descriptor vectors of each pattern.

For this experiment, and following Gabrielsson’s
methodology for experiment 2 (GE2) (i.e. rating the sim-
ilarity between two patterns), a new EDM rhythm space
is created based on subject ratings: selecting a collection
of EDM patterns and presenting pairwise combinations
to subjects who report their similarity, and then using
either PCA or MDS to create a new rhythm space. An
EDMdrum rhythm collection is compiled specifically for
this experiment.

6.1. Methods

6.1.1. Participants
A total of 36 subjects participated in the survey, 5 females
and 31 males, all had musical training and/or experience
in music production.

6.1.2. Materials
In order to get a subject-based rhythm space, a set of
rhythm patterns was needed, so we turned to the EDM
production literature (Adamo, 2010; Brown & Griese,
2000; Emmerson, 2013;Hewitt, 2009; Snoman, 2012) and
collected drum patterns explicitly associated to a certain
EDM style. All patterns were 16 steps long, each step last-
ing for a 16th note. A total of 75 different patterns were
collected, 70% of them belonged to the most prominent
styles, HouseMusic (28%), Breakbeat (26%), and Techno
(16%), and the remaining 30%belonged toGarage,Drum
n’ Bass, Hip-Hop, Trance, Chillout, Dubstep, Jungle and
Trip-Hop.

With the whole collection we created a preliminary
rhythm space in order to sample the space and getting the
stimuli for the experiment. First we extracted the com-
plete list of symbolic descriptors (Section 4.1) and then
using PCAwe visualised them in a bi-dimensional space.
This preliminary space was divided in nine equal-size
rectangular areas and then one pattern from each area
was selected. The idea was to select the nine most differ-
ent patterns in the space, according to the complete list of
symbolic descriptors. This procedure was carried out for
simplicity, aswe could profit from2Deuclidean geometry
to easily segment the space and proceed to pick one cen-
tral and eight peripheral patterns. In this way, the list of
75 patterns was reduced to 9 patterns (see Table 5), each
one intended to be representative enough of the vari-
ability of the included categories.6 In order to be played

6 This strategy is used given the huge amount of time needed to compare 75
patterns pairwise in a human-based experiment, as subjects would have to
rate 2775 different pairs of patterns.

Table 5. Patterns selected from the subregions of the preliminary
space. Left, centre, right and top, centre bottom represent the
subdivisions of the space as explained in the text.

Left Centre Right

Top techno grinding
analogue

techno industrial techno hardcore

Centre deep house dirty house deep tech house
Bottom break synthetic

subs
funk break break funky drummer

in the rating experiment, the 9 patterns (from Techno,
House and Breakbeat styles selected for the experiment)
were rendered to audio at a constant tempo of 120
beats per minute combining single shot samples from
the Roland 707, 808 and 909 drum machines. Although
Breakbeat patterns use mostly sample-based drums, the
drummachine sounds used in this experiment are exten-
sively used throughout EDM styles. All selected patterns
use instruments from the following set: Low Conga, Bass
Drum, Side Stick, Maracas, Hand Clap, Snare, Closed
Hi-Hat, Low Tom and Open Hi-Hat.

6.1.3. Procedure
A computer program in Pure Data was prepared to carry
out the experiment. Before the subjects started the exper-
iment, several patterns were presented for making them
familiar with the timbre range of the percussive sounds
used. In addition, examples of ‘identical’, ‘potentially sim-
ilar’ and ‘completely different’ pairs of patterns were pro-
vided as reference to the range of variability to be found.
These pairs were carefully selected from the 75 pat-
tern list, as this collection contains very contrasting and
rhythmically dissimilar items and also patterns that hold
some rhythmic similarity. For the most dissimilar exam-
ple, we selected a pattern that suggested very different
rhythmic sensation in terms of number of instruments,
syncopations and densities. For the similar example, we
made sure both patterns shared some onsets at the same
position preceding a silence, had a similar density as
well as a similar number of instruments. To evaluate all
combinations between the 9 patterns, subjects rated the
existing 36 possible pattern pairs in a triangular 9 ele-
ment matrix (avoiding comparing a pattern with itself
or repeating any pair). Additionally, 4 randomly selected
control pairs were presented twice for determining the
consistency of each subject’s ratings, so, in total, subjects
rated 40 pairs of patterns. Pairs were presented in a ran-
dom order, preventing the same pattern to appear in con-
secutive pairs. Before a pair was reproduced, the order of
its two patterns was also randomised so the same pair was
presented in the two possible arrangements (i.e. a-b or b-
a) to different subjects. Subjects listened to the same pair
as many times as they needed, and the similarity value
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was reported using a Likert scale with a range from 1 to
10, where 1 means the pair is completely dissimilar and
10 means the pair has the topmost similarity (i.e. the pair
contains equal patterns). This procedure follows the one
used byGabrielsson inGE2 explained in Section 5.When
the subjects completed the experiment, they answered
some questions about themselves: age, gender, years of
musical training, years of musical performance training,
years of percussive musical performance training, hours
per week spent attentively listening to music, experience
in electronic music production, experience in electronic
drum programming, and the average number of times
they listened to the pairs before answering. Finally, the
possibility to leave a comment on the experiment was
provided.

6.2. Results

In order to clarify the analysis, the 10 point scale was
mapped to a 5 point scale where each value of the new
scale groups two values of the original one (1 groups
the results of ratings 1 and 2, 2 groups ratings 3 and 4
and so on). Three subjects rated different pairs as being
‘exactly the same’ and therefore theywere discarded from
the experiment because there were no identical pairs (i.e.
we considered the subjects were not properly attending
to the task). The control pairs were used to perceive dis-
tortion in the ratings of the same pairs, and the average
of the maximum difference of all subjects when rating
the same pair was 1.8 units (over 5) which is a 36% of

maximumvariation. In order to approximate our analysis
to that of Gabrielsson, we created a subgroup of subjects
compliant with the musical background reported in his
experiments, which consisted of ‘amateur musicians who
had performed music for at least 4 years’. A subset of our
General group composed of 18 subjects with at least 4
years of musical training was defined and we will refer
to it as the Musicians group. The inter quartile range
mean for the rating is 1.81 units for the General group
and 1.48 units for the Musicians group, suggesting more
agreement in the latter than in the former group.

The observed mean for each assessed pair presents
slight differences when both groups are compared using
the median rating values for each pair. Only 9 pairs out
of 36 differ in median value from one group to another:
6 pairs present changes in a degree of 2 units, and 3 pairs
present changes in a degree of 1. Pairs that involve rhythm
Deep House do not change between groups and the pairs
that involve rhythm ‘Deep Tech House’ have 4 changes
between groups. The difference between the spaces gen-
erated by theMusicians group and the general groupwere
not big to keep their spaces separated so, fromnowon, we
operate with all results. Then, we use the median rating
for each pair to create the dissimilarity matrix.

AnMDS is applied to the obtained dissimilaritymatrix
generating a bi-dimensional space (Figure 13, left). We
can observe there that the three genres from where the
rhythm patterns were extracted span across three dis-
tinct regions of the space. Breakbeat patterns are located
in the positive region of the X axis, while Techno and

Figure 13. Original and forecasted EDM spaces. Left: Bi-dimensional space obtained by usingMDS on the dissimilarity matrix of subject
ratings. Right: Bi-dimensional space obtained by our descriptor-based model.
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Table 6. SpearmanRank correlationsbetweeneachEDMaxis and
the prediction using the descriptor sets from GE1 rendered using
PCA and MDS. The E1 set MDS (in bold) presents the highest
correlations and lower p-value.

Correlation values

Method X Y

E1 set PCA rho = 0.62 p = 0.076 rho = 0.68 p = 0.042
E1 set MDS rho = 0.67 p = 0.049 rho = 0.78 p = 0.012
E2 set PCA rho = 0.52 p = 0.154 rho = 0.45 p = 0.224
E2 set MDS rho = 0.63 p = 0.067 rho = 0.683 p = 0.042
E1+ E2 set PCA rho = 0.466 p = 0.205 rho = 0.683 p = 0.042
E1+ E2 set MDS rho = 0.383 p = 0.308 rho = 0.5 p = 0.17

House patterns are located from the zero to the nega-
tive portion of the X axis. The X-negative quadrants of
the space contain, in the Y-positive region the Techno
patterns, and in the Y-negative region the House pat-
terns. In EDM, rhythm and timbre are the most salient
musical characteristics to define styles (Butler, 2006), so
it is relevant for EDM drum patterns to carry important
stylistic/similarity information. This stylistic informa-
tion comes through, in the resulting subject-based EDM
space, as patterns of the same style end up located in
specific and independent regions.

Finally, from the patterns in the EDMspace, we extract
the two descriptor sets found in the previous experi-
ment (exploring GE1 andGE2with our descriptors). The
descriptor set forGE1 is {midD, hiD, hiness, lowsync, hisy-
ness} and for GE2 is {midD, hiness, lowsync, midsync,
hisync, losyness, hisyness}. Using these descriptor values
we compute PCA andMDS to evaluate whether the loca-
tions of the EDM patterns can be predicted with any of
the sets. Table 6 presents the correlations between the
positions of each pattern in the predicted space and in
the resulting EDM space.

6.3. Relevant set of descriptors

The descriptors derived from the Multitask Lasso anal-
ysis yielding the best fit with GE1 space and our EDM
experiment using MDS are {midD, hiD, hiness, lowsync,
hisyness}. These descriptors cover all frequency ranges
in which the drum patterns are segmented (low, mid
and high). The only low frequency descriptor present is
{lowsync}which is expected given the crucial importance
of the syncopation of the low frequencies in the over-
all syncopation sensation of a drum pattern, as proposed
by Hove et al. (2014). The mid frequency range descrip-
tor {midD} represents the normalised onset density of
the mid frequency. The high frequency descriptors are
{hiD, hiness and hisyness}, all related with the density and
the syncopation of the instruments mapped to the high
frequency category.

Using the set of descriptors resulting from our first
experiment (E1), for analysing the patterns of the EDM
experiment and then applying MDS to those results (E1
set MDS), we observe Spearman correlations with val-
ues 0.67 (p-value < 0.05) and 0.78 (p-value < 0.05) for
the x and y axis, respectively (see Table 6 and Figure 11,
right). The other two combinations of sets and dimen-
sional reduction techniques that are almost significantly
correlated with the EDM space are E1 set PCA and E2 set
MDS, but none of them yield statistical significant cor-
relations for any of the axes. As a conclusive statement,
we have shown that using the E1 set, and then MDS,
captures the distance sensations reported by the subjects
both in Gabrielsson’s experiment 1 and also in our EDM
experiment.

6.4. Discussion

By defining a broad set of descriptors and using them to
fit symbolic rhythms as defined in Gabrielsson’s spaces
(1973b), we discovered descriptors that allow the con-
struction of very general rhythm spaces as reported
(without such descriptors-based analysis) in early liter-
ature. We have thus seen that these descriptors, based
on main concepts of rhythm cognition, allow us to con-
struct stylistic meaningful spaces constrained to EDM.
Consequently, we could use these descriptors in sys-
tems which present, visualise and manipulate pattern
collections. This way, users could have 2D representa-
tions which, being close to their mental representations,
could be exploited for meaningful search, selection and
invention tasks.

Although the reported experiments were not designed
for classification, it is revealing that the concept of EDM
style comes through in the space that arises from our sec-
ond experiment. This can be taken as a demonstration of
howmusical concepts such as House, Techno and Break-
beat emerge based on listening to a handful of instances,
each occupying a specific region of a conceptual space.
That said, as 61% of theMusicians group reported having
experience in EDMproduction, the distribution by styles
can also represent the effect of a pre-existing knowledge
about EDM, affecting on how patterns are both perceived
and their similarity judged.

Drum patterns used in Gabrielsson’s experiment 1
come from different dance music cultures, namely West-
ern, Afro Cuban and South American. Patterns in the
EDM set belong to three EDM subgenres: Techno, House
and Breakbeat. Patterns in E1 contain more cultural and
rhythmic diversity than the EDM drum patterns used
in experiment 4. This suggests that, conceptually, the
space denoted by Gabrielsson’s patterns spans over a
wider region than the EDM patterns of our experiment.
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A further clarifying experiment, beyond the scope of this
article, would consist of adding some EDM patterns to
those used in Gabrielsson’s, in order to see how far EDM
ones are from the rest, and how close between them they
appear in such a big picture.

To conclude, our results show that using a reduced set
of descriptors, namely {midD, hiD, hiness, lowsync, hisy-
ness}, computing Euclidean distance between the vectors
describing each rhythm pattern, and then using MDS, a
perceptual rhythm space composed of EDM patterns is
reproduced with significant correlation values with lis-
teners’ ratings. Although this is a significant advancement
towards a system capable of automatic drum pattern
organisation, further experiments must be carried out to
evaluate its robustness when applied to larger datasets.

7. A rhythm space for rhythm generation

In the project that framed the research reported here,7
EDM drum production has been studied in order
to understand specific technological needs which help
improve its current practice.One suchnecessary improve-
ment is to organise and explore a collection of drum
patterns (which usually contains hundreds or thousands
of patterns) by their rhythm properties. Both activities
expand the current state of browsing music files in a
computer system, which is currently done in alphabetical
order, without taking into account rhythm or any other
musical properties. Alphabetical browsing, although uni-
versally used, has proven to result in under-exploring
collections of musical material (Turquois et al., 2016).
Ideally, when organising a collection of drum files by
some of their meaningful properties, similar patterns
should be close together so they can be browsed and
retrieved easily. One structure that can deal with this
type of arrangement is a low dimensional coordinate
system, as it allows for the visualisation of many ele-
ments located according to their values in the different
dimensions. Such spaces favour that observers can make
sense of a collection, as they can both grasp the local
relations of their elements as well as inspect the com-
plete set. Additionally, if such a rhythm space is made
interactive, the user can also point to a specific posi-
tion and enable its reproduction in real-time. In this
sense, the rhythm space becomes a percussive instru-
ment which allows the sequencing of complete drum
patterns by gesturing over an interface. The idea is then
to create an interactive rhythm space application that can
be used for organising, visualising and retrieving drum
pattern files.

7 http://giantsteps-project.eu/.

The backbone of a rhythm space for EDM drums
is an adequate similarity distance, measurable from the
patterns themselves and aligned with the closeness sen-
sations that human subjects may report. Given this per-
spective, it makes sense to use the results presented in
Section 6 as the foundation supporting drum rhythm
spaces.

In the process of studying rhythm spaces it was sug-
gested that, using the appropriate metrics, any collection
of drum patterns can be properly arranged into a low
dimensional map where points represent patterns that
can be retrieved. However, such a space is discrete, lim-
ited to jumping from one pattern of the collection to
another, restricting the possibility of a more continu-
ous and nuanced exploration of rhythm. Expanding on
this idea, new algorithms for drum pattern interpola-
tion can be developed as an expansion to an interactive
drum rhythm space. By implementing these algorithms
as a layer on top of the rhythm space, the space becomes
continuous. Any blank point (a point where no pattern
from the collection is located) can retrieve a new pat-
tern created in real-time based on its neighbours. With
these algorithms, a rhythm space is enhanced with gen-
erative capabilities, becoming a visualisation tool that
auto-generates new elements on the fly, expanding its
original contents.

7.1. Rhythm space interpolation

As a means to add continuity to a rhythm space built
up from a discrete collection of patterns, a drum inter-
polation algorithm is proposed. Based on a Delaunay
triangulation (Lee & Schachter, 1980) of a 2D rhythm
space, this algorithm weights the three surrounding pat-
terns of any point in the rhythm space in order to achieve
smooth transitioning along the space. A transitionwithin
three different rhythms suggests a new hybrid pattern,
with features that resemble the surrounding patterns.
Our algorithm takes care of smoothly introducing and
removing onsets in the pattern, based on the interpola-
tion values.

The main elements of our drum pattern interpolation
algorithm (DPIA) are the onsets, defined by an instru-
ment and the step (rows and columns respectively in
Figure 15). The first phase for interpolating is comput-
ing, for each pattern, the step density (the sum of onsets
at each step) and the patternweight (pω) which is propor-
tional to the proximity of the interpolation pointer (p) to
each pattern being interpolated. Each distance (ap, bp, cp)
is normalised by dividing its magnitude by the distance
of the line that starts in each vertex, ends in the opposite
edge, and passes through p (ad, be, cf ) (see Figure 14).
In parallel, by making a stepwise weighted sum, the step

http://giantsteps-project.eu/
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Figure 14. Pattern weights (apω, bpω, cpω) are derived from the
distance of point P to the three vertices of the triangle ABC.

densities of each pattern are combined (the sum of the
different onsets) to produce a step density vector (SDV)
having a specific density value per step.

Onsets in each pattern have three weights assigned:
syncopation value (sω), frequency class (f ω) and density
ratio (d ω). Highest weights are assigned respectively to
onsets with higher syncopation (derived from the met-
rical weights) (Longuet-Higgins & Lee, 1984), lower fre-
quency instruments and most common onsets within a
pattern (See Figure 15).

An onset pattern weight (Opω) is obtained by divid-
ing the pattern’s weight (pω) by the number of onsets at
every step (e.g. if onsets are snare and kick and the pat-
tern weight is pω = 0.5, then Op for the kick and the
snare is 0.25). Using the four onset weights (Osω, Of ω,
Odω,Opω), each onset of every interpolated pattern gets
a final weight (O ω) obtained by multiplying the four
weights: O ω = Osω ×Of ω ×Od ω ×Opω. Finally at
every step, the weights from common instruments from
all interpolated patterns are added (i.e. snare 0.2+ snare
0.1 = snare 0.3). A final set of unique onsets is obtained
and sorted in descending order according to their final
weights (O ω). At every step, the value of the step density

Figure 15. Piano roll representation of a drum pattern with time
in steps on the x axis and instruments on the y axis. Frequency
class weights (fω) are assigned to each onset given the frequency
class of the instrument. Syncopation weights (sω) are assigned
given the syncopation of each onset derived from the metrical
weight.

vector (SDV) is used as a filter to control the number of
output onsets. For example, if the SDV is three, the three
onsets with the highest weights are output. This proce-
dure is carried out at every pattern step (i.e. 16th note
slot) until a new interpolated pattern is generated.

7.2. Experiment 3: Interpolation experiment

In order to explore how the DPIA works, we designed an
experiment to evaluate how subjects perceive the inter-
polated pattern in relation to the original ones. We want
to explore if an interpolated pattern conveys rhythmic
information traceable to the parent patterns and propor-
tional to their weights. For simplicity, our experiment
is based on two parent patterns (A and B) which form
a resulting interpolated pattern (x). In an ideal interpo-
lation scenario, the sensation of listening to x resulting
from combiningA andB in equal proportionswill resem-
ble both A and B, but it will not be completely identified
with either of them. As x is a synthesis of A and B, a
transition of x followed by A or by B will present smaller
structural differences than that of a transition from A to
B. Our hypothesis is that if subjects listen to A, B and x
focusing only on rhythm, the contrast between AB pairs
would be rated as more contrasting than the contrast
between Ax pairs or than the contrast between Bx pairs.

7.2.1. Participants
Twenty-one subjects participated in our experiment.
They were mostly university students from Asia, Europe
and Latin America, all of them with at least two years of
music lessons and an average age of 4.8 years listening to
electronic dance music.

7.2.2. Materials
The same nine patterns used for the EDM experiment
(E2, Section 6.1.2) were used in this interpolation experi-
ment. From each of the 36 different combinations derived
from these 9 patterns, a new interpolated pattern at a
50% distance from each was generated. We will refer
to the original patterns as A and B and to the interpo-
lated pattern as x. Patterns were reproduced at a constant
120 BPM tempo using the same sound samples extracted
from Roland TR 707, 808, and 909 drum machines used
for the EDM experiment.

7.2.3. Procedure
Subjects were asked to interact with a computer program
implemented in Pure Data where they could read the
instructions of the task. Three buttons were presented,
each one associated with a Likert scale with a range from
1 to 5. Instructions invited them to ‘Click on each of the
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buttons to listen to a pair of drum patterns. After lis-
tening carefully, rate how abrupt the change is between
the two patterns within the couple; in other words, how
contrasting you find them’. Each button played back a
couple of patterns (two bars of one pattern and two bars
of another one) with the same tempo and without any
silence between them. Couples formed by combining
patterns A, B and xwere randomly distributed within the
three buttons (AB, AX and BX). The order in which pat-
terns were played back was also randomised (i.e. AB or
BA). This procedure was repeated with 36 different AB
couples, resulting in an experiment duration of approxi-
mately 20 minutes.

7.3. Results

In 71.6% of the rounds,AB pairs were rated as beingmore
or equally contrasting than Ax and Bx. In 56.7% of the
rounds AB pairs were rated as being more contrasting
than pairs Ax and Bx. Ratings of the stimuli were con-
sistent as 94% of AB pairs were considered by more than
50% of the subjects to be equally or more contrasting
than Ax and Bx, and 58% of AB pairs were considered
by 75% of the subjects to be equally or more contrasting
than Ax and Bx. However, two stimuli pairs (5%) were
specifically problematic as only 5% of the subjects rated

them as being equally or more contrasting than Ax and
Bx. TheABpairs withmaximumandminimumcontrasts
had average scores of 3.2 and 1.36 respectively. A one way
analysis of variance (ANOVA) presents strong evidence
that the expected values in the two different experimental
conditions (interpolated: Ax, Bx and non-interpolated:
AB) differ (p-value < 0.05, F-value = 226.719, degrees
of freedom = 1). Post-hoc analyses show significant
independence among the three experimental conditions
(p-value < 0.05). The means for the interpolated Ax,
Bx and the non-interpolated AB are 1.82 and 2.63
respectively.

7.4. Discussion

As reported in 71.6% of the listening rounds, new inter-
polated x patterns are less or equally contrasting per-
ceptually when transitioning to A and B, than the per-
ceptual contrast for transitioning from A to B. This
suggests that our algorithm is proficient in grasping
rhythmic aspects of two patterns (A and B) and then
blending those aspects to create a new pattern. The pro-
posed DPIA’s method for assigning weights to patterns’
onsets seems to be an appropriate process for extract-
ing important cues from two patterns which are to be
interpolated.

Figure 16. Screenshot of the rhythm space user interface. The white region on the left holds the nine patterns used in our EDM experi-
ment, represented by the small dots that conform the vertices of each triangle. The black square indicates the user’s browsing position.
The grid in the lower right region presents the output drum pattern.



454 D. GÓMEZ-MARÍN ET AL.

We found that the 14.9% difference between ratingAB
equally ormore contrasting thanABx (71.6%), and rating
strictly AB as more contrasting than ABx (56.7%) is due
to some sort of perceived asymmetry in the interpolated
pattern. That is, the generated x pattern was perceived as
not in the middle between A and B, but leaning towards
one of them, causing the reported contrast to be unbal-
anced. This can suggest that if x is not perceived as being
in the middle but closer to B then the contrast between
Ax and AB could be reported as the same.

Exploring the cases where the reported sensation of
contrast does not comply with our hypothesis (AB was
reported as less contrasting thanAx and Bx) it was found
that it happened mainly with Breakbeat patterns. All
three Breakbeat patterns used in the experiment are com-
posed only of kick, snare and hihat, while all Techno
andHouse patterns containmore than three instruments.
The difficulty to interpolate pairs that include Break-
beat patterns can be produced by the DPIA dividing the
50% interpolation weight between few types of sounds,
especially when, in Breakbeat patterns, there is at most
a two-onset coincidence at one step. This makes every
Breakbeat pattern onset to be highly weighted, especially
the kick drum, as it is multiplied by a higher frequency
class weight (f ). On the contrary, House and Techno
patterns typically contain coincidences of 3 and even 4
instruments on the same step. This weakens the final
weight of all instruments, even the low frequency ones as
the kick. A further enhancement of the algorithm can be
to introduce the number of instruments as an additional
source of discrimination.

Although the experiment was carried out by interpo-
lating between two patterns, the interpolation process (as
described in section 7.2) is suited to interpolate between
two or more patterns. For the rhythm spaces (described
in section 7.1), in which three patterns are interpo-
lated (via Delaunay triangles), the presented interpola-
tion algorithm is suited for continuous bi dimensional
explorations of drum pattern collections. An example of
a working prototype of a rhythm space user interface is
presented in Figure 16.

8. Conclusions

The original research presented in this paper explores the
domain of electronic dance music drum patterns from
a cognitive perspective. A method for analysing collec-
tions of symbolic drum patterns and organising them
according to a rhythm cognition model is presented, and
a musical application for processing drum rhythms that
is developed and described from our reported findings.

One contribution of this work is the articulation of dif-
ferent notions of polyphonic rhythm processing into a set

of MIDI-based computable features. Specially Grabriels-
son’s notions on the humandrivers of polyphonic rhythm
processing, which he described verbally but did not for-
malise in anymathematical model, have been turned into
computable features.

The experiments on human processing of polyphonic
drum similarity led to designing new symbolic rhythm
descriptors, and to finding how a sub-set of these descrip-
tors {lowsync, midD, hiD, hiness, hisyness} is capable
of predicting human polyphonic similarity sensations.
These useful descriptors are based on syncopation, pat-
tern density and rhythm complexity, measured over low,
mid and high frequency ranges. Using this set of descrip-
tors and multidimensional scaling (MDS), a collection
of symbolic drum patterns can be analysed and pro-
cessed to obtain a low dimensional map where all pat-
terns are organised by similarity. These maps, called
rhythm spaces, were created and evaluated in two differ-
ent subject-based experiments. From these experiments
it can be concluded that rhythm spaces created with this
methodology align with subject-based rhythm spaces.
Specifically, the arrangement of two subject-based spaces,
one using EDM drum patterns and another using a col-
lection of multicultural dance rhythms, were successfully
predicted using themethodology proposed. These results
validate the whole approach taken to create rhythm
spaces, comprising selected symbolic descriptors and the
multidimensional scaling technique.

Considering the accuracy for predicting human-based
rhythm spaces, our method for analysing and organis-
ing rhythm patterns was converted into a novel method
for the visualisation, retrieval and generation of drum
patterns. A novel software application uses the same
descriptors and MDS technique discussed above, to con-
vert a collection of symbolic drum patterns into a bi-
dimensional space which organises patterns automati-
cally, given their rhythmic properties. The rhythm spaces
created this way depict the analysed collection of pat-
terns as points in a space (which are located according
to their similarity). Hence, patterns perceived as being
alike appear close together, and separated from dissim-
ilar ones. This map-like structure is used to visualise a
complete collection of patterns and explore it, retriev-
ing patterns by pointing at them. This whole procedure
targets the actual need for browsers specialised in music
content (as it is the case for drum patterns), allowing
for complete collections to be visualised and explored,
and expanding the actual (limited) possibilities of music
content browsing. The process of designing this applica-
tion was naturally complemented with the development
of an algorithm for pattern-interpolation. This algorithm
broadens the capabilities of a rhythm space as it allows the
exploration of regions where no patterns are located, and
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the generation of new patterns based on the surrounding
ones. This feature turns a discrete rhythm space, capa-
ble of retrieving only the patterns in the collection, into
a continuous space that, as it is browsed, generates new
patterns beyond the contents of the collection. The novel
application presented here becomes then a tool that goes
beyond organising and visualising a drum pattern collec-
tion as a rhythm space, making possible the generation
of new patterns in places and regions where the collec-
tion falls short of items. In conclusion, by means of our
research rhythm spaces were turned from a navigational
and representational metaphor into a generative one.
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