
Helios

Home

Installation

Verification Specs

Helios v1 and v2

Verification Specs

Helios v3 Verification

Specs

Helios v4

Attacks and Defenses

Recent site activity

Verification Specs >

Helios v4

This page documents the Helios v4 data structures and specs.

Contrary to previous ideas, Helios v4 will *not* support mixnets,

but its data structures will be ready to eventually support them.

NOT FINAL. THIS DOCUMENT IS IN

PROGRESS AS OF August 29th 2012.

Introduction

Helios is a truly verifiable voting system, which means that:

Alice can verify that her vote was correctly captured,

all captured votes are displayed (in encrypted form) for all

to see.

anyone can verify that the captured votes were correctly

tallied.

This document specifies all data formats and the exact

verification protocols and algorithms. Using this document, it

should be possible for an able programmer to build a complete

verification program in any modern programming language. For

the sake of concreteness, instead of pseudo-code, we use

Python (2.3 or above.)

This document covers Helios 4.0, due out for release in Fall

2012. The biggest changes from v3.0 are:

datatypes are more efficiently represented1.

proofs are more robust2.

Audit Data

All data for an election is easily accessible using simple HTTP

GET requests. The HTTP interface for accessing all data from a

given election is built so as to enable static storage of this data

in a simple filesystem made available over the web, to simplify

long-term robustness. Consider an election with election id

<ELECTION_ID>. Assuming a host and prefix that we denote

{HELIOS_HOST}, the election data structure, including the

election public key, questions, etc., can be obtained by

Search this site

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

1 of 16 4/9/18, 3:37 PM

requesting the following URL:

 {HELIOS_HOST}/elections/<ELECTION_ID>

The list of voters, denoted <VOTER_LIST>, is available at:

 {HELIOS_HOST}/elections/<ELECTION_ID>/voters/

Given this list, it is possible to extract individual voter identifiers,

denoted <VOTER_ID>

The list of cast ballots is available at, with each ballot including

the <VOTER_ID> that it corresponds to:

 {HELIOS_HOST}/elections/<ELECTION_ID>/ballots/

This call will return ballots in chronological (oldest to newest)

order, and takes optional parameters limit and after.

The list of all ballots cast by a voter is:

 {HELIOS_HOST}/elections/<ELECTION_ID>/ballots/<VOTER_ID>/all

For convenience, the last cast ballot is:

 {HELIOS_HOST}/elections/<ELECTION_ID>/ballots/<VOTER_ID>/last

The result of an election is available at:

 {HELIOS_HOST}/elections/<ELECTION_ID>/result

Every election has trustees (sometimes just one), and the list of

trustees, including each trustee's public key and PoK, decryption

factor and proof is at:

 {HELIOS_HOST}/elections/<ELECTION_ID>/trustees/

NOT YET IMPLEMENTED:

While the trustee's robustness information (e.g. Lagrange coeff)

is at:

 {HELIOS_HOST}/elections/<ELECTION_ID>/trustees/<TRUSTEE_ID>/ro

Data Formats

We begin with a description of the data types and their

representations. All data made available by Helios is in

JavaScript Object Notation (JSON) format, with keys in

alphabetical order and no extraneous whitespace other than that

specified by JSON. These two conditions are particularly

important, as hashing data structures will only yield the same

hash if the conditions are respected. An example of a JSON

data structure with these two conditions is:

Example (not an actual Helios data

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

2 of 16 4/9/18, 3:37 PM

structure)
{"email": ["ben@adida.net",
"ben@mit.edu"], "first_name": "Ben",
"last_name": "Adida"}

Basic Cryptographic Datatypes

All large integers are represented as base64 strings. An El-

Gamal public-key is then a dictionary including the prime p, the

primer-order q of its intended subgroup, the generator g, and

the public-key value y (with keys in alphabetical order):

<ELGAMAL_PUBLIC_KEY>
{"g": "Hbb3mx34sd", "p": "mN3xc34", "q":
"J3sRtxcwqlert", "y": "U8cnsvn45234wsdf"}

An El-Gamal ciphertext is a JSON structure containing

properties alpha and beta, the two components modulo p.

<ELGAMAL_CIPHERTEXT>
{"alpha": "6BtdxuEwbcs+dfs3", "beta":
"nC345Xbadw3235SD" }

In Helios, all ciphertexts are Exponential ElGamal, so alpha =
g^r mod p, and beta = g^m y^r mod p.

In Helios, all hash values are base-64 encoded, and the hashing

algorithm is always SHA256:

Hash value example
{"election_hash":
"c0D1TVR7vcIvQxuwfLXJHa5EtTHZGHpDKdulKdE1oxw"}

Voter

A single voter in Helios is represented using a few fields that

identify the voter. This data structure has changed from prior

versions of Helios in order to accommodate multiple types of

users, not just users identified by email address.

<VOTER>
{"name": "Ben Adida", "uuid":
"60435862-65e3-11de-8c90-001b63948875",
"voter_id": "benadida@gmail.com",
"voter_type": "email"}

Together, the type and id identify the voter via some external

authentication mechanism. In the example above, this is a user

whose email address is benadida@gmail.com. Another

example might be:

<VOTER>
{"name": "Ben Adida", "uuid":
"4e8674e2-65e3-11de-8c90-001b63948875",
"voter_id": "ben@adida.net", "voter_type":

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

3 of 16 4/9/18, 3:37 PM

"email"}

where this is a voter identified by the email address

ben@adida.net.

The uuid field is used as a reference key within Helios.

Voters may be identified by OpenID URL rather than email

address, in which case their JSON representation is:

<VOTER>
{"name": "Ben Adida", "uuid":
"4e8674e2-65e3-11de-8c90-001b63948875",
 "voter_id":
"http://benadida.myopenid.com",
"voter_type": "openid"}

Other fields may be present in a <VOTER> data structure, e.g.

category. These do not affect the cryptographic processing,

but if present, they become part of the hash of the voter list.

Protecting Voter Privacy

In order to protect voter privacy, Helios can obfuscate the

voter_id, especially when that voter_id is an email address. This

protection is not meant to resist a powerful attacker with other

knowledge about the voter, but mostly to prevent activities such

as email-address crawlers for the purpose of spamming. In this

case, a voter can be represented with the field voter_id_hash

replacing voter_id. The hash is SHA256 by default, or specified

as a prefix when it is a different hash:

<VOTER>
{"name": "Ben Adida", "uuid":
"60435862-65e3-11de-8c90-001b63948875",
"voter_id_hash":
"47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU",
"voter_type": "email"}

Voter Aliases

In some elections, it may be preferable to never reveal the

identity of the voters. This is particularly applicable when

organizers are worried about votes being decryptable in 30+

years, when cryptographic advances make today's algorithms

weaker. An election may thus publish only an

ALIASED_VOTER:

<ALIASED_VOTER>
{"alias": "voter_123", "uuid": "b7dbd90a-
65e3-11de-8c90-001b63948875"}

An aliased voter still has a UUID, so it can still be referred

appropriately in the rest of the system.

Casting a Vote

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

4 of 16 4/9/18, 3:37 PM

Once a voter has cast a ballot, the encrypted vote

representation is then:

<CAST_VOTE>
{"cast_at": "2009-07-15 12:23:46", "vote":
<VOTE>, "vote_hash":
"8bncn23nsfsdk234234",
 "voter_hash": "2bxksdlkxnsdf",
"voter_uuid": "b7dbd90a-65e3-11de-
8c90-001b63948875"}

cast_at is the timestamp of the cast vote in UTC.

We describe the details of the <VOTE> data structure later in this

document, once we have described all of the required

components.

vote_hash is available to enable a shorter version of this data

structure:

<SHORT_CAST_VOTE>
{"cast_at": "2009-07-15 12:23:46",
"vote_hash":
"c0D1TVR7vcIvQxuwfLXJHa5EtTHZGHpDKdulKdE1oxw",
 "voter_hash": "2bxksdlkxnsdf",
"voter_uuid": "b7dbd90a-65e3-11de-
8c90-001b63948875"}

where only the hash and not the full vote is listed.

Election

An election is represented as:

<ELECTION>
{"cast_url": "https://heliosvoting.org
/cast/",
 "description": "... blah blah blah ...
info about the election",
 "frozen_at": null,
 "name": "Student President Election at
Foo University 2010",
 "openreg": false, "public_key":
<ELGAMAL_PUBLIC_KEY>,
 "questions": <QUESTION_LIST>,
 "short_name": "fooprez2010",
 "use_voter_aliases": false,
 "uuid": "1882f79c-65e5-11de-
8c90-001b63948875",
 "voters_hash":
"G6yS/dAZm5hKnCn5cRgBGdw3yGo"}

short_name, name, and description describe the election.
The short name must be a few characters without a space
(almost like a database key), the name can be a long string, and
the description is an even longer description of the election.

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

5 of 16 4/9/18, 3:37 PM

cast_url indicates the URL where ballots for this election
should be cast.

frozen_at indicates the timestamp at which this election was
frozen. It remains null until the election is
frozen.

openreg indicates whether voters can be added to the list after
the election has started.

use_voter_aliases indicates whether this election aliases its
voters.

uuid is a unique identifier for the election, and name is the

election's name.

<ELGAMAL_PUBLIC_KEY> is, as detailed earlier, the JSON

data structure that represents an El-Gamal public key.

<QUESTION_LIST> is a data structure that represents the list of

questions and available answers to those questions.

<QUESTION_LIST>
[<QUESTION>, <QUESTION>, ...]

and a single question is a JSON object:

<QUESTION>
{"answer_urls": ["http://example.com
/alice", null], "answers": ["alice",
"bob"], "choice_type": "approval", "max":
1, "min": 0,
 "result_type": "absolute", "question":
"Who Should be President?", "short_name":
"President", "tally_type": "homomorphic"}

which, in this case, contains two possible answers (alice and

bob), URLs that describe these answers in greater detail, the

text of the question, and a short name for the question. The

parameter max indicates the maximum number of options that a

voter can select, most often 1. The parameter min indicates the

minimum number of options that a voter must select, most often

0. Note how, given that max and min should be small integers,

they are in fact serialized as integers, not as strings.

choice_type indicates the kind of question, for now just

approval (possibly with a maximum number of choices). If max

is null, then it's approval voting for as many candidates as

desired. tally_type indicates how the question is tallied, e.g.

homomorphic or mixnet.

voters_hash is the hash of the list of voters for the election.

The list of voters is a JSON array of <VOTER> data structures.

For example, a list of voters might be:

<VOTER_LIST> (example)
[{"id": "benadida@gmail.com", "name": "Ben
Adida", "type": "email", "uuid":
"60435862-65e3-11de-8c90-001b63948875"},

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

6 of 16 4/9/18, 3:37 PM

{"id": "ben@adida.net", "name": "Ben2
Adida", "type": "email", "uuid":
"4e8674e2-65e3-11de-8c90-001b63948875"}]

Open Registration

Helios supports "open registration elections", when the election

administrator so desires. In those elections, the voter list is not

set ahead of time. In that case, an election data structure

contains a null voters_hash, and sets openreg to true.

Election Fingerprint

Once an election is ready to be used for voting, the

administrator freezes the election, at which point Helios prevents

changing any of the question parameters and voter registration

settings: an open election remains an open election, and a

closed election remains closed with a fixed voter list. The

frozen_at field then indicates the timestamp at which the

election was frozen.

Such a frozen election can be designated by its Helios Election

Fingerprint, which is the hash of the JSON election data

structure (with properly alphabetized field names, as always).

Note how this fingerprint depends on the list of voters if the

election registration status is closed, but not if it is open. In any

case, this fingerprint does not depend on any cast vote or cast-

vote hash.

Vote

A vote contains a list of encrypted answers, and a reference to

the election, both by ID (for convenience) and by hash (for

integrity.) The hash is the election fingerprint just described.

<VOTE>
{"answers": [<ENCRYPTED_ANSWER>,
<ENCRYPTED_ANSWER>, ...], "election_hash":
"Nz1fWLvVLH3eY3Ox7u5hxfLZPdw",
"election_uuid": "1882f79c-65e5-11de-
8c90-001b63948875"}

Each "encrypted answer" corresponds to one election question:

it contains a list of ciphertexts (one for each possible choice for

that question), a list of corresponding proofs that the ciphertext

is correctly formed, and an overall proof that all of the

ciphertexts for that election question, taken together, are

correctly formed.

<ENCRYPTED_ANSWER>
{"choices": [<ELGAMAL_CIPHERTEXT>,
<ELGAMAL_CIPHERTEXT>, ...],
"individual_proofs": [<ZK_PROOF_0..1>,
<ZK_PROOF_0..1>, ...], "overall_proof":
<ZK_PROOF_0..max>}

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

7 of 16 4/9/18, 3:37 PM

The value of max in overall_proof matches the value of max
in the election's question definition.

For approval voting questions, the overall_proof is absent.

When a voter generates a ballot, Helios provides the ballot

fingerprint, which is the base64-encoding of the SHA256 hash of

the <VOTE> data structure defined above.

Proofs

A zero-knowledge proof, denoted <ZK_PROOF_0..max>, is a

transcript of a non-interactive proof that the corresponding

ciphertext encodes an integer value between 0 and max. For the

overall proof, the ciphertext whose value is being proven to be

between 0 and max is the homomorphic sum (element-wise

product) of the choices ciphertexts.

In Helios, all 0..max proofs are disjunctive proofs (CDS & CP),

meaning that the transcript includes max+1 proofs, one for each

possible value of the plaintext, 0 through max. The max+1
individual challenges must sum up to the single actual protocol

challenge, which ensures that one of the proofs is real (while the

others are simulated.)

<ZK_PROOF_0..max>
[<ZK_PROOF(0)>, <ZK_PROOF(1)>, ...,
<ZK_PROOF(max)>]

A single ZK proof is then composed of three messages: the

commitment, the challenge, and the response. Since the proof is

a Chaum-Pedersen proof of a DDH tuple, the commitment is

composed of two values, A and B. Thus, a ZK proof is:

<ZK_PROOF(plaintext)>
{"challenge": "2342342", "commitment":
{"A": "28838", "B": "9823723"},
"response": "970234234"}

In Helios v4, the commitment is optional, since these types of

proofs can be checked with just the challenge and response,

which cuts down the size of a proof significantly. This is doable

because the commitment values A and B should be recoverable

as:

A = g^response / alpha^challenge

B = y^response / (beta/g^m)^challenge

at which point those values can be used in the proof verification.

Effectively, we do more computation in exchange for a much

smaller proof, since A and B are in the full group, while

challenge and response are in the subgroup.

Proof Robustness

In prior versions of Helios, the proofs were generated using Fiat-

Shamir with very little context, which makes an individual proof

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

8 of 16 4/9/18, 3:37 PM

easily exchangeable with another. This is bad for security proofs

(and for actual security, not coincidentally). So, to generate a

challenge in a Fiat-Shamir'ized proof, we now include a lot more

context.

First, to generate a challenge in general, we now create a JSON

data structure, with the same strictness as our other JSON data

structures (alphabetized keys, no extra spaces), that contains all

the fields we want for context.

In the Proof of Knowledge of a Secret Key, we include:

election_uuid, trustee_email.

In the single-choice proof inside a valid ballot, we include:

election_hash, question_num, choice_num, ciphertext (in JSON

format).

In the overall proof inside a valid ballot, we include:

election_hash, question_num, ciphertext, where the ciphertext is

the homomorphic combination of all the choice ciphertexts.

In the proof of decryption, we include: ciphertext, election_hash,

trustee_email.

For example, in a single-choice proof, this is the string we hash

(extra spacing for readability only):

{"A": "3bZcd35GAS",
 "B": "7bXcd352sd",
 "choice_num": 0,
 "ciphertext": {"alpha":
"6BtdxuEwbcs+dfs3", "beta":
"nC345Xbadw3235SD"},

"election_hash":
"Nz1fWLvVLH3eY3Ox7u5hxfLZPdw",
 "question_num": 2}

to generate the challenge that the prover must respond to.

Ballot Audit Trail

When a voter chooses to audit their ballot, each encrypted

answer contains additional information concerning the actual

selected choice and the randomness used to encrypt each

choice's ciphertext. Specifically, the JSON structure for

<VOTE_WITH_PLAINTEXTS> is as follows.

<VOTE_WITH_PLAINTEXTS>
{"answers":
[<ENCRYPTED_ANSWER_WITH_PLAINTEXT>,
<ENCRYPTED_ANSWER_WITH_PLAINTEXT>, ...],
"election_hash": <B64_HASH>,
"election_uuid": <ELECTION_UUID>}

And the contained <ENCRYPTED_ANSWER_WITH_PLAINTEXT>

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

9 of 16 4/9/18, 3:37 PM

is as follows.

<ENCRYPTED_ANSWER_WITH_PLAINTEXT>
{"answer": 1, "choices":
[<ELGAMAL_CIPHERTEXT>,
<ELGAMAL_CIPHERTEXT>, ...],
"individual_proofs": [<ZK_PROOF_0..1>,
<ZK_PROOF_0..1>, ...], "overall_proof":
<ZK_PROOF_0..max>, "randomness":
[<BIGINT_B64>, <BIGINT_B64>,
<BIGINT_B64>]}

Result

The result of an election is represented using the <RESULT>
data structure. The proofs of the decryption are done at the

Trustee level. The result simply displays the count of votes for

each candidate within each question, in an array of arrays

format.

<RESULT>
[[<QUESTION_1_CANDIDATE_1_COUNT>,
<QUESTION_1_CANDIDATE_2_COUNT>,
<QUESTION_1_CANDIDATE_3_COUNT>],
[<QUESTION_2_CANDIDATE_1_COUNT>,
<QUESTION_2_CANDIDATE_2_COUNT>]]

Trustee

Even if there is only one keypair in the case of a simple election,

Helios v3 (in a departure from previous versions), represents

every election as having trustees. If there is only one trustee,

that's fine, but the data structure remains the same:

<TRUSTEE>
{"decryption_factors":
<LIST_OF_LISTS_OF_DEC_FACTORS>,
 "decryption_proofs":
<LIST_OF_LISTS_OF_DEC_PROOFS>,
 "pok": <POK_OF_SECRET_KEY>,
 "public_key": <PUBLIC_KEY>,
 "public_key_hash": <PUBLIC_KEY_HASH>,
 "uuid": <UUID_OF_TRUSTEE>}

A Note on the Source Code in this

Specification

In the rest of this document, we show how to verify various

aspects of a Helios election using Python code for concreteness

and legibility. We assume that certain data structures have been

defined: election, vote, proof, disjunctive_proof, and

a few others, all of which correspond to collections of fields that

directly map to the JSON data structures described above.

However, we note that a verification program need not

necessarily parse these JSON strings into custom Python

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

10 of 16 4/9/18, 3:37 PM

objects. It is perfectly acceptable to extract individual fields when

necessary.

In particular, in a number of cases, our sample code will call

election.toJSON(), or vote.toJSON() in order to re-

convert the data structure to JSON so that it can be hashed and

checked for integrity. A verification program that handles JSON

strings directly without de-serializing them to Python objects

would obviously not need to re-serialize to JSON, either. The

original JSON provided by the Helios server hashes

appropriately to the intended values.

Verifying a Single Ballot

Recall the Chaum-Pedersen proof that a ciphertext

(alpha,beta) under public key (y, (g,p,q)) is proven to

encode the value m by proving knowledge of r, the randomness

used to create the ciphertext, specifically that g, y, alpha,
beta/g^m is a DDH tuple, noting that alpha = g^r and

beta/g^m = y^r.

Prover sends A = g^w mod p and B = y^w mod p for

a random w.

Verifier sends challenge, a random challenge mod q.

Prover sends response = w + challenge * r.

Verifier checks that:

g^response = A * alpha^challenge
y^response = B * (beta/g^m)^challenge

verify_proof(ciphertext, plaintext, proof,
public_key):

if pow(public_key.g, proof.response, public_key.p) !=
 ((proof.commitment.A * pow(ciphertext.alpha, proof.challe
 return False

beta_over_m = modinverse(pow(public_key.g, plaintext, public_
beta_over_m_mod_p = beta_over_m % public_key.p

if pow(public_key.y, proof.response, public_key.p) !=
 ((proof.commitment.B * pow(beta_over_m_mod_p, proof.challe
 return False

return True

In a disjunctive proof that the ciphertext is the encryption of one

value between 0 and max, all max+1 proof transcripts are

checked, and the sum of the challenges is checked against the

expected challenge value. Since we use this proof in non-

interactive Fiat-Shamir form, we generate the expected

challenge value as SHA1(A0 + "," + B0 + "," + A1 +
"," + B1 + ... + "Amax" + "," + Bmax) with A0,
B0, A1, B1, ... ,Amax, Bmax in decimal form. (Ai and

Bi are the components of the commitment for the i'th proof.)

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

11 of 16 4/9/18, 3:37 PM

Thus, to verify a <ZK_PROOF_0..max> on a

<ELGAMAL_CIPHERTEXT>, the following steps are taken.

verify_disjunctive_0..max_proof(ciphertext,
max, disjunctive_proof, public_key):

for i in range(max+1):
 # the proof for plaintext "i"
 if not verify_proof(ciphertext, i, disjunctive_proof[i], pu
 return False

the overall challenge
computed_challenge = sum([proof.challenge for proof in disjun

concatenate the arrays of A,B values
list_of_values_to_hash = sum([[p.commitment.A, p.commitment.B

concatenate as strings
str_to_hash = ",".join(list_of_values_to_hash)

hash
expected_challenge = int_sha(str_to_hash)

last check
return computed_challenge == expected_challenge

Thus, given <ELECTION> and a <VOTE>, the verification steps

are as follows:

verify_vote(election, vote):

check hash (remove the last character which is a useless '=
computed_hash = base64.b64encode(hash.new(election.toJSON()).
if computed_hash != vote.election_hash:
 return False

go through each encrypted answer by index, because we need
into the question array, too for figuring out election info
for question_num in range(len(vote.answers)):
 encrypted_answer = vote.answers[question_num]
 question = election.questions[question_num]

 # initialize homomorphic sum (assume operator overload on
 homomorphic_sum = 0

 # go through each choice for the question (loop by integer
 for choice_num in range(len(encrypted_answer.choices)):
 ciphertext = encrypted_answer.choices[choice_num]
 disjunctive_proof = encrypted_answer.individual_proofs[c

 # check the individual proof (disjunctive max is 1)
 if not verify_disjunctive_0..max_proof(ciphertext, 1, di
 return False

 # keep track of homomorphic sum
 homomorphic_sum = ciphertext + homomorphic_sum

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

12 of 16 4/9/18, 3:37 PM

 # check the overall proof
 if not verify_disjunctive_0..max_proof(homomorphic_sum, qu
 encrypted_answer.ov
 election.public_key
 return False

done, we succeeded
return True

Auditing/Spoiling a Single Ballot

Given a <VOTE_WITH_PLAINTEXTS> and a claimed vote

fingerprint, verification entails checking the fingerprint, checking

all of the proofs to make sure the ballot is well-formed, and

finally ensuring that the ballot actually encodes the claimed

choices.

verify_ballot_audit(vote_with_plaintexts,
election, vote_fingerprint)

check the proofs
if not verify_vote(election, vote_with_plaintexts):
 return False

check the proper encryption of each choice within each ques
go through each encrypted answer
for encrypted_answer in vote_with_plaintexts.answers:
 # loop through each choice by integer (multiple arrays)
 for choice_num in range(len(encrypted_answer.choices)):
 # the ciphertext and randomness used to encrypt it
 ciphertext = encrypted_answer.choices[choice_num]
 randomness = encrypted_answer.randomness[choice_num]

 # the plaintext we expect, g^1 if selected, or g^0 if n
 if choice_num == encrypted_answer.answer:
 plaintext = public_key.g
 else:
 plaintext = 1

 # check alpha
 if pow(public_key.g, randomness, public_key.p) != ciphe
 return False

 # check beta
 expected_beta = (pow(public_key.y, randomness, public_k
 if expected_beta != ciphertext.beta:
 return False

check the fingerprint
vote_without_plaintexts = vote_with_plaintexts.remove_plainte
computed_fingerprint = base64.b64encode(hash.new(vote_without

return computed_fingerprint == vote_fingerprint

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

13 of 16 4/9/18, 3:37 PM

Verifying a Complete Election Tally

To verify a complete election tally, one should:

display the computed election fingerprint.

ensure that the list of voters matches the election voter-

list hash.

display the fingerprint of each cast ballot.

check that each cast ballot is correctly formed by verifying

the proofs.

homomorphically compute the encrypted tallies

verify each trustee's partial decryption

combine the partial decryptions and verify that those

decryptions, the homomorphic encrypted tallies, and the

claimed plaintext results are consistent.

In other words, the complete results of a verified election

includes: the election fingerprint, the list of ballot fingerprints, the

trustee decryption factors and proofs, and the final plaintext

counts. Any party who verifies the election should re-publish all

of these items, as they are meaningless without one another.

This is effectively a "re-tally".

Part of this re-tally requires checking a partial decryption proof,

which is almost the same, but not quite the same, as checking

an encryption proof with given randomness.

Given a ciphertext denoted (alpha,beta), and a trustee's

private key x corresponding to his public key y, a partial

decryption is:

 dec_factor = alpha^x mod p.

The trustee then provides a proof that (g, y, alpha, dec_factor) is
a proper DDH tuple, which yields a Chaum Pedersen proof of
discrete log equality. Verification proceeds as follows:

verify_partial_decryption_proof(ciphertext,
decryption_factor, proof, public_key):

Here, we prove that (g, y, ciphertext.alpha, decryption_fac
Before we were working with (g, alpha, y, beta/g^m), provin
if pow(public_key.g, proof.response, public_key.p) !=
 ((proof.commitment.A * pow(public_key.y, proof.challenge,
 return False

if pow(ciphertext.alpha, proof.response, public_key.p) !=
 ((proof.commitment.B * pow(decryption_factor, proof.challe
 return False

compute the challenge generation, Fiat-Shamir style
str_to_hash = str(proof.commitment.A) + "," + str(proof.commi
computed_challenge = int_sha(str_to_hash)

check that the challenge matches
return computed_challenge == proof.challenge

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

14 of 16 4/9/18, 3:37 PM

Then, the decryption factors must be combined, and we check

that:

 dec_factor_1 * dec_factor_2 * ... *
dec_factor_k * m = beta (mod p)

Then, the re-tally proceeds as follows.

retally_election(election, voters, result,
result_proof):

compute the election fingerprint
election_fingerprint = b64_sha(election.toJSON())

keep track of voter fingerprints
vote_fingerprints = []

keep track of running tallies, initialize at 0
again, assuming operator overloading for homomorphic additi
tallies = [[0 for a in question.answers] for question in elec

go through each voter, check it
for voter in voters:
 if not verify_vote(election, voter.vote):
 return False

 # compute fingerprint
 vote_fingerprints.append(b64_sha(voter.vote.toJSON()))

 # update tallies, looping through questions and answers w
 for question_num in range(len(election.questions)):
 for choice_num in range(len(election.questions[questi
 tallies[question_num][choice_num] = voter.vote.an
 tallies[quest

now we have tallied everything in ciphertexts, we must veri
for question_num in range(len(election.questions)):
 for choice_num in range(len(election.questions[question_n

 decryption_factor_combination = 1

 for trustee_num in range(len(election.trustees)):

 trustee = election.trustees[trustee_num]

verify the tally for that choice within that qu
check that it decrypts to the claimed result wi
if not verify_partial_decryption_proof(tallies[qu

 trustee.decryption_factors[question_num][choi
 trustee.decryption_proof[question_num][choice
 trustee.public_key):
 return False

 # combine the decryption factors progressively

 decryption_factor_combination *= trustee.decrypti

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

15 of 16 4/9/18, 3:37 PM

 if (decryption_factor_combination * election.result[q

 != tallies[question_num][choice_num].beta % elect

 return False

return the complete tally, now that it is confirmed
return {
 'election_fingerprint': election_fingerprint,
 'vote_fingerprints' : vote_fingerprints,
 'verified_tally' : result
}

Sign in | Recent Site Activity | Report Abuse | Print Page | Powered By Google Sites

Comments

You do not have permission to add comments.

Helios v4 - Helios http://documentation.heliosvoting.org/verificatio...

16 of 16 4/9/18, 3:37 PM

