
Helios

Home

Installation

Verification Specs

Helios v1 and v2

Verification Specs

Helios v3 Verification

Specs

Helios v4

Attacks and Defenses

Recent site activity

Verification Specs >

Helios v1 and v2 Verification Specs

Introduction

Helios is an open-audit voting system, which means that:

Alice can verify that her vote was correctly captured,

all captured votes are displayed (in encrypted form) for all

to see, and

anyone can verify that the captured votes were correctly

tallied.

This document specifies all data formats and the exact

verification protocols and algorithms. Using this document, it

should be possible for an able programmer to build a complete

verification program in any modern programming language. For

the sake of concreteness, instead of pseudo-code, we use

Python (2.3 or above.)

Accessing Data

All data for an election is easily accessible using simple HTTP

GET requests. Consider an election with election id

<ELECTION_ID>. The election data structure, including the

election public key, questions, etc., can be obtained by

requesting the following URL:

 http://www.heliosvoting.org/elections/<ELECTION_ID>

The list of voters, denoted <VOTER_LIST>, is available at:

 http://www.heliosvoting.org/elections/<ELECTION_ID>/voters

Given this list, it is possible to extract individual voter identifiers,

denoted <VOTER_ID> (the data structure will be explained later

in this document.) Once obtained, a complete voter data

structure, including encrypted vote, can be downloaded at:

 http://www.heliosvoting.org/elections/<ELECTION_ID>/voters/<VO

When downloading multiple ballots at the same time, it is

possible to request a list of voters with their encrypted vote:

 http://www.heliosvoting.org/elections/<ELECTION_ID>/voters?wit

It is recommended that lists of voters with their votes be

Search this site

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

1 of 13 4/9/18, 3:39 PM

downloaded in batches of no more than 50, which can be done

with an additional URL argument:

 http://www.heliosvoting.org/elections/<ELECTION_ID>/voters?wit

And the next batch can be requested using the after
parameter:

 http://www.heliosvoting.org/elections/<ELECTION_ID>/voters?wit

The result of an election is available at:

 http://www.heliosvoting.org/elections/<ELECTION_ID>/result

While the proof of this result is available at:

 http://www.heliosvoting.org/elections/<ELECTION_ID>/result_pro

For testing purposes, the following election identifier can be

used:

 agxoZWxpb3N2b3RpbmdyDwsSCEVsZWN0aW9uGOAQDA

which means that its election information is at

http://www.heliosvoting.org/elections

/agxoZWxpb3N2b3RpbmdyDwsSCEVsZWN0aW9uGOAQDA.

All data for this election was generated using the Helios system,

and a verification program, built to the guidelines that follow,

should be able to check all of the results.

If one wants to check the audit trail of a ballot, a new ballot audit

trail can be generated at any time using the voting booth

interface for this election. For convenience, one such ballot audit

trail is available here, with choices 2 (Drummond) and 3 (Axel).

The ballot fingerprint is 6PkosgVAYO11FbVvqHGBeRo1SNs.

Data Formats

We begin with a description of the data types and their

representations. All data made available by Helios is in

JavaScript Object Notation (JSON) format, with keys in

alphabetical order and no extraneous whitespace other than that

specified by JSON. These two conditions are particularly

important, as hashing data structures will only yield the same

hash if the conditions are respected. An example of a JSON

data structure with these two conditions is:

Example (not an actual Helios data structure)

{"email": ["ben@adida.net", "ben@mit.edu"], "first_name": "Ben",

"last_name": "Adida"}

Basic Cryptographic Datatypes

All large integers are represented in decimal form as strings,

rather than integers. The reason is that some languages do not

support big integers natively, and thus cannot properly parse

large integers in JSON integer form. An El-Gamal public-key is

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

2 of 13 4/9/18, 3:39 PM

then a dictionary including the prime p, the primer-order q of its

intended subgroup, the generator g, and the public-key value y
(with keys in alphabetical order):

<ELGAMAL_PUBLIC_KEY>

{"g": "6811145128679259384514506369165", "p":

"16998971978194099593503959", "q":

"8499485989097049796751", "y":

"7464668703479877164253720373259704"}

An El-Gamal ciphertext is a JSON structure containing

properties alpha and beta, the two components modulo p.

<ELGAMAL_CIPHERTEXT>

{"alpha": "72348234202340223423", "beta":

"123498235234234234324" }

In Helios, all ciphertexts are Exponential ElGamal, so alpha =
g^r mod p, and beta = g^m y^r mod p.

Voter

A single voter in Helios is represented using a few fields that

identify the voter:

<VOTER>

{"email": "benadida@gmail.com", "name": "Ben Adida",

"vote_hash": null, "voter_id":

"agxoZWxpb3N2b3RpbmdyCwsSBVZvdGVyGCcM"}

The voter_id is unique across all elections hosted at this

particular Helios server. The vote_hash is the SHA1 hash of

the voter's encrypted ballot. Until the voter casts a ballot,

vote_hash is null.

Voters may be identified by OpenID URL rather than email

address, in which case their JSON representation is:

<VOTER> (2)

{"name": "Ben Adida", "openid":

"http://benadida.myopenid.com", "vote_hash": null, "voter_id":

"agxoZWxpb3N2b3RpbmdyCwsSBVZvdGVyGCcM"}

In elections where voters are placed in categories (e.g.

precincts), an additional category field is present:

<VOTER> (3)

{"category": "02139", "email": "benadida@gmail.com", "name":

"Ben Adida", "vote_hash": null, "voter_id":

"agxoZWxpb3N2b3RpbmdyCwsSBVZvdGVyGCcM"}

Once a voter has cast a ballot, their JSON representation is

augmented with their encrypted vote:

<VOTER_WITH_VOTE>

{"category": "02139", "name": "Ben Adida", "openid":

"http://benadida.myopenid.com", "vote" : <VOTE>, "vote_hash":

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

3 of 13 4/9/18, 3:39 PM

"f1d2d2f924e986ac86fdf7b36c94bcdf32beec15", "voter_id":

"agxoZWxpb3N2b3RpbmdyCwsSBVZvdGVyGCcM"}

We describe the details of the <VOTE> data structure later in this

document, once we have described all of the required

components.

It may be confusing to note that vote_hash and vote are both

present within the data structure, when the hash is clearly

derived from the vote. The reason for the presence of both is

that, when voters are listed in a <VOTER_LIST>, only the

vote_hash is listed, not the complete vote, for efficiency

purposes.

Election

An election is represented as:

<ELECTION>

{"election_id":

"agxoZWxpb3N2b3RpbmdyDgsSCEVsZWN0aW9uGAYM",

"name": "foo234234", "pk": <ELGAMAL_PUBLIC_KEY>,

"questions": <QUESTION_LIST>, "voters_hash":

"G6yS\/dAZm5hKnCn5cRgBGdw3yGo", "voting_ends_at": null,

"voting_starts_at": null}

election_id is a unique identifier for the election, and name is

the election's name.

<ELGAMAL_PUBLIC_KEY> is, as detailed earlier, the JSON

data structure that represents an El-Gamal public key.

<QUESTION_LIST> is a data structure that represents the list of

questions and available answers to those questions.

<QUESTION_LIST>

[<QUESTION>, <QUESTION>, ...]

and a single question is a JSON object:

<QUESTION>

{"answer_urls": ["http://example.com/alice", null], "answers":

["alice", "bob"], "max": 1, "question": "Who Should be

President?", "short_name": "President"}

which, in this case, contains two possible answers (alice and

bob), URLs that describe these answers in greater detail, the

text of the question, and a short name for the question. The

parameter max indicates the maximum number of options that a

voter can select, most often 1. Note how, given that this max
value should be a small integer, it is in fact serialized as an

integer, not as a string.

voters_hash is the base64 encoding of the SHA1 hash of the

list of voters for the election. The list of voters is a JSON array,

where each voter is represented without a cast ballot and

without the vote_hash, of course (otherwise voters_hash

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

4 of 13 4/9/18, 3:39 PM

changes as voters cast their ballot). For example, a list of voters

might be:

<VOTER_LIST> (example)

[{"email": "ben@adida.net", "name": "Ben Adida", "voter_id":

"453"}, {"name": "Ella", "openid": "http://ella.example.com",

"voter_id": "834"}]

Note: we strictly follow the JSON specification, so the forward-

slash character "/" is escaped as "\/". Not all JSON toolkits do

this correctly, given that escaping the forward-slash is not

necessary given JavaScript specifications, but for

interoperability, we choose the strict interpretation. Python's

simplejson does the right thing.

Open Registration

Helios supports "open registration elections", when the election

administrator so desires. In those elections, the voter list is not

set ahead of time. In that case, an election data structure does

not contain voters_hash, but does contain a new field,

openreg:

<ELECTION>

{"election_id":

"agxoZWxpb3N2b3RpbmdyDgsSCEVsZWN0aW9uGAYM",

"name": "foo234234", "openreg": True, "pk":

<ELGAMAL_PUBLIC_KEY>, "questions": <QUESTION_LIST>,

"voting_ends_at": null, "voting_starts_at": null}

Election Fingerprint

Once an election is ready to be used for voting, the

administrator freezes the election, at which point Helios prevents

changing any of the question parameters and voter registration

settings: an open election remains an open election, and a

closed election remains closed with a fixed voter list.

Such a frozen election can be designated by its Helios Election

Fingerprint, which is the base-64-string-encoded SHA1 of the

election data structure serialized as JSON (with properly

alphabetized field names). Note how this fingerprint depends on

the list of voters if the election registration status is closed, but

not if it is open. In any case, this fingerprint does not depend on

any cast vote or cast-vote hash.

Vote

A vote contains a list of encrypted answers, and a reference to

the election, both by ID (for convenience) and by hash (for

integrity.) The hash is the election fingerprint just described.

<VOTE>

{"answers": [<ENCRYPTED_ANSWER>,

<ENCRYPTED_ANSWER>, ...], "election_hash":

"Nz1fWLvVLH3eY3Ox7u5hxfLZPdw", "election_id":

"agxoZWxpb3N2b3RpbmdyDgsSCEVsZWN0aW9uGAYM"}

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

5 of 13 4/9/18, 3:39 PM

Each "encrypted answer" corresponds to one election question:

it contains a list of ciphertexts (one for each possible choice for

that question), a list of corresponding proofs that the ciphertext

is correctly formed, and an overall proof that all of the

ciphertexts for that election question, taken together, are

correctly formed.

<ENCRYPTED_ANSWER>

{"choices": [<ELGAMAL_CIPHERTEXT>,

<ELGAMAL_CIPHERTEXT>, ...], "individual_proofs":

[<ZK_PROOF_0..1>, <ZK_PROOF_0..1>, ...], "overall_proof":

<ZK_PROOF_0..max>}

The value of max in overall_proof matches the value of max
in the election's question definition.

When a voter generates a ballot, Helios provides the ballot

fingerprint, which is the base64-encoding of the SHA1 hash of

the <VOTE> data structure defined above.

Proofs

A zero-knowledge proof, denoted <ZK_PROOF_0..max>, is a

transcript of a non-interactive proof that the corresponding

ciphertext encodes an integer value between 0 and max. For the

overall proof, the ciphertext whose value is being proven to be

between 0 and max is the homomorphic sum (element-wise

product) of the choices ciphertexts.

In Helios, all 0..max proofs are disjunctive proofs (CDS & CP),

meaning that the transcript includes max+1 proofs, one for each

possible value of the plaintext, 0 through max. The max+1
individual challenges must sum up to the single actual protocol

challenge, which ensures that one of the proofs is real (while the

others are simulated.)

<ZK_PROOF_0..max>

[<ZK_PROOF(0)>, <ZK_PROOF(1)>, ..., <ZK_PROOF(max)>]

A single ZK proof is then composed of three messages: the

commitment, the challenge, and the response. Since the proof is

a Chaum-Pedersen proof of a DDH tuple, the commitment is

composed of two values, A and B. Thus, a ZK proof is:

<ZK_PROOF(plaintext)>

{"challenge": "2342342", "commitment": {"A": "28838", "B":

"9823723"}, "response": "970234234"}

Ballot Audit Trail

When a voter chooses to audit their ballot, each encrypted

answer contains additional information concerning the actual

selected choice and the randomness used to encrypt each

choice's ciphertext. Specifically, the JSON structure for

<VOTE_WITH_PLAINTEXTS> is as follows.

<VOTE_WITH_PLAINTEXTS>

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

6 of 13 4/9/18, 3:39 PM

{"answers": [<ENCRYPTED_ANSWER_WITH_PLAINTEXT>,

<ENCRYPTED_ANSWER_WITH_PLAINTEXT>, ...],

"election_hash": <B64_HASH>, "election_id": <ELECTION_ID>}

And the contained <ENCRYPTED_ANSWER_WITH_PLAINTEXT>
is as follows.

<ENCRYPTED_ANSWER_WITH_PLAINTEXT>

{"answer": 1, "choices": [<ELGAMAL_CIPHERTEXT>,

<ELGAMAL_CIPHERTEXT>, ...], "individual_proofs":

[<ZK_PROOF_0..1>, <ZK_PROOF_0..1>, ...], "overall_proof":

<ZK_PROOF_0..max>, "randomness": [<BIGINT>, <BIGINT>,

<BIGINT>]}

Result

The result of an election is represented using two structures:

<RESULT> and <RESULT_PROOF>. The result simply displays

the count of votes for each candidate within each question, in an

array of arrays format.

<RESULT>

[[<QUESTION_1_CANDIDATE_1_COUNT>,

<QUESTION_1_CANDIDATE_2_COUNT>,

<QUESTION_1_CANDIDATE_3_COUNT>],

[<QUESTION_2_CANDIDATE_1_COUNT>,

<QUESTION_2_CANDIDATE_2_COUNT>]]

The <RESULT_PROOF> data structure is formatted exactly the

same way, with a Chaum-Pedersen proof of proper decryption

for each candidate within each question:

<RESULT_PROOF>

[[<QUESTION_1_CANDIDATE_1_PROOF>,

<QUESTION_1_CANDIDATE_2_PROOF>,

<QUESTION_1_CANDIDATE_3_PROOF>],

[<QUESTION_2_CANDIDATE_1_PROOF>,

<QUESTION_2_CANDIDATE_2_PROOF>]]

A Note on the Source Code in this

Specification

In the rest of this document, we show how to verify various

aspects of a Helios election using Python code for concreteness

and legibility. We assume that certain data structures have been

defined: election, vote, proof, disjunctive_proof, and

a few others, all of which correspond to collections of fields that

directly map to the JSON data structures described above.

However, we note that a verification program need not

necessarily parse these JSON strings into custom Python

objects. It is perfectly acceptable to extract individual fields when

necessary.

In particular, in a number of cases, our sample code will call

election.toJSON(), or vote.toJSON() in order to re-

convert the data structure to JSON so that it can be hashed and

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

7 of 13 4/9/18, 3:39 PM

checked for integrity. A verification program that handles JSON

strings directly without de-serializing them to Python objects

would obviously not need to re-serialize to JSON, either. The

original JSON provided by the Helios server hashes

appropriately to the intended values.

Verifying a Single Ballot

Recall the Chaum-Pedersen proof that a ciphertext

(alpha,beta) under public key (y, (g,p,q)) is proven to

encode the value m by proving knowledge of r, the randomness

used to create the ciphertext, specifically that g, y, alpha,
beta/g^m is a DDH tuple, noting that alpha = g^r and

beta/g^m = y^r.

Prover sends A = g^w mod p and B = y^w mod p for

a random w.

Verifier sends challenge, a random challenge mod q.

Prover sends response = w + challenge * r.

Verifier checks that:

g^response = A * alpha^challenge
y^response = B * (beta/g^m)^challenge

verify_proof(ciphertext, plaintext, proof, public_key):

if pow(public_key.g, proof.response, public_key.p) !=

((proof.commitment.A * pow(ciphertext.alpha, proof.challenge,

public_key.p)) % public_key.p): return False beta_over_m =

modinverse(pow(public_key.g, plaintext, public_key.p),

public_key.p) * ciphertext.beta beta_over_m_mod_p =

beta_over_m % public_key.p if pow(public_key.y,

proof.response, public_key.p) != ((proof.commitment.B *

pow(beta_over_m_mod_p, proof.challenge, public_key.p)) %

public_key.p): return False return True

In a disjunctive proof that the ciphertext is the encryption of one

value between 0 and max, all max+1 proof transcripts are

checked, and the sum of the challenges is checked against the

expected challenge value. Since we use this proof in non-

interactive Fiat-Shamir form, we generate the expected

challenge value as SHA1(A0 + "," + B0 + "," + A1 +
"," + B1 + ... + "Amax" + "," + Bmax) with A0,
B0, A1, B1, ... ,Amax, Bmax in decimal form. (Ai and

Bi are the components of the commitment for the i'th proof.)

Thus, to verify a <ZK_PROOF_0..max> on a

<ELGAMAL_CIPHERTEXT>, the following steps are taken.

verify_disjunctive_0..max_proof(ciphertext, max,

disjunctive_proof, public_key):

for i in range(max+1): # the proof for plaintext "i" if not

verify_proof(ciphertext, i, disjunctive_proof[i], public_key): return

False # the overall challenge computed_challenge =

sum([proof.challenge for proof in disjunctive_proof]) %

public_key.q # concatenate the arrays of A,B values

list_of_values_to_hash = sum([[p.commitment.A,

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

8 of 13 4/9/18, 3:39 PM

p.commitment.B] for p in disjunctive_proof], []) # concatenate as

strings str_to_hash = ",".join(list_of_values_to_hash) # hash

expected_challenge = int_sha(str_to_hash) # last check return

computed_challenge == expected_challenge

Thus, given <ELECTION> and a <VOTE>, the verification steps

are as follows:

verify_vote(election, vote):

check hash (remove the last character which is a useless '=')

computed_hash =

base64.b64encode(hash.new(election.toJSON()).digest())[:-1] if

computed_hash != vote.election_hash: return False # go

through each encrypted answer by index, because we need the

index # into the question array, too for figuring out election

information for question_num in range(len(vote.answers)):

encrypted_answer = vote.answers[question_num] question =

election.questions[question_num] # initialize homomorphic sum

(assume operator overload on __add__ with 0 special case.)

homomorphic_sum = 0 # go through each choice for the

question (loop by integer because two arrays) for choice_num in

range(len(encrypted_answer.choices)): ciphertext =

encrypted_answer.choices[choice_num] disjunctive_proof =

encrypted_answer.individual_proofs[choice_num] # check the

individual proof (disjunctive max is 1) if not

verify_disjunctive_0..max_proof(ciphertext, 1, disjunctive_proof,

election.public_key): return False # keep track of homomorphic

sum homomorphic_sum = ciphertext + homomorphic_sum #

check the overall proof if not

verify_disjunctive_0..max_proof(homomorphic_sum,

question.max, encrypted_answer.overall_proof,

election.public_key): return False # done, we succeeded return

True

Auditing/Spoiling a Single Ballot

Given a <VOTE_WITH_PLAINTEXTS> and a claimed vote

fingerprint, verification entails checking the fingerprint, checking

all of the proofs to make sure the ballot is well-formed, and

finally ensuring that the ballot actually encodes the claimed

choices.

verify_ballot_audit(vote_with_plaintexts, election,

vote_fingerprint)

check the proofs if not verify_vote(election,

vote_with_plaintexts): return False # check the proper

encryption of each choice within each question # go through

each encrypted answer for encrypted_answer in

vote_with_plaintexts.answers: # loop through each choice by

integer (multiple arrays) for choice_num in

range(len(encrypted_answer.choices)): # the ciphertext and

randomness used to encrypt it ciphertext =

encrypted_answer.choices[choice_num] randomness =

encrypted_answer.randomness[choice_num] # the plaintext we

expect, g^1 if selected, or g^0 if not selected if choice_num ==

encrypted_answer.answer: plaintext = public_key.g else:

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

9 of 13 4/9/18, 3:39 PM

plaintext = 1 # check alpha if pow(public_key.g, randomness,

public_key.p) != ciphertext.alpha: return False # check beta

expected_beta = (pow(public_key.y, randomness, public_key.p)

* plaintext) % public_key.p if expected_beta != ciphertext.beta:

return False # check the fingerprint vote_without_plaintexts =

vote_with_plaintexts.remove_plaintexts() computed_fingerprint =

base64.b64encode(hash.new(vote_without_plaintexts.toJSON()).digest())[:-1]

return computed_fingerprint == vote_fingerprint

Verifying a Complete Election Tally

To verify a complete election tally, one should:

display the computed election fingerprint.

ensure that the list of voters matches the election voter-

list hash.

display the fingerprint of each cast ballot.

check that each cast ballot is correctly formed by verifying

the proofs.

homomorphically compute the encrypted tallies and

verify, using the result proof, that they correctly decrypt to

the claimed results. Display these results.

In other words, the complete results of a verified election

includes: the election fingerprint, the list of ballot fingerprints,

and the actual count. Any party who verifies the election should

re-publish all of these items, as they are meaningless without

one another. This is effectively a "re-tally".

Part of this re-tally requires checking a decryption proof, which is

almost the same, but not quite the same, as checking an

encryption proof with given randomness. First, we document the

verification of a decryption proof.

verify_decryption_proof(ciphertext, plaintext, proof, public_key):

Here, we prove that (g, y, alpha, beta/g^m) is a DDH tuple.

Before we were working with (g, alpha, y, beta/g^m) if

pow(public_key.g, proof.response, public_key.p) !=

((proof.commitment.A * pow(public_key.y, proof.challenge,

public_key.p)) % public_key.p): return False beta_over_m =

modinverse(pow(public_key.g, plaintext, public_key.p),

public_key.p) * ciphertext.beta beta_over_m_mod_p =

beta_over_m % public_key.p if pow(ciphertext.alpha,

proof.response, public_key.p) != ((proof.commitment.B *

pow(beta_over_m_mod_p, proof.challenge, public_key.p)) %

public_key.p): return False # compute the challenge generation,

Fiat-Shamir style str_to_hash = str(proof.commitment.A) + "," +

str(proof.commitment.B) computed_challenge =

int_sha(str_to_hash) # check that the challenge matches return

computed_challenge == proof.challenge

Then, the re-tally proceeds as follows.

retally_election(election, voters, result, result_proof):

compute the election fingerprint election_fingerprint =

b64_sha(election.toJSON()) # compute the voter list hash on

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

10 of 13 4/9/18, 3:39 PM

just the voter identities voters_without_votes =

votes.remove_votes() voters_hash =

b64_sha(voters_without_votes.toJSON()) # verify, no need to

continue if we fail here if voters_hash != election.voters_hash:

return False # keep track of voter fingerprints vote_fingerprints =

[] # keep track of running tallies, initialize at 0 # again, assuming

operator overloading for homomorphic addition tallies = [[0 for a

in question.answers] for question in election.questions] # go

through each voter, check it for voter in voters: if not

verify_vote(election, voter.vote): return False # compute

fingerprint

vote_fingerprints.append(b64_sha(voter.vote.toJSON())) #

update tallies, looping through questions and answers within

them for question_num in range(len(election.questions)): for

choice_num in

range(len(election.questions[question_num].answers)):

tallies[question_num][choice_num] =

voter.vote.answers[question_num].choices[choice_num] +

tallies[question_num][choice_num] # now we have tallied

everything in ciphertexts, we must verify proofs for

question_num in range(len(election.questions)): for choice_num

in range(len(election.questions[question_num].answers)): #

verify the tally for that choice within that question # check that it

decrypts to the claimed result with the claimed proof if not

verify_decryption_proof(tallies[question_num][choice_num],

pow(election.public_key.g, result[question_num][choice_num],

election.public_key.p), result_proof[question_num][choice_num],

election.public_key): return False # return the complete tally,

now that it is confirmed return { 'election_fingerprint':

election_fingerprint, 'vote_fingerprints' : vote_fingerprints,

'verified_tally' : result }

Election with Multiple Trustees

A Helios election can be configured to have multiple trustees,

each of which holds a share of the election secret key.

Before the trustees have submitted their public key shares, the

election's public key is null, e.g.:

Election with Trustees, before shares

{"election_id":

"agxoZWxpb3N2b3RpbmdyDgsSCEVsZWN0aW9uGAUM",

"name": "test-trustees", "pk": null, "questions": [], "voters_hash":

"l9Fw4VUO7kr8CvBlt4zaMCqXZ0w", "voting_ends_at": null,

"voting_starts_at": null}

The list of trustees for an election can be obtained at

 http://www.heliosvoting.org/elections/<ELECTION_ID>/trustees

which returns the <TRUSTEE_LIST> data structure as follows:

<TRUSTEE_LIST>

[<TRUSTEE>, <TRUSTEE>, ..., <TRUSTEE>]

where a single <TRUSTEE> data structure is:

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

11 of 13 4/9/18, 3:39 PM

<TRUSTEE>

{"decryption_factors": <DECRYPTION_FACTORS>,

"decryption_proofs": <DECRYPTION_PROOFS>, "email":

"trustee@election.com", "pk": <ELGAMAL_PUBLIC_KEY>,

"pok": <ELGAMAL_KEY_POK>}

Key Share and Proof of Knowledge of Secret

The <ELGAMAL_PUBLIC_KEY> field is a normal ElGamal public

key, as before. The <ELGAMAL_KEY_POK> is a non-

interactive proof of knowledge of the secret key corresponding

to the given public key. Helios uses the simple Schnorr proof of

knowledge of discrete log, which is a simple three-round

protocol proof as follows:

Prover generates w, a random integer modulo q, and

computes commitment = g^w mod p.

Verifier provides challenge modulo q.

Prover computes response = w + x*challenge
mod q, where x is the secret key.

Then, the verifier checks that g^response = commitment *
y^challenge, where y is the public key. In the non-interactive

setting, the challenge is generated as the decimal

representation of the SHA1 of the commitment.

The format for the resulting proof is as follows.

<ELGAMAL_KEY_POK>

{"challenge": "2342342", "commitment": "124235235",

"response": "970234234"}

Freezing a Trustee Election

Once all trustees have submitted their public key shares,

Decryption Shares

In Helios, the trustees are all required to show up for decryption.

Threshold decryption is not implemented at this time. Thus,

come decryption time, each trustee provides a decryption factor

and a proof that this decryption factor was correctly generated

given the trustee's public key.

Thus, <DECRYPTION_FACTORS> is structured the same way as

<RESULT>, an array of arrays, to provide one decryption factor

for each choice of each question.

<DECRYPTION_FACTORS>

[[<Q1_CANDIDATE_1_DEC_FACTOR>,

<Q1_CANDIDATE_2_DEC_FACTOR>,

<Q1_CANDIDATE_3_DEC_FACTOR>],

[<Q2_CANDIDATE_1_DEC_FACTOR>,

<Q2_CANDIDATE_2_DEC_FACTOR>]]

Then, <DECRYPTION_PROOFS> is a similarly structured array of

arrays, where each element is a proof of the corresponding

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

12 of 13 4/9/18, 3:39 PM

decryption factor, much like <RESULT_PROOF> is an element-

wise decryption proof of <RESULT>.

<DECRYPTION_PROOFS>

[[<Q1_CANDIDATE_1_PROOF>,

<Q1_CANDIDATE_2_PROOF>,

<Q1_CANDIDATE_3_PROOF>],

[<Q2_CANDIDATE_1_PROOF>,

<Q2_CANDIDATE_2_PROOF>]]

Each of these proofs is a DH-tuple proof, just like the original

result decryption proof, with the fourth element of the DH tuple

the corresponding decryption factor. So, for example,

<Q1_CANDIDATE_1_PROOF> is a transcript of the proof that g,
Q1_C1_TALLY.alpha, y,
<Q1_CANDIDATE_1_DEC_FACTOR> is a proper DH tuple. The

homomorphic tally, prior to decryption, is computed exactly as it

was without trustees.

Putting it All Together

At verification time, the steps for a trustee election are only

slightly different:

Each trustee's public-key share is verified against the

corresponding proof of knowledge.

The election's single public key is indeed the product of

the key shares.

Each individual ballot is verified just as before.

The encrypted tally for each candidate to each question is

homomorphically computed, just as before.

Each partial decryption for each candidate to each

question is verified.

The final tally for a given candidate is obtained by

multiplying the partial decryption factors, and dividing it

out of the corresponding encrypted tally's beta.

Sign in | Recent Site Activity | Report Abuse | Print Page | Powered By Google Sites

Comments

You do not have permission to add comments.

Helios v1 and v2 Verification Specs - Helios http://documentation.heliosvoting.org/verificatio...

13 of 13 4/9/18, 3:39 PM

