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Abstract

In clustered and paired experiments, to estimate treatment effects, researchers often regress

their outcome on the treatment and pair fixed effects, clustering standard errors at the unit-of-

randomization level. We show that even if the treatment has no effect, a 5%-level t-test based

on this regression will wrongly conclude that the treatment has an effect up to 16.5% of the

time, an error rate much larger than the researcher’s 5% target. To achieve their targeted error

rate, researchers should instead cluster standard errors at the pair level. Using simulations, we

show that similar results apply to clustered experiments with small strata.
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1 Introduction

In this paper, we show that a statistical test commonly used by researchers analyzing a certain

type of randomized controlled trials (RCTs) has a much larger error rate than previously thought.

We then suggest a simple fix.

The type of RCTs this paper applies to are clustered RCTs with large clusters, meaning that

there are more than 10 observations per randomization unit, and where the treatment is assigned

within pairs of units, or within small strata of less than 10 units. For instance, our paper would

apply to an RCT where the researcher pairs some villages, randomly assigns one village per pair

to the treatment, and estimates a regression at the villager rather than at the village level, with

more than 10 villagers per village. Our paper would also apply to an RCT where the researcher

groups villages into small strata of six villages and randomly assigns two villages per pair to the

treatment. While such paired or small-strata RCTs with large clusters do not account for the

majority of RCTs conducted in economics, it seems that they are still fairly common. We surveyed

the universe of published editions of the American Economic Journal: Applied Economics (AEJ

Applied) from 2014 to 2018, and found that this type of RCT represents 20% of the RCTs published

by the journal during that period.

In paired or small-strata RCTs with large clusters, researchers usually estimate the treatment

effect by regressing their outcome on the treatment and pair or stratum fixed effects, “clustering”

their standard errors at the unit-of-randomization level, namely, at the village level in our example.1

Then, they typically use the 5%-level t-test based on this regression to assess if the treatment has

an effect. As any statistical test, this t-test may lead them to commit a type 1 error: even if the

treatment does not have an effect, this t-test may lead them to wrongly conclude that the treatment

has an effect. When using a 5%-level test, researchers hope that the probability that this would

happen, the so-called error rate of the test, is less than 5%. We show that the error rate of this

t-test may in fact be much larger than the researcher’s 5% target.

We start by considering paired RCTs with large clusters. There, we show that even if the

treatment has no effect, this 5%-level t-test will wrongly conclude that the treatment has an effect

up to 16.5% of the time, an error rate more than three times larger than the targeted one. We then

show that to achieve the desired 5% error rate, researchers should instead cluster their standard

1Throughout this paper, clustered standard errors refer to the estimators proposed by Liang and Zeger (1986),
which are routinely implemented in standard statistical packages. Hereafter, we write “clustered RCT” to refer to
the RCT design, and “clustered standard errors” to refer to the standard errors researchers use.
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errors at the pair level. Finally, we revisit 371 regressions from the paired RCTs in our survey, and

find that clustering at the pair rather than at the randomization-unit level diminishes the number

of effects that are significant at the 5% level by one third.

The intuition underlying our results is rather simple. In regression analysis, clustered standard

errors are reliable when the regression’s dependent and independent variables are uncorrelated

across clusters (Cameron and Miller, 2015). Therefore, in a paired RCT, clustering at the unit level

relies on the assumption that the regression’s independent variable, the treatment, is uncorrelated

across all randomization units. However, the treatments of the two units in the same pair are

perfectly negatively correlated: if unit A is treated, then unit B must be untreated, and vice versa.

This is the reason why unit-clustered standard errors are unreliable, and the error rate of the t-

test based on unit-clustered standard errors differs from that targeted by the researcher. On the

other hand, clustering at the pair level only relies on the assumption that units’ treatments are

uncorrelated across pairs, which is true by design in paired experiments. This is the reason why

pair-clustered standard errors are reliable, and the error rate of the t-test based on pair-clustered

standard errors is equal to the error rate targeted by the researcher.

Our recommendations apply only to paired and clustered RCTs with large clusters. If the RCT

is nonclustered, the 5%-level t-test based on unit-clustered standard errors has a 5% error rate,

as targeted, after the degrees-of-freedom (DOF) adjustment automatically implemented in most

statistical software. On the other hand, after this DOF adjustment the error rate of the 5%-level

t-test based on pair-clustered standard errors is lower than 5%. Therefore, to achieve their targeted

error rate in nonclustered paired RCTs, researchers should either use DOF-adjusted unit-clustered

standard errors, or non-DOF-adjusted pair-clustered standard errors. In clustered RCTs, the same

applies to regressions estimated at the unit-of-randomization level rather than at the observation

level. Finally, in clustered RCTs with strictly fewer than 10 observations per randomization unit,

our recommendation is to use pair-clustered standard errors, without the DOF adjustment. Figure

1 below summarizes our recommendations for applied researchers, depending on whether their RCT

is clustered and on the number of observations per randomization unit.

Then, we turn to small-strata RCTs with large clusters. Using simulations, we show that our

results for paired designs extend to this case. Intuitively, there as well the treatments of units in

the same stratum are negatively correlated, so this correlation should be accounted for. Therefore,

our simulations show that in those designs too, the error rate of the 5%-level t-test based on unit-

clustered standard errors is larger than 5%. The difference between the t-test’s actual and targeted
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error rates diminishes when the number of units per strata increases. Again, this makes intuitive

sense: the larger the strata, the lower the correlation of the treatments of units belonging to the

same stratum. For instance, with five units per strata, the error rate of the 5% level t-test based

on unit-clustered standard errors is equal to 7.9%. With 10 units per strata, this error rate is

equal to 6.2%. With more than 10 units per strata, this error rate is lower than 6%, and becomes

very close to the targeted 5% error rate. This is why—though we acknowledge it is somewhat

arbitrary—we use a threshold of 10 units per strata to define an RCT with “small” strata. Our

simulations also show that the error rate of the 5%-level t-test based on strata-clustered standard

errors is very close to 5%. Accordingly, in small-strata RCTs with large clusters, we recommend

that researchers cluster their standard errors at the strata level. If the RCT has too few strata to

cluster at that level, researchers could use randomization inference, or the standard-error estimator

in Section 9.5.1 of Imbens and Rubin (2015), provided each stratum has at least two treated and

two control units.

Related literature

Our paper is related to several papers that predate ours. Imai et al. (2009) show that, when units

all have the same number of observations, pair-clustered standard errors are reliable in clustered

and paired RCTs.2 With respect to their paper, we show that this result still holds when units

have varying numbers of observations, thus justifying pair-level clustering under more realistic

assumptions. Moreover, while they focus on finite-sample results, we present large-sample results

for t-tests based on pair-clustered standard errors.

Bruhn and McKenzie (2009) use simulations to study, in nonclustered paired RCTs, the error

rate of a t-test without clustering, which is equivalent to unit-clustering when the RCT is nonclus-

tered. They show that this error rate is equal to the targeted error rate. This result may appear

to conflict with ours, but this apparent discrepancy comes from the DOF adjustment embedded

in most statistical software. In nonclustered RCTs, the regression with pair fixed effects has one

fixed effect for each pair of observations. Accordingly, it has approximately half as many regressors

as observations, so the DOF adjustment amounts to multiplying nonclustered standard errors by

approximately
√

2, which, we show, makes them almost equivalent to the non-DOF-adjusted pair-

clustered standard errors. This is why the error rate of DOF-adjusted nonclustered t-tests is equal

to the targeted error rate in nonclustered paired RCTs.

2Imai (2008) show similar results in nonclustered and paired RCTs.
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Abadie et al. (2017) examine the appropriate level of clustering in regression analysis. They

define a cluster as a group of units whose treatments are positively correlated. Their results apply

to the case where the assignment is fully clustered (all units in the same cluster have the same

treatment), and to the case where the assignment is probabilistically clustered (units in the same

cluster have positively correlated treatments). Their Corollary 1 states that standard errors need

to account for clustering whenever units’ treatments are positively clustered within clusters. Our

results are consistent with theirs. The main difference is that we consider a case in which units’

treatments are negatively correlated within clusters (the pairs in our paper), which is not something

they consider. However, our papers share a common theme: that standard errors need to account

for clustering when treatments are correlated within some groups of units.

Athey and Imbens (2017) and Bai et al. (2021) study the error rate of t-tests based on unit-

clustered standard errors in paired experiments, when pair fixed effects are not included in the

regression. They both show that without pair fixed effects, the test’s error rate is lower than the

targeted error rate. We instead show that when pair fixed effects are included in the regression,

the error rate of this test becomes larger than the targeted error rate. In our survey of paired

experiments, we find that including pair fixed effects in the regression is a much more common

practice than not including those fixed effects.

The rest of this paper is organized as follows. Section 2 presents our survey of paired and small-

strata RCTs in economics. Section 3 introduces our main theoretical results. Section 4 presents

our simulation study. Section 5 presents our empirical application. Section 6 briefly discusses

various extensions of our baseline results, which are fully developed in our Web Appendix. Section

7 concludes. Throughout the paper, a unit refers to a randomization unit (e.g., a village), while an

observation refers to the level at which the regression is estimated (e.g., a villager).

2 Survey of Paired and Small-Strata Experiments in Economics

We searched the 2014–2018 issues of the AEJ Applied for clustered and paired RCTs, and for

clustered and stratified RCTs with 10 or fewer units per strata. 50 field-RCT papers were published

over that period. Three RCTs were clustered and relied on a paired randomization for all of their

analysis. One RCT was clustered and relied on a paired randomization for part of its analysis.

Seven RCTs were clustered and used a stratified design with, on average, 10 or fewer units per

strata. 10 of those 11 RCTs have, on average, more than 10 observations per randomization unit,
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while one stratified RCT has 5.8 observations per randomization unit. Overall, 11 (22%) of the

50 field RCTs published by the AEJ Applied over that period are clustered paired or small-strata

RCTs, and 10 (20%) also have large clusters.

To increase our sample of paired RCTs, we also searched the AEA’s registry website (https:

//www.socialscienceregistry.org). We looked at all completed projects, whose randomization

method includes the word “pair” and that either have a working or a published paper. We conducted

that search on January 9th 2019, and found four more clustered and paired RCTs. All of them

have, on average, more than 10 observations per randomization unit. Combining our two searches,

we found 15 clustered paired or small-strata RCTs. The list is in Table 5 in the Web Appendix.

We now give descriptive statistics on our sample of RCTs. Across the eight paired RCTs, the

median number of pairs is 27, the median number of observations per unit is 112, and units have

on average more than 10 observations in all RCTs. To estimate the treatment effect, six articles

include pair fixed effects in all their regressions, one article includes pair fixed effects in some but

not all their regressions, and one article does not include pair fixed effects in any regression. All

articles cluster standard errors at the unit level.

Across the seven small-strata RCTs, the median number of units per strata is 7, the median

number of strata is 48, the median number of observations per unit is 26, and units have more

than 10 observations on average in all but one RCT. To estimate the treatment effect, six articles

include stratum fixed effects in all their regressions, and one article does not include stratum fixed

effects in any regression. All articles cluster standard errors at the unit level.

In the following sections, we focus on paired RCTs. In Section E of the Web Appendix, we use

simulations to show that the main results we derive for paired RCTs extend to small-strata RCTs.

3 Theoretical Results

3.1 Setup

We consider a population of 2P units. Unlike Abadie and Imbens (2008) and Bai et al. (2021), we

do not assume that the units are an independent and identically distributed (i.i.d.) sample drawn

from a superpopulation. Instead, that population is fixed, and its characteristics are not random.

Our survey suggests that this modeling framework—similar to that in Neyman (1923) and Abadie

et al. (2020)—is applicable to the majority of paired- and small-strata RCTs in our survey. Units
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are drawn from a larger population in only one of those fifteen RCTs.3 In all the other RCTs,

the sample is a convenience sample, consisting of volunteers to receive the treatment, or of units

located in areas where conducting the research was easier. When the units are an i.i.d. sample

drawn from a super-population, our results still hold, conditional on the sample.

The 2P units are matched into P pairs. Pairs are created by grouping together units with the

closest value of some baseline variables predicting the outcome. In our fixed-population framework,

pairing is not random, as it depends on fixed units’ characteristics. The pairs are indexed by

p ∈ {1, . . . , P}, and the two units in pair p are indexed by g ∈ {1, 2}. Unit g in pair p has ngp

observations, so that pair p has np = n1p + n2p observations, and the population has n =
∑P

p=1 np

observations. When ngp > 1 for at least some units, the RCT is clustered; when ngp = 1 for all

units, the RCT is nonclustered.

Treatment is assigned as follows. For all p ∈ {1, . . . , P} and g ∈ {1, 2}, let Wgp be an indicator

variable equal to 1 if unit g in pair p is treated, and to 0 otherwise. We assume that the treatments

satisfy the following conditions.

Assumption 1 (Paired assignment).

1. For all p, W1p +W2p = 1.

2. P(Wgp = 1) = 1
2 for all g and p.

3. (W1p,W2p)
P
p=1 is jointly independent across p.

Point 1 requires that in each pair, one of the two units is treated. Point 2 requires that the

two units have the same probability of being treated. Point 3 requires that the treatments be

independent across pairs. Assumption 1 is typically satisfied by design in paired experiments.

Let yigp(1) and yigp(0) represent the potential outcomes of observation i in unit g and pair

p with and without the treatment, respectively. We follow the randomization-inference literature

(see Abadie et al., 2020) and assume that potential outcomes are fixed.4 The observed outcome is

Yigp = yigp(1)Wgp + yigp(0)(1−Wgp). Our target parameter is the average treatment effect (ATE)

τ =
1

n

P∑
p=1

2∑
g=1

ngp∑
i=1

[yigp(1)− yigp(0)].

3This is in line with Muralidharan and Niehaus (2017), who show that the units are drawn from a larger population
in only 31% of the RCTs published in top-five journals between 2001 and 2016.

4In a previous version of this paper, we allowed potential outcomes to be stochastic. Having stochastic potential
outcomes does not change our main results; see de Chaisemartin and Ramirez-Cuellar (2020).
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We consider two estimators of τ . The first estimator τ̂ is the OLS estimator from the regression

of the observed outcome Yigp on a constant and Wgp:

Yigp = α̂+ τ̂Wgp + εigp i = 1, 2, . . . , ngp; g = 1, 2; p = 1, . . . , P. (1)

The second estimator is the pair-fixed-effects estimator, τ̂fe, obtained from the regression of the

observed outcome Yigp on Wgp and a set of pair fixed effects (δig1, . . . , δigP ):

Yigp = τ̂feWgp +
P∑
p=1

γ̂pδigp + uigp, i = 1, . . . , ngp; g = 1, 2; p = 1, . . . , P. (2)

3.2 Properties of Unit- and Pair-Clustered Variance Estimators

We study the variance estimators of τ̂ and τ̂fe, when the regression is clustered at either the pair

level or the unit level. The clustered-variance estimators we study are those proposed in Liang and

Zeger (1986). Lemma C.1 in Web Appendix C gives simple expressions of V̂pair(τ̂) and V̂pair(τ̂fe),

the pair-clustered variance estimators (PCVEs) of τ̂ and τ̂fe, and of V̂unit(τ̂) and V̂unit(τ̂fe), the

unit-clustered variance estimators (UCVEs) of τ̂ and τ̂fe.

We now present our main results, that are derived under the following assumption.

Assumption 2. There is a strictly positive integer N such that for all p, n1p = n2p = N .

Assumption 2 requires that all units have the same number of observations. Let

τ̂p =
∑
g

[
Wgp

1

ngp

∑
i

Yigp − (1−Wgp)
1

ngp

∑
i

Yigp

]

denote the difference between the average outcome of treated and untreated observations in pair p.

Under Assumption 2, one can show that

τ̂ = τ̂fe =

P∑
p=1

τ̂p
P
,

that both estimators are unbiased for the ATE, and that

V(τ̂) = V(τ̂fe) =
1

P 2

P∑
p=1

V(τ̂p). (3)

Let τp ≡ 1
np

∑2
g=1

∑ngp
i=1[yigp(1)− yigp(0)] be the ATE in pair p. For all d ∈ {0, 1}, let ygp(d) ≡
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1
ngp

∑
i yigp(d), yp(d) ≡ 1

2

∑
g ygp(d), and y(d) ≡

∑
p yp(d)/P , respectively, denote the average

outcome with treatment d in pair p’s unit g, in pair p, and in the entire population.

Lemma 3.1.

1. If Assumptions 1 and 2 hold, then V̂pair(τ̂) = V̂pair(τ̂fe), and

E
[

P

P − 1
V̂pair(τ̂)

]
= V(τ̂) +

1

P (P − 1)

P∑
p=1

(τp − τ)2 ≥ V(τ̂).

2. If Assumption 2 holds, then V̂pair(τ̂) = 2V̂unit(τ̂fe).

3. If Assumptions 1 and 2 hold, then

E
[

P

P − 1

(
V̂unit(τ̂)− V̂pair(τ̂)

)]
=

2

P

(
1

P − 1

∑
p

(
yp(0)− y(0)

) (
yp(1)− y(1)

)
− 1

P

∑
p

∑
g

1

2

(
ygp(0)− yp(0)

) (
ygp(1)− yp(1)

))
.

Proof. See Web Appendix A.

Point 1 of Lemma 3.1 shows that the PCVEs without and with pair fixed effects are equal,

and that after a DOF correction, their expectation is at least as large as the variance of τ̂ . If the

treatment effect is heterogeneous across pairs, 1
P (P−1)

∑P
p=1(τp− τ)2 > 0 so the inequality is strict:

the PCVEs are upward-biased estimators for the variance of τ̂ . If the treatment effect does not

vary across pairs, the inequality becomes an equality: the PCVEs are unbiased for the variance of

τ̂ .5 Building upon Point 1 of Lemma 3.1, in the Web Appendix we show that when the number

of pairs grows, (τ̂ − τ)/V̂pair(τ̂) and (τ̂fe − τ)/V̂pair(τ̂fe), the t-statistics of the difference-in-means

and fixed-effects estimators using the PCVEs, both converge to a normal distribution with a mean

equal to 0 and a variance lower than 1 in general, but equal to 1 when the treatment effect is

homogenous across pairs (see Point 1 of Theorem B.1). Comparing those t-statistics to critical

values of a standard normal leads to a test with an error rate at most equal to the researcher’s

target. For instance, if the average treatment effect τ is equal to zero, by comparing

∣∣∣∣τ̂ /√V̂pair(τ̂)

∣∣∣∣
to 1.96, one would wrongly conclude that τ 6= 0 at most 5% of the time, as desired.

5The displayed equation in Point 1 is almost identical to Proposition 1 in Imai et al. (2009), up to a DOF
adjustment. We restate that result from their paper for completeness.
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On the other hand, Point 2 of Lemma 3.1 shows that the UCVE with pair fixed effects is equal

to a half of the PCVEs. Combined with Point 1 of Lemma 3.1, this implies that the UCVE with

pair fixed effects may severely underestimate the variance of τ̂ : if the treatment effect is constant

across pairs, its expectation is equal to half of the variance of τ̂ . Building upon Point 2 of Lemma

3.1, in the Web Appendix we show that when the number of pairs grows, (τ̂fe − τ)/V̂unit(τ̂fe), the

t-statistic of the fixed-effects estimator using the UCVE, converges to a normal distribution with a

mean equal to 0 and a variance twice as large as that of the t-statistic using the PCVE (see Point 2

of Theorem B.1). Therefore, comparing that t-statistic to critical values of a standard normal may

yield a test with a substantially larger error rate than the researcher’s target. For instance, if the

average treatment effect τ is equal to zero and the treatment effect is homogenous across pairs, by

comparing

∣∣∣∣τ̂fe/√V̂unit(τ̂fe)∣∣∣∣ to 1.96, one would wrongly conclude that τ 6= 0 16.5% of the time,

an error rate more than three times larger than the researcher’s target.

With heterogeneous treatment effects across pairs, the error rates of the t-tests using the PCVEs

may be lower than the researcher’s target, while the error rate of the t-test using the UCVE with

pair fixed effects may be equal to that target. However, in practice we do not know if the treatment

effect is constant or heterogeneous, and it is common to require that a test have an error rate no

larger than some target uniformly across all possible data-generating processes. The t-tests using

the PCVEs satisfy that property, unlike the t-test using the UCVE with pair fixed effects.

Finally, Point 3 of Lemma 3.1 shows that without pair fixed effects, the expectation of the

difference between the UCVE and PCVE is proportional to the difference between the between-

pair and within-pair covariance of the two potential outcomes. In most applications, both terms

should be positive, as the two potential outcomes should be positively correlated. One may also

expect the difference between those two terms to be positive, as units in the same pair should

have more similar potential outcomes than units in different pairs. For instance, in the extreme

case where units in the same pair have equal potential outcomes, the second term is equal to 0.

Consequently, the expectation of the difference between the UCVE and the PCVE should often be

positive. Then, it follows from Point 1 of Lemma 3.1 that the UCVE without pair fixed effects is a

more upward-biased estimator of the variance of τ̂ than the PCVEs, and that it remains upward-

biased even if the treatment effect is constant across pairs. Finally, building upon Point 3 of Lemma

3.1, in the Web Appendix we show that the error rate of the t-statistic of the difference-in-means

estimator using the UCVE is lower and further away from the researcher’s target than the error

rate of the t-test making use of the PCVEs (see Point 3 of Theorem B.1).
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Intuitively, the UCVEs are biased because clustering at the unit level does not account for the

perfect negative correlation of the treatments of the two units in the same pair. Cluster-robust

standard errors rely on the assumption that observations’ outcomes and treatments are uncorrelated

across clusters (see Cameron and Miller, 2015). This assumption is violated when one clusters at

the unit level, but it holds when one clusters at the pair level.

The direction of the bias of the UCVE depends on whether pair fixed effects are included in

the regression. When pair fixed effects are not included in the regression, the UCVE will in general

overestimate the variance of τ̂ . This result may be relatively intuitive. With positive correlations

between observations, as is often the case with time-series data, the variance of an estimator is

usually larger than what it would be without those correlations. Then, one would expect that

negative correlations would reduce an estimator’s variance. This is indeed what we find in Point

3 of Lemma 3.1: the UCVE, which estimates τ̂ ’s variance as if the treatments of two units in the

same pair were not negatively correlated, is larger than needed.

On the other hand, when pair fixed effects are included in the regression, the UCVE may

underestimate the variance of τ̂ . This result is less intuitive. It comes from the fact that with pair

fixed effects in the regression, the sample residuals uigp are by construction uncorrelated with the

pair fixed effects, which implies that for every p, the sum of the residuals in pair p is zero:

∑
i,g

uigp = 0.

Splitting the summation between g = 1 and g = 2, using the fact that under Assumption 2 units

1 and 2 have the same number of observations, and letting ug,p denote the average residuals of

observations in unit g of pair p, the previous display implies that u1,p = −u2,p, which in turn

implies that (u1,p)
2 = (u2,p)

2: by construction, the squares of the average residuals are equal in the

treated and control units of each pair. Now, one can show that with pair fixed effects, the UCVE

is proportional to

1

(2P )2

P∑
p=1

2∑
g=1

(ug,p)
2 ,

the sum, across all units, of their average squared residuals, divided by the number of units squared.

Accordingly, V̂unit(τ̂fe) treats (u1,p)
2 and (u2,p)

2 as if they were independent to estimate the variance
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of τ̂fe, while they are equal to each other. Instead, the PCVE is proportional to

1

P 2

P∑
p=1

(u1,p)
2 .

V̂pair(τ̂fe) uses only one squared-residual per pair to estimate the variance of τ̂fe.

As Section 5 below shows, our recommendation of using the PCVE rather than the UCVE in

clustered-paired RCTs and regressions with pair fixed effects leads to a significant reduction in

the number of effects that are significant at the 5% level in the published papers we revisit. One

may then wonder whether our results contradict those in Bai (2019), who shows that pairing is the

optimal RCT design to maximize statistical precision.6 The short answer is that our findings do

not contradict his important result. Bai (2019) shows that the RCT design that minimizes V(τ̂),

and therefore the mean-squared error of τ̂ , is a specific paired design. We do not derive any new

result on V(τ̂), so our results have no bearing on his. Instead, our main result is to show that

V̂unit(τ̂fe), a commonly used variance estimator in paired experiments, can be severely downward-

biased. Instead, we recommend using another estimator, V̂pair(τ̂fe), that is not downward biased,

and leads to a t-test with an error rate no larger than the researcher’s target when the treatment

does not have an effect. Using V̂pair(τ̂fe) instead of V̂unit(τ̂fe), researchers will conclude less often

that the treatments they consider have an effect, but comparing the power of those two t-tests is

not a fair comparison: the former test has an error rate no larger than the researcher’s target when

the treatment does not have an effect, unlike the latter one. Overall, while paired RCTs may not

be as powerful as the use of a spuriously-low variance estimator had led researchers to believe, they

remain a very powerful RCT design, the one that leads to the lowest mean-squared error of τ̂ .

There is only one case where our results could imply that other designs might be preferable to

paired RCTs, though further research is needed to validate or invalidate this conjecture. In our

simulations, we find that with fewer than 20 pairs, t-tests based on the PCVE become less reliable:

with fewer than 40 units, using the PCVE in paired RCTs may lead to invalid inference. Thus, it

may be preferable to run a more coarsely stratified RCT with at least four units per strata, and

use, for example, the variance estimator proposed in Section 6.1 of Athey and Imbens (2017) for

stratified RCTs. However, to our knowledge, the validity of this alternative inference procedure has

not been assessed yet with a small number of units in the RCT. Note that in the (admittedly small)

6Bai (2019) studies this question in nonclustered RCTs. The optimal design in clustered RCTs has not been
derived yet, though we conjecture that the result in Bai (2019) carries through to clustered RCTs where units all
have the same number of observations.
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sample of eight paired RCTs in our survey, one has five pairs and another one has 14 pairs. All the

other RCTs are close to the 20-pair “threshold” (one has 19 pairs), or above it. Accordingly, while

paired RCTs with far fewer than 20 pairs are not a rarity, they do not seem to be common either.

3.3 Accounting for Degrees-of-Freedom Adjustments

The clustered-variance estimators we study are those proposed in Liang and Zeger (1986). Typically,

statistical software report DOF-adjusted versions of those estimators. For instance, in Stata the

default adjustment is to multiply the Liang and Zeger estimator by [(n− 1)/(n− k)]× [G/(G− 1)],

where n is the sample size, k the number of regressors, and G the number of clusters (see StataCorp,

2017). This DOF adjustment is implemented when one uses the regress or areg command, not when

one uses the xtregress command (see Cameron and Miller, 2015).7 In R, if the researcher uses the

sandwich package, the default DOF adjustment when declaring a cluster variable is the same as in

Stata, namely, [(n − 1)/(n − k)] × [G/(G − 1)]. G/(G − 1) is close to 1, so the important term in

the DOF adjustment is (n− 1)/(n− k).

In regressions without pair fixed effects, there are only two regressors (the constant and the

treatment), so (n−1)/(n−k) = (n−1)/(n−2). This quantity is close to 1, so the DOF adjustment

leaves the UCVE and the PCVE almost unchanged. Accordingly, in regressions without pair fixed

effects, the guidance we derived in the previous section also applies to the DOF-adjusted UCVE

and PCVE: the former estimator should not be used, while the latter estimator can be used.

On the other hand, in regressions with pair fixed effects, the DOF adjustment may affect the

UCVE and the PCVE more substantially. When the paired RCT is not clustered, the regression

has 2P observations and P + 1 regressors, so (n − 1)/(n − K) = (2P − 1)/(P − 1) ≈ 2 : the

DOF-adjusted UCVE is twice as large as the non-DOF-adjusted UCVE. This fact and Point 2 of

Lemma 3 imply that in nonclustered RCTs, the DOF-adjusted UCVE with pair fixed effects is

almost equal to the non-DOF-adjusted PCVE with pair fixed effects and has the same desirable

properties. On the other hand, the DOF-adjusted PCVE with pair fixed effects is now about twice

as large as the non-DOF-adjusted PCVE with pair fixed effects, so this estimator is upward-biased

even under constant treatment effect. Overall, in nonclustered paired RCTs and regressions with

pair fixed effects, the guidance we derived in the previous section no longer applies to the DOF-

adjusted UCVE and PCVE: the former estimator can be used, while the latter estimator should

not be used.

7Three of the four papers we revisit in Section 5 use the regress or areg command; one uses the xtreg command.
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When the paired RCT is clustered and the regression has pair fixed effects, the regression has

2Pnu observations and P + 1 regressors, where nu denotes the average number of observations

across all units. Accordingly, (n − 1)/(n −K) = (2Pnu − 1)/(2Pnu − (P + 1)) ≈ 2nu/(2nu − 1).

This quantity is decreasing in nu: the larger the average number of observations across units, the

smaller the DOF adjustment. Simulations shown in Panel D of Table 1 show that with nu = 5,

the error rate of a t-test based on the DOF-adjusted UCVE is still considerably larger than the

researcher’s target: unlike what happens in nonclustered experiments, the DOF-adjustment is not

sufficient to ensure the error rate of this t-test is equal to the researcher’s target. The same panel

also shows that with nu = 5, the error rate of a t-test based on the DOF-adjusted PCVE is slightly

below the researcher’s target, even under constant treatment effects. When nu = 10, simulations

shown in Panel C of Table 1 show that the error rate of a t-test based on the DOF-adjusted PCVE

is now very close to the researcher’s target. Overall, in clustered paired RCTs with more than 10

observations per unit, the guidance we derived in the previous section also applies to the DOF-

adjusted UCVE and PCVE: the former estimator should not be used, while the latter estimator can

be used. In clustered paired RCTs with strictly fewer than 10 observations per unit, we recommend

using the PCVE without the DOF adjustment, which is in line with a recommendation in Cameron

and Miller (2015) in a different context. In Stata, the xtregress command computes this estimator.

3.4 Should Pair Fixed Effects Be Included in the Regression?

Though this paper is primarily concerned with the estimation of the variance of treatment effect

estimators, our recommendations crucially depend on whether pair fixed effects are included in the

regression. In this section, we discuss the pros and cons of including such pair fixed effects. (Our

paper does not bring any new result to this longstanding discussion; we rely on earlier results,

sometimes specializing them to the case of paired RCTs.)

In nonclustered experiments, or in clustered experiments where in each pair the two random-

ization units have the same number of observations (n1p = n2p for all p), if no randomization unit

attrits from the sample, adding pair fixed effects to the regression leaves the treatment coefficient

unchanged: τ̂ = τ̂fe. Because τ̂ and τ̂fe are equal, their variances are also equal: adding pair fixed

effects to the regression does not lead to any precision gain in nonclustered paired experiments or

in clustered experiments where in each pair the two randomization units have the same number of

observations. When there is attrition, τ̂ and τ̂fe will differ: τ̂fe will only leverage observations from

pairs where both randomization units are observed, while τ̂ will also leverage observations from
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pairs where only one of the randomization units is observed. King et al. (2007) argue in favor of

dropping pairs with one attriting unit, while Bai (2019) shows they can be kept. At any rate, even

if one would prefer to drop those pairs, one can simply do so before running the regression, rather

than running the regression with pair fixed effects in the full sample. Overall, in nonclustered

experiments, or in clustered experiments where in each pair the two randomization units have the

same number of observations, there is no strong argument for or against adding pair fixed effects

to the regression.

In clustered experiments where there are pairs where the two randomization units have different

numbers of observations (n1p 6= n2p for some p), adding pair fixed effects to the regression may

change the treatment coefficient: τ̂ 6= τ̂fe. In such cases, one can show that τ̂ , the standard

difference in means estimator, converges toward our target parameter τ , the average treatment

effect, when the number of pairs goes to infinity. τ̂fe on the other hand does not converge toward

τ : one can show that it converges toward a parameter that has sometimes been called a variance

weighted average (see Angrist and Pischke, 2008) of the average treatment effect in each pair.8

This parameter may differ from τ if the treatment effect varies across pairs. Accordingly, unlike

τ̂ , τ̂fe may be biased for τ , even asymptotically. On the other hand, the variance of τ̂fe is often

lower than that of τ̂ (see Imai et al., 2009). Overall, if one is primarily interested in consistently

estimating τ , pair fixed effects should not be included in the regression. If one wants to use the

most precise estimator, pair fixed effects should be included in the regression.

Figure 1 summarizes our recommendations for practitioners, regarding whether pair fixed effects

should be included in the regression, and regarding which variance estimator one should use.

4 Simulations Using Real Data

We perform Monte-Carlo simulations using a real data set. We use the data from the microfinance

RCT in Crépon et al. (2015b). The authors matched 162 Moroccan villages into 81 pairs, and in each

pair, they randomly assigned one village to a microfinance treatment. They sampled households

from each village and measured their outcomes such as their credit access and income. The number

of observations varies substantially across units: the average number of villagers per village is 34.1,

with a standard deviation of 9.2, a minimum of 13 and a maximum of 58.

8Specifically, let τgp denote the average treatment effect in unit g of pair p. One can show that τ̂fe is consistent
for a weighted average, across pairs, of 1/2(τ1p + τ2p), where pairs in which the numbers of observations of the two
units are close receive more weight than pairs where the numbers of observations are different.
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Figure 1: Recommendations for Practitioners

(a) Decision 1: Should the regression include pair fixed effects? (See Section 3.4 for more details.)

Is the RCT clustered?
(I.e., are observations
at a more disaggre-
gated level than the
randomization unit?)

Are there pairs where the
two randomization units
have different number of
observations?

No strong argument in
favor or against adding
pair fixed effects

Are you primarily in-
terested in estimating
the ATE?

No strong argument in
favor or against adding
pair fixed effects

Do not add pair
fixed effects

Add pair fixed effects if
you would like to have a
more precise estimator of
a different parameter

Yes No

YesNo

Yes No

(b) Decision 2: Which variance estimator should one use? (See Section 3.3 for more details.)

Does the regression
have pair fixed effects?

Is the RCT clustered?
(I.e., are observations
at a more disaggre-
gated level than the
randomization unit?)

Use the PCVE
with/without the DOF
adjustment1

Do units have
strictly less than
10 observations on
average?

Either use the UCVE
with the DOF adjust-
ment or the PCVE with-
out the DOF adjustment

Use the PCVE without
the DOF adjustment

Use the PCVE
with/without the DOF
adjustment1

Yes No

YesNo

Yes No

Notes: UCVE = unit-clustered variance estimators. PCVE = pair-clustered variance estimators. DOF = degrees of

freedom. 1In these cases, the PCVE with and without the DOF adjustment are very similar.
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In the paper, the authors report the effect of the microfinance intervention on 82 outcome

variables.9 For each outcome, we construct potential outcomes assuming no treatment effect, i.e.,

yigpk(0) = yigpk(1) = Yigpk, where Yigpk is the value of outcome k for villager i in village g and

pair p. We then simulate 1000 treatment assignments W j
k = ((W j

11,k,W
j
21,k), . . . , (W

j
1P,k,W

j
2P,k)),

assigning one of the two villages to treatment in each pair. Then, we regress Yigpk on the simulated

treatment. We estimate regressions with and without pair fixed effects, clustering at the pair level

and at the village level. Thus, we obtain four t-statistics, and four 5% level t-tests. Importantly,

those t-tests are based on Stata’s regress command, so they make use of DOF-adjusted variance

estimators. The estimated error rate of each t-test is the percentage of times, across the 82,000

regressions (82 outcomes × 1000 simulations), that the t-statistic is greater in absolute value than

1.96, meaning that the test leads the researcher to wrongly conclude that the treatment has an

effect. Because the data is generated with a constant treatment effect of zero, these error rates

should be equal to 5% if the tests are valid.

Column (1) of Panel A of Table 1 shows the results using the authors’ actual data set, with

81 pairs and villages’ actual number of villagers. The error rates of the t-tests using pair-clustered

variance estimators (PCVEs) are close to 5%, irrespective of whether pair fixed effects are included

in the regression. On the other hand, when the unit-clustered variance estimator (UCVE) is used

with pair fixed effects, the error rate of the t-test is equal to 17.4%, very close to the 16.5% error

rate predicted by Point 2 of Theorem B.1. Finally, the error rate of the t-test with the UCVE and

no pair fixed effects is equal to 1.4%, well below 5%. Columns (2), (3), and (4) show that we obtain

similar results if we use a random sample of 40, 30, and 20 pairs. With fewer than 20 pairs, the

PCVE becomes downward-biased. One may then have to use randomization inference tests.

Panel B (resp. C) of Table 1 shows the error rates of the four t-tests, in a data set where villages

all have 20 (resp. 10) villagers. In each village, the villagers are a random sample from the village’s

population, that does not vary across simulations.10 Results are similar to Panel A.

Panel D shows the error rates of the four t-tests, in a data set where villages all have 5 villagers.

Again, the error rate of the t-test with the PCVE and no pair fixed effects is close to 5%. On the

other hand, the error rate of the t-test with the PCVE and pair fixed effects is now below 5%. As

discussed in Section 3.3, this is due to the fact that the DOF-adjustment is not negligible anymore

9Across the 82 outcomes, the median intracluster correlation coefficient is 0.063 at the village level, and 0.054 at
the pair level.

10Some villages have fewer than 20 villagers. For a village with, for example, 13 villagers, we draw 7 villagers from
the village’s population and add them to the original villagers.
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with 5 villagers per village. The error rate of the t-test with the UCVE and pair fixed effects is

still much higher than 5%, but less so than in Panel A. Finally, the error rate of the t-test with

the UCVE and no pair fixed effects is still well below 5%, though less so than in Panel A. These

simulations justify the guidance above: in clustered RCTs with strictly fewer than 10 observations

per unit, one should either use the PCVE without pair fixed effects, with or without the DOF

adjustment, or the PCVE with pair fixed effects without the DOF adjustment.

Finally, Panel E of Table 1 shows the error rates of the four t-tests, in a data set where a

quarter of the villages have five villagers, a quarter have 10 villagers, a quarter have 20 villagers,

and a quarter have their actual number of villagers. In Columns (1) and (2), results are fairly

similar to those in Panel A. In Columns (3) and (4), the error rates of the t-tests using the PCVEs

are larger than 5% (though much less so than the t-test using the UCVE with pair fixed effects).

This is related to the results in Carter et al. (2017), who find that when clusters have very het-

erogeneous sizes, one needs a larger number of clusters to ensure that asymptotic distributions

yield accurate approximations of the finite-sample distribution of cluster-robust t-statistics. Note

that this phenomenon is absent in Panel A, while village sizes are already fairly heterogeneous in

those simulations. In applications where units have very heterogeneous numbers of observations,

researchers may need to perform their own simulations to assess whether t-tests using the PCVEs

can be used.

5 Application

In this section, we revisit the paired RCTs in our survey. The data used in four of those papers

is publicly available (Beuermann et al., 2015b; Bruhn et al., 2016b; Crépon et al., 2015b; Glewwe

et al., 2016b). Those four papers used a clustered RCT, and all have more than 10 observations

per randomization unit (across the four papers, the lowest average number of observations per

randomization unit is 21.5). The authors estimated the effect of the treatment in 294 regressions,

clustering at the unit level. In Panel A of Table 2, we re-estimate those regressions, clustering at

the pair level, and including the same controls as the authors. In the 240 regressions with pair fixed

effects, the average of the unit-clustered variance estimator (UCVE) divided by the pair-clustered

variance estimator (PCVE) is equal to 0.548. The UCVE divided by the PCVE is not always

exactly equal to 1/2, because Assumption 2 is not always satisfied, but these fractions all are quite

close to 1/2, as predicted by Lemma G.4. The authors originally found that the treatment has a
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Table 1: Error Rates of T -tests, in Simulations Based on Crépon et al. (2015a)

Clustering level Pair Fixed Effects
5% level t-test error rate

With 81 pairs With 40 pairs With 30 pairs With 20 pairs
(1) (2) (3) (4)

Panel A: Actual village sizes
Pair Yes 0.0500 0.0526 0.0527 0.0559
Pair No 0.0518 0.0544 0.0541 0.0572
Unit Yes 0.1709 0.1795 0.1802 0.1840
Unit No 0.0132 0.0178 0.0178 0.0192

Panel B: All villages have 20 villagers
Pair Yes 0.0465 0.0504 0.0510 0.0537
Pair No 0.0496 0.0539 0.0541 0.0562
Unit Yes 0.1642 0.1682 0.1741 0.1737
Unit No 0.0162 0.0213 0.0190 0.0259

Panel C: All villages have 10 villagers
Pair Yes 0.0426 0.0439 0.0464 0.0454
Pair No 0.0490 0.0499 0.0538 0.0498
Unit Yes 0.1598 0.1513 0.1622 0.1686
Unit No 0.0223 0.0235 0.0249 0.0265

Panel D: All villages have 5 villagers
Pair Yes 0.0361 0.0353 0.0371 0.0363
Pair No 0.0480 0.0480 0.0502 0.0477
Unit Yes 0.1382 0.1372 0.1367 0.1421
Unit No 0.0240 0.0261 0.0313 0.0284

Panel E: Heterogeneous village sizes
Pair Yes 0.0514 0.0573 0.0597 0.0673
Pair No 0.0554 0.0602 0.0623 0.0692
Unit Yes 0.1764 0.1753 0.1775 0.1797
Unit No 0.0184 0.0225 0.0228 0.0271

Notes: Table 1 reports the error rates of four 5% level t-tests in Crépon et al. (2015a). For each of the 82 outcomes
in the paper, we randomly drew 1000 simulated treatment assignments, following the paired assignment used by the
authors, and regressed the outcome on the simulated treatment. The four t-tests are computed, respectively, without
and with pair fixed effects in the regression, and clustering standard errors at the village or at the pair level. All t-tests
are based on Stata’s regress command, so they make use of DOF-adjusted variance estimators. The error rate of each
test is the percent of times, across the 82,000 regressions (82 outcomes × 1000 replications), that the test leads the
researcher to wrongly conclude that the treatment has an effect. Column (1) (resp. (2), (3), (4)) shows the results using
the original sample of 81 pairs (resp. a fixed sample of 40, 30, 20 randomly selected pairs). In Panel A, villages all have
their actual number of villagers. In Panel B (resp. C, D), each village has 20 (resp. 10, 5) villagers, that are a fixed
random sample from the village’s population. In Panel E, 1/4 of villages have 5 villagers, 1/4 have 10 villagers, 1/4
have 20 villagers, and 1/4 have their actual number of villagers.
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5%-level significant effect in 110 regressions. Using the PCVE, we find significant effects in just

74 regressions. In the 54 regressions without pair fixed effects, the UCVE is on average 1.18 times

larger than the PCVE. The authors originally found 31 significant effects, we find 36 significant

effects using the PCVE.

The data used in the remaining four papers is not publicly available. Three of those papers

estimated 131 regressions with pair fixed effects, clustering standard errors at the unit level.11

For those regressions, we multiply the UCVE by the average value of of the PCVE divided by the

UCVE found in Panel A of Table 2 to predict the value of the PCVE. Panel B of Table 2 shows that

while the authors originally found a 5%-level significant effect in 51 regressions, we find significant

effects in just 34 regressions. The fourth paper estimated regressions only without pair fixed effects.

Because without fixed effects, the value of the PCVE divided by the UCVE can vary significantly

across regressions, we do not try to predict the PCVEs of that paper.

Table 2: Using Unit- or Pair-Level Clustered Variance Estimators in Paired RCTs

Unit-level divided
by pair-level
clustered variance
estimators

Number of
5%-level
significant
effects with
UCVE

Number of
5%-level
significant
effects with
PCVE

Number of
Regressions

Panel A: Articles with publicly available data
with pair fixed effects 0.548 110 74 240
without pair fixed effects 1.184 31 36 54

Panel B: Articles without publicly available data
with pair fixed effects 51 34 131

Notes: The table shows the effect of using pair-clustered variance estimators (PCVE) rather than unit-level
clustered variance estimators (UCVE) in seven of the paired RCTs we found in our survey. In Panel A, we
consider four papers whose data is available online, and re-estimate their regressions clustering standard errors
at the pair level. Column 1 shows the ratio of the unit- and pair-level clustered variance estimators, separately
for regressions without and with pair fixed effects. Column 2 (resp. 3) shows the number of 5%-level significant
effects using unit- (resp. pair-) clustered standard errors. In Panel B, we consider three other papers whose data
is not available online, and use the average ratio of the unit- and pair- clustered variance estimators found in
Panel A to predict the value of the pair-clustered estimator in the regressions with pair fixed effects estimated
by those papers. Column 2 (resp. 3) shows the number of 5%-level significant effects using unit- (resp. predicted
pair-) clustered standard errors.

6 Extensions

In our Web Appendix, we consider various extensions. In Appendix E, we present simulations

showing that our results for paired RCTs extend to stratified RCTs with few units per strata.

11Across these papers, the lowest number of observations per randomization unit is 99.0.
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Assumption 2, which requires that all units have the same number of observations, allows us to

derive the stark results in Lemma 3.1. Under Assumption 2, τ̂ and τ̂fe are equal, but the UCVE

drastically changes when one adds pair fixed effects to the regression. This is obviously undesirable:

the two estimators are equal, their variances are equal, so their variance estimators should not be

drastically different. In practice, however, Assumption 2 often fails. In that case, we show in

Section G of the Web Appendix that our main conclusions still hold. Without that assumption,

the PCVEs remain upward-biased in general and unbiased if the treatment effect is homogeneous

across pairs. On the other hand, the UCVE with pair fixed effects may still be downward-biased.

Specifically, Point 2 of Lemma 3.1 still holds if the number of observations per unit varies across

pairs, as long as the two units in a pair have the same number of observations. If the number of

observations per unit varies within pairs, Point 2 of Lemma 3.1 still approximately holds, unless

units in the same pair have very heterogeneous numbers of observations. Indeed, Lemma G.4 shows

that V̂unit(τ̂fe)/V̂pair(τ̂fe) is included between 1/2 and 5/9 as long as n1p/n2p is included between

0.5 and 2 for all p, meaning that in each pair the first unit has between half and twice as many

observations as the second one.

In Appendix D, we study two alternatives to the PCVE. With heterogeneous treatment effects

across pairs, the PCVE overestimates the variance of the treatment effect estimator. To increase

power, one may want to use an unbiased estimator of that variance. We study two alternatives, the

pair-of-pairs estimator proposed by Abadie and Imbens (2008), and a variance estimator proposed

by Bai et al. (2021).12 Both are unbiased, or at least consistent, when units are an i.i.d. sample

drawn from a superpopulation. In the set-up we consider, where units are a convenience sample,

we show that those two estimators are upward-biased, like the PCVE. They are less upward-biased

than the PCVE when the treatment effect is less heterogeneous within than between pairs of pairs,

and more upward-biased otherwise. We compute the three estimators in the regressions in our

survey, and find that they are on average equivalent, so it does not seem one can expect large

power gains from using those two alternative estimators. Moreover, simulations based on the data

from Crépon et al. (2015a) show that t-tests using those two estimators have a drawback relative to

the t-test using the PCVE. The corresponding t-statistics are approximately normally distributed

only if the sample has more than a couple hundred pairs. On the other hand, the t-test based on

12Other alternatives have been proposed. For instance, Fogarty (2018) proposes to use covariates that predict the
treatment effect heterogeneity across pairs to form a less-upward-biased estimator than the pair-clustered one. We do
not consider this estimator, merely because it lends itself less easily to the automatic replication exercise we conduct:
in each application, one has to determine the relevant covariates to include, based on context-specific knowledge.
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the PCVE is approximately normally distributed with as few as 20 pairs.

7 Conclusion

In paired or small-strata RCTs with large clusters, researchers usually estimate the treatment effect

by regressing their outcome on the treatment and pair or stratum fixed effects, “clustering” their

standard errors at the unit-of-randomization level. Then, they typically use the 5%-level t-test

based on this regression to determine if the treatment has an effect or not. As any statistical test,

this t-test may lead them to commit a type 1 error. Specifically, it may lead them to wrongly

conclude that the treatment has an effect, while the truth is that the treatment does not have an

effect. But when using a 5%-level test, their hope is that the probability that this would happen,

the so-called error rate of the test, is no larger than 5%. We show that unfortunately, the error rate

of this t-test may be much larger than the researcher’s 5% target. We then show that to achieve

their desired error rate, researchers should cluster their standard errors at the pair or at the strata

level, rather than at the unit-of-randomization level. Clustering at the pair rather than at the unit

level in a sample of 371 regressions from published paired RCTs reduces the number of significant

effects by 1/3.
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A Proof of Lemma 3.1

We first introduce some notation. Let Tp = n1pW1p+n2pW2p and Cp = n1p(1−W1p)+n2p(1−W2p)

be the number of treated and untreated observations in pair p. Let T =
∑P

p=1 Tp and C =
∑P

p=1Cp

be the total number of treated and untreated observations. Let SETp =
∑2

g=1

∑ngp
i=1Wgpεigp and

SEUp =
∑2

g=1

∑ngp
i=1(1−Wgp)εigp respectively be the sum of the residuals εigp for the treated and

untreated observations in pair p.

τ̂ is the well-known difference-in-means estimator:

τ̂ =
P∑
p=1

2∑
g=1

ngp∑
i=1

YigpWgp

T
−

P∑
p=1

2∑
g=1

ngp∑
i=1

Yigp(1−Wgp)

C
.

Remember that τ̂p =
∑2

g=1

[
Wgp

∑ngp
i=1

Yigp
ngp
− (1−Wgp)

∑ngp
i=1

Yigp
ngp

]
is the difference between the

average outcome of treated and untreated observations in pair p. It follows from, e.g., Equation

(3.3.7) in Angrist and Pischke (2008) and a few lines of algebra that

τ̂fe =

P∑
p=1

ωpτ̂p, where ωp =

(
n−11p + n−12p

)−1
∑P

p′=1

(
n−11p′ + n−12p′

)−1 .
Point 1

Proof of V̂pair(τ̂) = V̂pair(τ̂fe)

It follows from Equations (1) and (2) that

α̂+ τ̂Wgp + εigp = τ̂feWgp +
P∑
p=1

γ̂pδigp + uigp.

Rearranging and using the fact that under Assumption 2 τ̂ = τ̂fe, one obtains that for every p:

εigp = γ̂p − α̂+ uigp. (4)
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Then,

V̂pair(τ̂) =
1

T 2

P∑
p=1

(SETp − SEUp)2

=
1

T 2

∑
p

[∑
g

∑
i

(2Wgp − 1)εigp

]2

=
1

T 2

∑
p

[∑
g

∑
i

(2Wgp − 1)(γ̂p − α̂+ uigp)

]2

=
1

T 2

∑
p

[∑
g

∑
i

(2Wgp − 1)uigp + (γ̂p − α̂)
∑
g

∑
i

(2Wgp − 1)

]2

=
4

T 2

∑
p

(∑
g

∑
i

Wgpuigp

)2

. (5)

The first equality follows from Point 1 of Lemma C.1 and Assumption 2. The third equality follows

from Equation (4). The fifth follows from the following two facts. First,
∑

g

∑
i(2Wgp − 1)uigp =

2
∑

g

∑
iWgpuigp −

∑
g

∑
i uigp = 2

∑
g

∑
iWgpuigp, since

∑
g

∑
i uigp = 0 by definition of uigp.

Second, (γ̂p−α̂)
∑

g

∑
i(2Wgp−1) = (γ̂p−α̂)

[∑
g

∑
iWgp −

∑
g

∑
i(1−Wgp)

]
= (γ̂p−α̂)[Tp−Cp] =

0, where the last equality comes from the fact that n1p = n2p by Assumption 2.

Similarly,

V̂pair(τ̂fe) =
4

T 2

P∑
p=1

SET 2
p,fe =

4

T 2

P∑
p=1

(∑
g

∑
i

Wgpuigp

)2

, (6)

where the first equality follows from Equation (37) in the proof of Lemma C.1 and Assumption 2.

Combining Equations (5) and (6) yields V̂pair(τ̂) = V̂pair(τ̂fe).

Proof of E
[

P
P−1 V̂pair(τ̂)

]
= V(τ̂) + 1

P (P−1)
∑P

p=1(τp − τ)2
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Under Assumption 2, T = C = n/2, so

V̂pair(τ̂) =
P∑
p=1

(
SETp
T
− SEUp

C

)2

=
4

n2

P∑
p=1

(SETp − SEUp)2

=
4

n2

P∑
p=1

(∑
g

∑
i

(Wgpεigp − (1−Wgp)εigp)

)2

=
4

n2

P∑
p=1

(∑
g

∑
i

(2Wgp − 1)εigp

)2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)
∑
i

(Yigp − τ̂Wgp − α̂)

)2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)

(∑
i

Yigp − τ̂Wgp
np
2
− α̂np

2

))2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)
∑
i

Yigp − τ̂
np
2

∑
g

(2Wgp −Wgp)− α̂
np
2

∑
g

(2Wgp − 1)

)2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)
∑
i

Yigp − τ̂
np
2

∑
g

Wgp

)2

=
4

n2

P∑
p=1

(∑
g

(2Wgp − 1)
∑
i

Yigp − τ̂
np
2

)2

=
4

n2

P∑
p=1

(
τ̂p
np
2
− τ̂ np

2

)2
=

1

P 2

P∑
p=1

(τ̂p − τ̂)2 . (7)

The third equality comes from the definition of SETp and SEUp. The fifth equality follows from

the Equation (1). The sixth equality follows from n1p = n2p = np/2, which is a consequence of

Assumption 2. The eighth equality comes from the fact that
∑

g(2Wgp−1) = 0, which follows from

Point 1 of Assumption 1. The ninth equality follows from Point 1 of Assumption 1. The tenth

equality follows from
∑

g(2Wgp − 1)
∑

i Yigp =
∑

gWgp
∑

i Yigp −
∑

g(1 −Wgp)
∑

i Yigp = npτ̂p/2.

The eleventh equality follows from Assumption 2.
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Now, consider Equation (7). Adding and subtracting τ and τp = E[τ̂p],

V̂pair(τ̂) =
1

P 2

P∑
p=1

((τ̂p − τp)− (τ̂ − τ) + (τp − τ))2

=
1

P 2

P∑
p=1

[
(τ̂p − τp)2 + (τ̂ − τ)2 + (τp − τ)2 − 2(τ̂p − τp)(τ̂ − τ)

+2(τ̂p − τp)(τp − τ)− 2(τ̂ − τ)(τp − τ)] .

Taking the expected value, and given that E[τ̂ ] = τ and E[τ̂p] = τp,

E[V̂pair(τ̂)] =
1

P 2

P∑
p=1

[
V(τ̂p) + V(τ̂) + (τp − τ)2 − 2Cov(τ̂ , τ̂p)

]
=

1

P 2

P∑
p=1

[(
1− 2

P

)
V(τ̂p) + V(τ̂) + (τp − τ)2

]

=

(
1− 2

P

)
V(τ̂) +

1

P 2

P∑
p=1

V(τ̂) +
1

P 2

P∑
p=1

(τp − τ)2

=

(
1− 1

P

)
V(τ̂) +

1

P 2

P∑
p=1

(τp − τ)2.

The second equality follows from the fact that by Point 3 of Assumption 1 and Assumption 2,

Cov(τ̂p, τ̂) = Cov
(
τ̂p,
∑

p′
1
P τ̂p′

)
= 1

P V(τ̂p). The third equality comes from Equation (3). This

proves the result.

QED.

Point 2

The result directly follows from Points 3 and 4 of Lemma C.1 and the fact that n1p = n2p = np/2

under Assumption 2.

QED.
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Point 3

Let Y gp ≡
∑

i Yigp/ngp, Ŷp(1) ≡
∑

gWgpY gp, Ŷp(0) ≡
∑

g(1 −Wgp)Y gp, and Ŷ (d) ≡
∑

p Ŷp(d)/P ,

for d ∈ {0, 1}.

E[Ŷp(1)] = E

[∑
g

Wgpygp(1)

]
=

1

2

∑
g

ygp(1) = yp(1). (8)

The second equality follows from Point 2 of Assumption 1. Similarly,

E[Ŷp(0)] = E[yp(0)] (9)

E[Ŷ (d)] = y(d), for d ∈ {0, 1}. (10)

Then, one has

V̂unit(τ̂)− V̂pair(τ̂) =
8

n2

∑
p

SETpSEUp

=
8

n2

∑
p

(∑
g

Wgp

∑
i

(yigp(1)− Ŷ (1))

)(∑
g

(1−Wgp)
∑
i

(yigp(0)− Ŷ (0))

)

=
8

n2

∑
p

n2p
4

(∑
g

Wgp

∑
i

yigp(1)

ngp
− Ŷ (1)

)(∑
g

(1−Wgp)
∑
i

yigp(0)

ngp
− Ŷ (0)

)

=
2

P 2

∑
p

Ŷp(1)Ŷp(0)− 2

P
Ŷ (1)Ŷ (0) (11)

The first equality follows from Points 1 and 2 of Lemma C.1 and Assumption 2. The second

equality follows from the definitions of SETp, SEUp, and εigp. The third equality follows from

Point 1 of Assumption 1, and Assumption 2. The fourth equality follows from Assumption 2 and

some algebra. Taking the expectation of (11),

E
[
V̂unit(τ̂)− V̂pair(τ̂)

]
=

2

P 2

∑
p

(
Cov(Ŷp(1), Ŷp(0))

)
+

2

P 2

∑
p

(yp(1)− y(1))(yp(0)− y(0))− 2

P
Cov(Ŷ (1), Ŷ (0))

=
2

P 2

∑
p

(
Cov(Ŷp(1), Ŷp(0))

)
+

2

P 2

∑
p

(yp(1)− y(1))(yp(0)− y(0))− 2

P
Cov

(
1

P

∑
p

Ŷp(1),
1

P

∑
p

Ŷp(0)

)

=
2(P − 1)

P 3

∑
p

(
Cov(Ŷp(1), Ŷp(0))

)
+

2

P 2

∑
p

(yp(1)− y(1))(yp(0)− y(0)).

31



The first equality follows from adding and subtracting 2
P E[Ŷ (1)]E[Ŷ (0)] and 2

P 2

∑
p E[Ŷp(1)]E[Ŷp(0)],

and from Equations (8), (9) and (10). The third equality follows from Point 3 of Assumption 1.

Therefore,

P

P − 1
E
[
V̂unit(τ̂)− V̂pair(τ̂)

]
=

2

P 2

∑
p

(
Cov(Ŷp(1), Ŷp(0))

)
+

2

P (P − 1)

∑
p

(yp(0)− y(0))(yp(1)− y(1)).

(12)

Finally,

Cov
(
Ŷp(1), Ŷp(0)

)
= E[Ŷp(1)Ŷp(0)]− E[Ŷp(1)]E[Ŷp(0)]

=

(
1

2
y1p(1)y2p(0) +

1

2
y2p(1)y1p(0)

)
−

(
1

2

∑
g

ygp(1)

)(
1

2

∑
g

ygp(0)

)

=
1

4
y1p(1)y2p(0) +

1

4
y2p(1)y1p(0)− 1

4
y1p(1)y1p(0)− 1

4
y2p(1)y2p(0)

=
1

4

(
y1p(1)− y2p(1)

) (
y2p(0)− y1p(0)

)
= −1

2

∑
g

(
ygp(0)− yp(0)

) (
ygp(1)− yp(1)

)
(13)

The second equality follows from Points 1 and 2 of Assumption 1, and Equations (8) and (9). The

third, fourth, and fifth equalities follow after some algebra. The result follows plugging Equation

(13) into (12).

QED.

B Large sample results for the pair- and unit-clustered variance

estimators

In this section, we present the large sample distributions of the t-tests attached to the four variance

estimators we considered in Section 3. Let

σ2pair = lim
P→+∞

PV(τ̂)

PV(τ̂) + 1
P

∑
p(τp − τ)2

,

∆cov,P =
1

P

∑
p

(yp(0)− y(0))(yp(1)− y(1))− 1

P

∑
p

1

2

∑
g

(
ygp(0)− yp(0)

) (
ygp(1)− yp(1)

)
,

and σ2unit = lim
P→+∞

PV(τ̂)

PV(τ̂) + 1
P

∑
p(τp − τ)2 + 2∆cov,P

,
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where Assumption 3 below ensures the limits in the previous display exist.

Assumption 3.

1. For every d, g and p, there is a constant M such that
∣∣ygp(d)

∣∣ < M < +∞.

2. When P → +∞, 1
P

∑
p τp,

1
P

∑
p(τp − τ)2, and ∆cov,P converge towards finite limits, and

PV(τ̂) and PV(τ̂) + 1
P

∑
p(τp − τ)2 + 2∆cov,P converge towards strictly positive finite limits.

3. As P → +∞,
∑P

p=1 E[|τ̂p − τp|2+ε]/S2+ε
P → 0 for some ε > 0, where S2

P ≡ P 2V(τ̂).

Point 1 of Assumption 3 guarantees that we can apply the strong law of large numbers (SLLN)

in Lemma 1 in Liu (1988) to the sequence (τ̂2p )+∞p=1. Point 2 ensures that PV (τ̂) and P V̂unit(τ̂) do

not converge towards 0. Point 3 guarantees that we can apply the Lyapunov central limit theorem

to (τ̂p)
+∞
p=1.

Theorem B.1. (t-stats’ asymptotic behavior) Under Assumptions 1, 2 and 3,

1. (τ̂ − τ)/
√

V̂pair(τ̂) = (τ̂fe − τ)/
√

V̂pair(τ̂fe)
d−→ N (0, σ2pair). σ2pair ≤ 1, and if τp = τ for

every p, σ2pair = 1.

2. (τ̂fe − τ)/
√

V̂unit(τ̂fe)
d−→ N (0, 2σ2pair).

3. (τ̂ − τ)/

√
V̂unit(τ̂)

d−→ N (0, σ2unit).

4. σ2unit ≤ σ2pair if and only if ∆cov,P converges towards a positive limit.

Proof. See Web Appendix H.

Point 3 is related to Theorem 3.1 in Bai et al. (2021), who show that when ngp = 1, the t-test

in Point 3 under-rejects. The asymptotic variance we obtain is different from theirs, because our

results are derived under different assumptions. For instance, we assume a fixed population, while

Bai et al. (2021) assume that the experimental units are an i.i.d. sample drawn from an infinite

superpopulation, and that asymptotically the expectation of the potential outcomes of two units

in the same pair become equal.

C Clustered variance estimators

Lemma C.1 (Clustered variance estimators for τ̂ and τ̂fe).
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1. The pair-clustered variance estimator (PCVE) of τ̂ is V̂pair(τ̂) =
∑P

p=1

(
SETp
T − SEUp

C

)2
.

2. The unit-clustered variance estimator (UCVE) of τ̂ is V̂unit(τ̂) =
∑P

p=1

(
SET 2

p

T 2 +
SEU2

p

C2

)
.

3. The PCVE of τ̂fe is V̂pair(τ̂fe) =
∑P

p=1 ω
2
p (τ̂p − τ̂fe)2 .

4. The UCVE of τ̂fe is V̂unit(τ̂fe) =
∑P

p=1 ω
2
p (τ̂p − τ̂fe)2

((
n1p

np

)2
+
(
n2p

np

)2)
.

Proof. See Web Appendix H.

D Variance estimators that rely on pairs of pairs

We also study two other estimators of V (τ̂). Those estimators have been proposed in the one-

observation-per-unit special case, but it is straightforward to extend them to the case where all

units have the same number of observations, as stated in Assumption 2.13

The first alternative estimator we consider is a slightly modified version of the pairs-of-pairs

(POP) variance estimator (POPVE) proposed by Abadie and Imbens (2008). We only define it

when the number of pairs P is even, but in our application in Subsection D.4 below we propose a

simple method to extend it to cases where the number of pairs is odd. Let xg,p denote the value of

a predictor of the outcome in pair p’s unit g. Pairs are ordered according to their value of
x1,p+x2,p

2 ,

the two pairs with the lowest value are matched together, the next two pairs are matched together,

and so on and so forth. Let R = P
2 . For any r ∈ {1, ..., R} and for any p ∈ {1, 2}, let τ̂pr denote

the treatment effect estimator in pair p of POP r. Then, the POPVE is defined as

V̂pop(τ̂) =
1

P 2

R∑
r=1

(τ̂1r − τ̂2r)2.

xg,p, the variable used to match pairs into POPs, could be the average value of the outcome at

baseline in pair p’s unit g. Or it could be the covariate used to form the pairs, when only one

covariate is used. In our application in subsection D.4, we use the baseline outcome to match pairs

into POPs, because the covariates used to match units into pairs are unavailable in most of the data

sets of the papers we revisit. Based on Lemma D.1, we will argue below that the baseline outcome

should often be a good choice to match pairs into POPs. The variable one uses to form POPs

should be pre-specified and not a function of the treatment assignment. Otherwise, researchers

could try to find the variable minimizing the POPVE, which would lead to incorrect inference.

13Extending those variance estimators when Assumption 2 fails is left for future work.
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There are two differences between the POPVE and the variance estimator proposed in Equation

(3) in Abadie and Imbens (2008). First, we match pairs with respect to a single covariate, while

Abadie and Imbens (2008) consider matching with respect to a potentially multidimensional vector

of covariates. This difference is not of essence: we could easily allow pairs to be matched on several

covariates. We focus on the unidimensional case as that is the one we use in our application, where

the matching is done based on the baseline outcome. Second, the estimator in Abadie and Imbens

(2008) matches pairs with replacement, while V̂pop(τ̂) matches pairs without replacement. If after

ordering pairs according to their value of
x1,p+x2,p

2 , pair 2 is closer to pair 3 than pair 4, pair 2 is

matched to pairs 1 and 3 in Abadie and Imbens (2008), while V̂pop(τ̂) matches pair 1 to pair 2 and

pair 3 to pair 4. Matching without replacement makes the properties of V̂pop(τ̂) easier to analyze.

The second alternative variance estimator we consider is that proposed by Bai et al. (2021) in

their Equation (20) (BRSVE). Again, we define this estimator when the number of pairs P is even.

With our notation, their estimator is

V̂brs(τ̂) =
1

P 2

P∑
p=1

τ̂2p −
1

2

(
2

P 2

R∑
r=1

τ̂1r τ̂2r +
τ̂2

P

)
.

Bai et al. (2021) propose another variance estimator in their Equation (28). That estimator is less

amenable to simple comparisons with the UCVE, PCVE, and POPVE, so we do not analyze its

properties. However, we compute it in our applications, and find that it is typically similar to the

POPVE and BRSVE.

D.1 Finite-sample results

Let τ·r = 1
2(τ1r + τ2r) denote the average treatment effect in POP r.

Lemma D.1. If Assumptions 1 and 2 hold and P is even,

1. E
[
V̂pop(τ̂)

]
= V(τ̂) + 1

P 2

∑R
r=1(τ1r − τ2r)2.

2. V̂brs(τ̂) = 1
2 V̂pair(τ̂) + 1

2 V̂pop(τ̂).

3. If 1
R

∑R
r=1

∑
p=1,2

1
2(τpr − τ·r)2 ≤ 1

R−1
∑R

r=1(τ·r − τ)2,

(a) E
[
V̂pop(τ̂)

]
≤ E

[
P
P−1 V̂pair(τ̂)

]
,

(b) E
[
V̂pop(τ̂)

]
≤ E

[
P
P−1 V̂brs(τ̂)

]
,

(c) E
[
V̂brs(τ̂)

]
≤ E

[
P
P−1 V̂pair(τ̂)

]
.
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Proof. See Web Appendix H.

Point 1 of Lemma D.1 shows that the POPVE is upward biased in general, and unbiased if the

treatment effect is constant within POP. The less treatment effect heterogeneity within POP, the

less upward biased the POPVE. An important practical consequence of Point 1 is that the variable

used to form POPs should be a good predictor of pairs’ treatment effect. The baseline value of

the outcome may often be a good predictor of pairs’ treatment effect. For instance, treatments

sometimes produce a stronger effect on units with the lowest baseline outcome, thus leading to a

catch-up mechanism (see for instance Glewwe et al., 2016a).

Point 1 of Lemma D.1 is related to Theorem 1 in Abadie and Imbens (2008), though there

are a few differences. Abadie and Imbens (2008) assume that the experimental units are drawn

from a super population, and show that once properly normalized, their estimator is consistent

for the normalized conditional variance of τ̂ .14 The fact that the POPVE is upward biased in

Lemma D.1 and consistent in their Theorem 1 is because we do not assume that the experimental

units are an i.i.d. sample from a super population. The intuition is the following. In Abadie and

Imbens (2008), when the number of units grows, the covariates Xi on which pairing is based become

equal to the same value x for units in the same POP: with an infinity of units, each unit can be

matched to another unit with the same Xi, and each pair can be matched to another pair with the

same Xi. Then, asymptotically those units are an i.i.d. sample drawn from the super-population

conditional on Xi = x, and they all have the same expectation of their treatment effect. Treatment

effect heterogeneity within POPs, the source of the POPVE’s upward bias in Lemma D.1, vanishes

asymptotically. On the other hand, with a convenience sample, units in the same POP may have

asymptotically the same covariates, but they could still have different treatment effects, because

they are not i.i.d. draws from a superpopulation.

Point 2 shows that the BRSVE is equal to the average of the PCVE and POPVE. Then, it

follows from Point 1 of Lemma 3.1 and Point 1 of Lemma D.1 that P
P−1 V̂brs(τ̂) is upward biased.

Point 2 is related to Lemma 6.4 and Theorem 3.3 in Bai et al. (2021), where the authors show

that P V̂brs(τ̂) is consistent for the normalized variance of τ̂ . Here as well, the fact that P V̂brs(τ̂)

is upward biased in Lemma D.1 and consistent in Bai et al. (2021) comes from the fact we do not

assume that the experimental units are an i.i.d. sample drawn from a super population.

Finally, Point 3 shows that if the treatment effect varies less within than across POPs, the

14In our setting, the covariates are assumed to be fixed, so the fact that we consider the unconditional variance of
τ̂ while they consider its conditional variance does not explain the difference between our results.
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POPVE is less upward biased than the degrees-of-freedom-adjusted PCVE and BRSVE, and the

BRSVE is less upward biased than the degrees-of-freedom-adjusted PCVE. A sufficient condition to

have that the treatment effect varies less within than across POPs is 1
R

∑R
r=1(τ1r− τ)(τ2r− τ) ≥ 0,

meaning that the treatment effects of the two pairs in the same POP are positively correlated.

D.2 Large-sample results

Assumption 4. When P → +∞, 1
P

∑
r(τ1r − τ2r)2 converges towards a finite limit.

Let

σ2pop = lim
P→+∞

PV(τ̂)

PV(τ̂) + 1
P

∑
r(τ1r − τ2r)2

,

σ2brs = lim
P→+∞

PV(τ̂)

PV(τ̂) + 1
2P

∑
r(τ1r − τ2r)2 + 1

2P

∑
p(τp − τ)2

,

where Assumptions 3 and 4 ensure the limits in the previous display exist.

Theorem D.2. (t-stats’ asymptotic behavior) Under Assumptions 1, 2, 3, and 4,

1. (τ̂ − τ)/
√

V̂pop(τ̂)
d−→ N (0, σ2pop). σ

2
pop ≤ 1, and if τ1r = τ2r for every r, σ2pop = 1.

2. (τ̂ − τ)/

√
V̂brs(τ̂)

d−→ N (0, σ2brs). σ
2
brs ≤ 1, and if τp = τ for every p, σ2brs = 1.

3. σ2pair ≤ σ2brs ≤ σ2pop if and only if 0 ≤ limP→+∞
1
R

∑R
r=1(τ1r − τ)(τ2r − τ).

Proof. See Web Appendix H.

Points 1 and 2 of Theorem D.2 show that when the number of pairs grows, the t-statistic using

the POPVE and BRSVE, respectively, converges to a normal distribution with a mean equal to 0

and a variance lower than 1 in general, but equal to 1 when the treatment effect is homogenous

across pairs. Therefore, those t-tests under-reject. Point 3 shows that whenever there is a positive

correlation between the treatment effects of the two pairs in the same POP, the t-test using the

POPVE under-rejects less than that using the BRSVE, which itself under-rejects less than that

using the PCVE.

D.3 Simulations

For 26 of the 82 regressions in Crépon et al. (2015a), the baseline outcome is available in the

authors’ data set, so for those outcomes we can simulate the POPVE and BRSVE as well. Those
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estimators are defined under Assumption 2, which does not hold. Therefore in those simulations,

we aggregate the data at the village level. We use two samples of 80 and 20 randomly selected pairs

out of the original 81 pairs, so as to have an even number of pairs. For each outcome, we simulate

3,000 vectors of treatment assignments, assigning one of the two villages to treatment in each pair.

Then, we compute τ̂ , V̂pair(τ), V̂pop(τ), and V̂brs(τ), and the three corresponding 5% level t-tests.

The estimated error rate of each t-test is shown in Table 3 below. The error rate of the t-test

using the PCVE is close to 5% with as few as 20 pairs. On the other hand, the error rates of the

t-tests using the POPVE and BRSVE are larger than 5%, even with 80 pairs. Accordingly, we run

simulations again, duplicating the random sample of 80 pairs twice to have 160 pairs. The error

rate of the t-test using the BRSVE is now close to 5%, but the error rate of the t-test using the

POPVE is still larger than 5%. With a sample of 320 pairs obtained by duplicating the random

sample of 80 pairs four times, all tests have error rates close to 5%. With 20 and 80 pairs, we find

in our simulations that the correlation between V̂pop(τ) and |τ̂ | is much weaker than that between

V̂pair(τ) and |τ̂ |. This explains why the t-test using V̂pop(τ) over-rejects, despite the fact V̂pop(τ)

is unbiased: when |τ̂ | is large, V̂pop(τ) is less likely to be large than V̂pair(τ), so the POPVE t-test

rejects more often. With 160 and 320 pairs, this phenomenon becomes less pronounced. Overall,

the asymptotic approximations in Points 1 and 2 of Theorem D.2 seem to hold only with a large

number of pairs, contrary to that in Point 1 of Theorem B.1.

Table 3: Simulations with data aggregated at village-level to compute V̂pop and V̂brs

Variance estimator
5% level t-test error rate

With 20 pairs With 80 pairs With 160 pairs With 320 pairs

PCVE 0.0499 0.0508 0.0509 0.0502
POPVE 0.1306 0.0833 0.0647 0.0565
BRSVE 0.0807 0.0624 0.0569 0.0526

Table 3 reports the error rates of three 5% level t-tests in Crépon et al. (2015a), aggregating data at
the village level. For each of the 26 outcomes in the paper for which the baseline outcome is available,
we randomly drew 3,000 simulated treatment assignments, following the paired assignment used by
the authors, and computed the treatment effect estimator τ̂ , the pair-clustered variance estimator
(PCVE), the pairs-of-pairs variance estimator (POPVE) in Abadie and Imbens (2008), the variance
estimator in Bai et al. (2021) (BRSVE), and the three corresponding t-tests. The error rate of each
test is the percent of times, across the 78,000 regressions (26 outcomes × 3,000 replications), that the
test leads the researcher to wrongly conclude that the treatment has an effect. Column 2 (resp. 3,
4, 5) shows the results using a random sample of 20 pairs (resp. a random sample of 80 pairs, the
same random sample of 80 pairs duplicated twice, the same random sample of 80 pairs duplicated four
times).
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D.4 Application

For 152 of the 294 regressions in Panel A of Table 2, the baseline outcome is available in the data

set, so we can compute the POPVE and BRSVE. Those estimators are defined under Assumption

2, which does not hold in all those regressions. Therefore, we compute the POPVE and BRSVE

after aggregating the data at the unit level. When the number of pairs is odd, we compute the

POPVE twice, first excluding the pair with the lowest value of the baseline outcome, then excluding

the pair with the highest value of the baseline outcome, and we finally take the average of the two

estimators. We do the same for the BRSVE when the number of pairs is odd. We also recompute

the PCVE without pair fixed effects with the aggregated data, using the exact same sample as that

used to compute the POPVE and BRSVE. Across those 152 regressions, the POPVE divided by

the PCVE is on average equal to 1.026. The BRSVE divided by the PCVE is on average equal to

1.014.15 In those regressions, the POPVE and BRSVE do not lead to power gains.

E Extension: stratified experiments with few units per strata

In this section, we perform Monte-Carlo simulations to assess how our results in Section 3 extend

to stratified RCTs where the number of units per strata is larger than two, but still fairly small.

Three main findings emerge. First, the error rates of t-tests using stratum-clustered standard errors

are equal to 5%. Second, the error rates of t-tests using standard errors clustered at the unit level

are larger than 5% in regressions with stratum fixed effects, but decrease as the number of units

per strata increases. With 5 units per strata, and averaging across Panels A to D of Table 4 below,

the error rate of a 5% level test with UCVE and stratum fixed effects is around 7.9%, while with

10 units per strata this error rate is around 6.2%. Finally, the error rates of t-tests using standard

errors clustered at the unit level tend to be lower than 5% in regressions without stratum fixed

effects.

We draw the potential and observed outcomes from the following data generating process

(DGP),

Yigp = Wgpyigp(1) + (1−Wgp)yigp(0) + γp, i = 1, . . . , ngp; g = 1, . . . , G; p = 1, . . . , P, (14)

where yigp(1) and yigp(0) are independent and both follow aN (0, 1) distribution, {γp}p ∼ iid N (0, σ2γ),

15The variance estimator in Equation (28) of Bai et al. (2021) is also on average higher than the PCVE.
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and (yigp(1), yigp(0)) ⊥⊥ γp. We either let ση = 0 or ση =
√

0.1. ση = 0 corresponds to a model

with no stratum common shock, while ση =
√

0.1 corresponds to a model with a shock. We

draw potential outcomes once and keep them fixed, so yigp(1), yigp(0) and γp do not vary across

simulations.

Each stratum has G units. We vary G from two to ten. If G is even, then half of the units are

randomly assigned to the control and the remaining to the treatment. If G is odd, then (G+ 1)/2

units are randomly assigned to the control. We also set ngp = 5 or ngp = 100, and we let the

number of strata P be equal to 100.

We compute t-tests based on unit- and stratum-clustered standard errors in regressions of the

outcome on the treatment with and without stratum fixed effects. We perform 10,000 simulations

for each DGP. Table 4 presents the error rates of the t-tests in each DGP.

t-tests using stratum-clustered standard errors achieve error rates close to 5% for all data

configurations (as in Table 1, with ngp = 5, the t−test using the PCVE with stratum fixed effects

under-rejects slightly, due to the DOF-adjustment). In contrast, t-tests based on unit-clustered

standard errors in regressions with stratum fixed effects overreject the true null of no treatment

effect. These results are in line with Points 1 and 2 of Theorem B.1, which covered the special

case where G = 2. t-tests based on unit-clustered standard errors in regressions with stratum

fixed effects over-reject less as the number of units per strata increases from two (column 2) to ten

(column 10). Interestingly, it seems that unit-clustered standard errors are approximately equal

to
√

G−1
G times the stratum-clustered standard errors. If G = 2, the ratio of those two standard

errors is exactly equal to
√

(2− 1)/2 =
√

1/2 as shown in Lemma 3.1, but this relationship seems

to still hold in expectation for larger values of G.

In Panel A, t-tests based on unit-clustered standard errors in regressions without stratum fixed

effects have error rates close to 5%. When ση = 0, there is no between and within strata hetero-

geneity in ygp(0), so it follows from Point 3 of Theorem B.1 that in the special case where G = 2,

t-tests based on unit-clustered standard errors in regressions without stratum fixed effects have

error rates close to 5%. Our simulations suggest that this result still holds when G > 2. However,

in Panel B, t-tests using unit-clustered standard errors in regressions without stratum fixed effects

have error rates lower than 5%, because there is now between-strata heterogeneity in ygp(0). We

obtain similar results with five observations per unit (Panels C and D).
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Table 4: Error rates of t-test in simulated stratified RCTs with small strata

Number of units per strata
2 3 4 5 6 7 8 9 10

Panel A. iid standard normal potential outcomes and ngp = 100

UCVE without FE 0.0311 0.0462 0.0607 0.0552 0.0533 0.0566 0.0562 0.0471 0.0490
UCVE with FE 0.1655 0.1096 0.0937 0.0852 0.0734 0.0710 0.0684 0.0631 0.0624
SCVE without FE 0.0509 0.0495 0.0576 0.0554 0.0532 0.0520 0.0553 0.0505 0.0522
SCVE with FE 0.0503 0.0488 0.0571 0.0553 0.0532 0.0518 0.0551 0.0505 0.0521
ŝ.e.unit(τ̂fe)

ŝ.e.strat(τ̂fe)
0.7053 0.8168 0.8694 0.8976 0.9187 0.9326 0.9420 0.9488 0.9557

Panel B. Stratum-level shock affecting potential outcomes and ngp = 100
UCVE without FE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
UCVE with FE 0.1750 0.1178 0.0808 0.0804 0.0768 0.0655 0.0663 0.0678 0.0654
SCVE without FE 0.0563 0.0547 0.0449 0.0536 0.0564 0.0477 0.0538 0.0545 0.0543
SCVE with FE 0.0557 0.0541 0.0446 0.0535 0.0564 0.0473 0.0535 0.0543 0.0542
ŝ.e.unit(τ̂fe)

ŝ.e.strat(τ̂fe)
0.7053 0.8165 0.8692 0.8984 0.9177 0.9314 0.9412 0.9488 0.9552

Panel C. iid standard normal potential outcomes and ngp = 5
UCVE without FE 0.0853 0.0431 0.0428 0.0536 0.0540 0.0526 0.0553 0.0472 0.0491
UCVE with FE 0.1495 0.0951 0.0860 0.0736 0.0724 0.0632 0.0658 0.0612 0.0601
SCVE without FE 0.0556 0.0497 0.0511 0.0535 0.0546 0.0508 0.0573 0.0521 0.0510
SCVE with FE 0.0425 0.0432 0.0458 0.0488 0.0521 0.0482 0.0530 0.0493 0.0491
ŝ.e.unit(τ̂fe)

ŝ.e.strat(τ̂fe)
0.7053 0.8166 0.8702 0.8981 0.9188 0.9312 0.9414 0.9486 0.9544

Panel D. Stratum-level shock affecting potential outcomes and ngp = 5
UCVE without FE 0.0213 0.0166 0.0174 0.0178 0.0141 0.0200 0.0141 0.0190 0.0133
UCVE with FE 0.1475 0.1027 0.0858 0.0781 0.0626 0.0617 0.0668 0.0631 0.0588
SCVE without FE 0.0503 0.0544 0.0538 0.0546 0.0481 0.0478 0.0534 0.0545 0.0520
SCVE with FE 0.0392 0.0476 0.0489 0.0507 0.0440 0.0438 0.0508 0.0519 0.0498
ŝ.e.unit(τ̂fe)

ŝ.e.strat(τ̂fe)
0.7053 0.8168 0.8701 0.8991 0.9183 0.9311 0.9408 0.9485 0.9544

The table shows the error rates of t-tests based on unit- and stratum-clustered standard errors in regressions with
and without stratum fixed effects. Across simulations, we vary the number of units per strata from two to ten
(G = 2, . . . , 10); we vary the number of observations per unit to either ngp = 5 or ngp = 100; and we set the number
of strata to P = 100. For each value of G, we simulated 10,000 samples from the following data generating processes:
independent and identically distributed (iid) standard normal potential outcomes in Panels A and C, and a model
with an additive stratum-level shock affecting both potential outcomes in Panel B and D. UCVE and SCVE stand

for unit- and stratum-clustered variance estimators, respectively. FE stands for stratum fixed effects.
ŝ.e.unit(τ̂fe)

ŝ.e.strat(τ̂fe)
is

the average across simulations of the ratio of standard errors clustering at the unit and stratum levels in regressions
with stratum fixed effects.
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F Articles in our survey of paired or small strata experiments

Table 5: Paired RCTs and stratified RCTs with small strata

Reference Search source

Paired RCTs
Ashraf et al. (2006) AEA registry
Banerjee et al. (2015) AEJ: Applied
Crépon et al. (2015a) AEJ: Applied
Beuermann et al. (2015a)1 AEJ: Applied
Fryer Jr et al. (2016) AEA registry
Glewwe et al. (2016a) AEA registry
Bruhn et al. (2016a) AEJ: Applied
Fryer Jr (2017) AEA registry

Small-strata RCTs
Attanasio et al. (2015) AEJ: Applied
Angelucci et al. (2015) AEJ: Applied
Ambler et al. (2015) AEJ: Applied
Björkman Nyqvist et al. (2017) AEJ: Applied
Banerji et al. (2017) AEJ: Applied
Lafortune et al. (2018) AEJ: Applied
Somville and Vandewalle (2018) AEJ: Applied

The table presents economics papers that have conducted
clustered and paired RCTs, or clustered and stratified RCTs
with ten or less units per strata. We searched the AEJ: Ap-
plied Economics for papers published in 2014-2018 and us-
ing the words “random” and “experiment” in the abstract,
title, keywords, or main text. Four of those papers had
conducted a clustered and paired RCT and seven had con-
ducted a clustered and stratified RCT with ten units or
less per strata. We also searched the AEA’s registry web-
site for RCTs (https://www.socialscienceregistry.org).
We looked at all completed projects, whose randomization
method included the word “pair” and that had either a work-
ing or a published paper. Thus, we found four more papers
that had conducted a clustered and paired RCT. Beuermann
et al. (2015a) use a paired design to estimate the spillover
effects of the intervention they consider. Their estimation of
the direct effects of that intervention relies on another type
of randomization. We only include their spillover analysis in
our survey and in our replication.
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G Results when the number of observations varies across units

In this section, we extend some of the results in Section 3 to instances where units may have

different numbers of observations, as is often the case in practice.

G.1 Upward bias of the pair-clustered variance estimator (PCVE)

In this subsection, we show that when units have different numbers of observations, our recommen-

dation of using the PCVE still applies.

When units have different numbers of observations, there are several estimators of the treatment

effect one may consider. τ̂ , the standard difference in means estimator, is such that

τ̂ =
1

T

P∑
p=1

2∑
g=1

ngp∑
i=1

YigpWgp −
1

C

P∑
p=1

2∑
g=1

ngp∑
i=1

Yigp(1−Wgp),

where T and C respectively denote the total number of treated and control observations. When the

number of observations varies across units, T and C are stochastic. For instance, assume one has

two pairs. In pair 1, units 1 and 2 both have 1 observation, but in pair 2 unit 1 has 1 observations

while unit 2 has 2 observations. Then, T is equal to 2 with probability 1/2, and to 3 with probability

1/2. These stochastic denominators in τ̂ make it impossible to derive a closed-form expression of

its expectation and variance. One can still show that when the number of pairs goes to infinity,

τ̂ converges toward τ , the average treatment effect, and one could also use the delta method to

show that τ̂ is asymptotically normal and derive its asymptotic variance. However, throughout the

paper we have focused on estimators’ finite sample variances.

Therefore, instead of τ̂ we consider another, closely related estimator, whose expectation and

variance are straightforward to derive even when the number of observations varies across units,

and which is unbiased for a causal effect that differs from τ but that is still relatively natural (see

Imai et al. (2009) for closely related discussions). Let τ̃ denote the coefficient of Wgp in the weighted

OLS regression of Yigp on a constant and Wgp, with weights Vgp = np/ngp.
16 Let α̃ be the intercept

in that regression. One can show that

τ̃ =
1

P

∑
p

np
n

∑
g

(WgpY gp − (1−Wgp)Y gp) =
1

P

∑
p

np
n
τ̂p, (15)

where n̄ = n/P . Under Assumption 2, τ̃ = τ̂ . Hence, τ̃ generalizes τ̂ to the case where the number

16Specifically, the intercept α̃ and τ̃ are such that (α̃, τ̃) = argminα,τ
∑
p

∑
g

∑
i Vgp(Yigp − α− τWgp)

2.
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of observations varies across units. τ̃ is also one of the estimators considered by Imai et al. (2009),

though the fact τ̃ can be obtained by weighted least squares is not noted therein.

τ̃ is generally not unbiased for τ , unless in every pair, the two units have the same number of

observations, i.e., n1p = n2p for all p (Imai et al., 2009). On the other hand, τ̃ is unbiased for

τ∗ =
1

P

∑
p

np
n

(τ1p
2

+
τ2p
2

)

where τgp = 1
ngp

∑ngp
i=1[yigp(1)−yigp(0)] denotes the average treatment effect in unit g of pair p.17 τ∗

is a weighted average of the pair-specific average treatment effects (τ1p+τ2p)/2. Those pair-specific

average treatment effects give equal weight to the average treatment effect in each unit, rather than

weighting them according to their number of observations like τp does.Imai et al. (2009) show that

V(τ̃) =
1

4P 2

∑
p

n2p
n2

(∆p(1) + ∆p(0))2 ,

where ∆p(1) ≡ y1p(1) − y2p(1) and ∆p(0) ≡ y1p(0) − y2p(0). They propose various estimators of

that variance, and show that they are upward biased. Instead, we rely on the fact τ̃ can be obtained

by weighted least squares to propose an estimator whose properties have not been studied in the

randomization-inference framework we consider: the PCVE attached to τ̃ .

First, the following lemma extends Lemma C.1 to the PCVE in a weighted OLS regression.18

Lemma G.1 (Pair-clustered variance estimator for τ̃). V̂pair(τ̃) = 1
P 2

∑
p
n2
p

n2 [τ̂p − τ̃ ]2 .

Proof. See Web Appendix H.

Then, we study the asymptotic distribution of the t-statistic attached to τ̃ and V̂pair(τ̃). To do

so, we make the following assumption.

Assumption 5.

1. For all g and p, 1 ≤ ngp ≤ N for some fixed N < +∞.

2. As P → +∞, 1
P

∑
p

(np
n

)2
, 1
P

∑
p

(np
n

)2 E[τ̂p], and 1
P

∑
p

(np
n

)2
(E[τ̂p])

2 converge to strictly

positive constants, and τ∗ = 1
P

∑
p
np
n

( τ1p
2 +

τ2p
2

)
converges to a constant τ∞.

17With a slight abuse of notation, τ1r and τ2r refer to the ATE in pairs 1 and 2 of POP r, while τ1p and τ2p refer
to the ATE in units 1 and 2 of pair p.

18We follow the definition of clustered variance estimators for weighted least squares in Equation (15) of Cameron
and Miller (2015).
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3. As P → +∞,
∑P

p=1 E
[
|npn |

2+ε|τ̂p − E[τ̂p]|2+ε
]
/S̃2+ε

P → 0 for some ε > 0, where S̃2
P ≡ P 2V(τ̃).

Point 1 of Assumption 5 requires that the number of observations in every unit is greater than 1

and lower than some fixed N . Combined with Point 2 of Assumption 3, Point 2 of Assumption 5 en-

sures that P V̂pair(τ̃) converges towards a strictly positive limit. Point 3 guarantees that we can ap-

ply the Lyapunov central limit theorem to
(np
n τ̂p

)+∞
p=1

. Let σ2wls = limP→+∞
PV(τ̃)

PV(τ̃)+ 1
P

∑
p(
np
n )

2
(E(τ̂p)−τ∞)2

.

Theorem G.2. If Assumptions 1 and 5, and Points 1 and 2 of Assumption 3 hold,

(τ̃ − τ∗)/
√
V̂pair(τ̃)

d−→ N (0, σ2wls). σ
2
wls ≤ 1, and if τgp = τ for every g and p, or if n1p = n2p and

τp = τ for every p, then σ2wls = 1.

Proof. See Web Appendix H.

This theorem shows that when the number of pairs grows, the t-statistic of the weighted least

squares estimator using the PCVE converges to a normal distribution with a mean equal to 0 and

a variance lower than 1 in general, but equal to 1 when the treatment effect is homogenous across

units, or when the treatment effect is homogenous across pairs and in every pair the two units have

the same number of observations.

Theorem G.2 shows that when units have different numbers of observations, the PCVE attached

to τ̃ is upward biased asymptotically. We now show that the same holds for τ̂fe, the pair fixed

effects estimator, provided one applies some kind of degrees-of-freedom correction to its PCVE.

As shown in Point 3 of Lemma C.1, the PCVE of τ̂fe is V̂pair(τ̂fe) =
∑P

p=1 ω
2
p (τ̂p − τ̂fe)2 . Let

ω̃p = ωp (1− 2ωp)
−1/2.

Lemma G.3 (The adjusted PCVE for τ̂fe is upward biased). Under Assumption 1, and if ωp ≤ 1/2

for all p, E
[∑

p ω̃
2
p(τ̂p − τ̂fe)2

]
= V(τ̂fe)

(
1 +

∑
p ω̃

2
p

)
+
∑

p ω̃
2
p[E(τ̂p − τ̂fe)]2.

Proof. See Web Appendix H.

Lemma G.3 shows that the adjusted PCVE, where the ωp are replaced by ω̃p, is upward biased

for the variance of τ̂fe. The adjustment in ω̃p is similar to a degrees-of-freedom adjustment. In

fact, under Assumption 2, the adjusted PCVE is equal to P
P−2 V̂pair(τ̂fe). The requirement that

ωp ≤ 1/2 for all p is mild. For instance, if n1p = n2p for all p, this only requires that every pair has

fewer observations than all other pairs combined. If there is an integer L such that np ≤ L for every

p, one can show that lim inf
P→+∞

E
[
P
(
V̂pair(τ̂fe)− V(τ̂fe)

)]
≥ 0: the unadjusted PCVE is also upward

biased asymptotically. When the number of observations varies across units, V̂pair(τ̂fe) does not
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coincide with the estimator of the variance of τ̂fe considered in Imai et al. (2009). It seems that

Lemma G.3 above is the first result to justify the use of the PCVE attached to τ̂fe, in paired RCTs

where the number of observations varies across units.

G.2 Ratio of the UCVE and PCVE with pair fixed effects

In this subsection, we derive the ratio of the UCVE and PCVE with pair fixed effects when units

have different numbers of observations.

Lemma G.4 (Ratio of the UCVE and PCVE with pair fixed effects when units have different

numbers of observations). V̂unit(τ̂fe)/V̂pair(τ̂fe) =
∑

p ζp

((
n1p

np

)2
+
(
n2p

np

)2)
, where, for all p ζp ≥

0 and
∑

p ζp = 1. Therefore, V̂unit(τ̂fe)/V̂pair(τ̂fe) ∈
[
1
2 , 1
]
.

Proof. The formula for V̂unit(τ̂fe)/V̂pair(τ̂fe) follows from Points 3 and 4 of Lemma C.1, with

ζp =
ω2
p (τ̂p − τ̂fe)2∑P

p=1 ω
2
p (τ̂p − τ̂fe)2

.

n21p + n22p ≤ (n1p + n2p)
2, so

(
n1p

np

)2
+
(
n2p

np

)2
≤ 1. (n1p − n2p)2 = n21p − 2n1pn2p + n22p ≥ 0, so

2n21p+2n22p ≥ (n1p+n2p)
2, and

(
n1p

np

)2
+
(
n2p

np

)2
≥ 1

2 . Therefore, V̂unit(τ̂fe)/V̂pair(τ̂fe) ∈
[
1
2 , 1
]
.

Lemma G.4 shows that V̂unit(τ̂fe)/V̂pair(τ̂fe) is a weighted average across pairs of the sum of the

squared shares that each unit accounts for in the pair. The sum of these squared shares is included

between a half and one, so this ratio is included between a half and one. Figure 2 plots this ratio

when n1p/n2p is constant across pairs. V̂unit(τ̂fe)/V̂pair(τ̂fe) is close to 1/2 when n1p/n2p is included

between 0.5 and 2, meaning that the first unit has between half and twice as many observations

as the second one. For instance, if in every pair, one unit has twice as many observations as the

other, then the ratio of the two variances is equal to 5/9. Based on Figure 2, one can also derive an

upper bound for V̂unit(τ̂fe)/V̂pair(τ̂fe), when n1p/n2p varies across pairs. For instance, if in every

pair, one unit has at most twice as many observations as the other, as should often be the case in

practice, then the ratio of the two variances is at most equal to 5/9. Overall, Lemma G.4 shows

that Point 2 of Lemma 3.1 still approximately holds when units in each pair have different numbers

of observations, unless they have an extremely unbalanced number of observations.
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Figure 2: Ratio of Unit-Clustered and Pair-Clustered Variance Estimators with Pair Fixed Effects
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Note: UCVE and PCVE stand for unit- and pair clustered variance estimators, respectively. n1p and n2p are the
number of observations in units 1 and 2 of pair p, respectively.

H Proofs of the results in the Web Appendix

H.1 Proof of Theorem B.1

The proof relies on Lemma H.1 and on the two equations below.

Using a similar reasoning as that used to show Equation (55) in the proof of Lemma H.1, one

can show that

E
[∣∣∣Ŷp(d)

∣∣∣2+ε] ≤M1 < +∞. (16)

for all d and p and for some M1 > 0.

By Lemma H.1, Assumption 2, and Point 2 of Assumption 3,

τ̂ =
1

P

∑
p

τ̂p
P−→ lim

P→+∞

1

P

∑
p

E[τ̂p] = lim
P→+∞

1

P

∑
p

τp = lim
P→+∞

τ. (17)

Point 1
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Note that by Point 3 of Assumption 1, τ̂−τ = τ̂−E[τ̂ ] =
∑

p(τ̂p−E[τ̂p])/P is a sum of independent

random variables (τ̂p − E[τ̂p])
P
p=1 with mean zero and with a finite variance by Equation (55).

As
∑P

p=1 E[|τ̂p − τp|2+ε/S2+ε
P ] → 0 for some ε > 0 (by Point 3 of Assumption 3), then, by the

Lyapunov central limit theorem, (τ̂ − τ)/(SP /P ) =
∑

p(τ̂p − τp)/SP
d−→ N (0, 1) as P → +∞,

where S2
P =

∑P
p=1V(τ̂p) = P 2V(τ̂). Therefore,

(τ̂ − τ)/
√
V(τ̂)

d−→ N (0, 1). (18)

Then,

P V̂pair(τ̂)− PV(τ̂) =

P∑
p=1

τ̂2p
P
− τ̂2 −

P∑
p=1

V(τ̂p)

P

=

P∑
p=1

τ̂2p
P
− τ̂2 −

P∑
p=1

E[τ̂2p ]− E[τ̂p]
2

P

=
P∑
p=1

τ̂2p − E[τ̂2p ]

P
− τ̂2 +

P∑
p=1

τ2p
P

(19)

P−→ lim
P→+∞

1

P

P∑
p=1

(τp − τ)2. (20)

The first equality follows from Equations (3) and (7). The third equality follows from E[τ̂p] = τp.

Let’s consider each of the terms in Equation (19).
∑P

p=1
τ̂2p−E[τ̂2p ]

P
P−→ 0 by Lemma H.1. Then,

τ̂2
P−→ lim

P→+∞
τ2 by Equation (17) and the continuous mapping theorem (CMT). Equation (20)

follows from these facts, and from Point 2 of Assumption 3.

Given Equation (20), Point 2 of Assumption 3, the Slutsky Lemma and the CMT, as P → +∞,

τ̂ − τ√
V̂pair(τ̂)

=
τ̂ − τ√
V(τ̂)

√
PV(τ̂)

P V̂pair(τ̂)

d−→ N (0, σ2pair). (21)

Finally, by Lemma 3.1, V̂pair(τ̂) = V̂pair(τ̂fe), and by Assumption 2, τ̂ = τ̂fe.

QED.

Point 2

By Lemma 3, V̂pair(τ̂) = 2V̂unit(τ̂fe), so given Point 1 of this theorem, the result follows.

QED.
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Point 3

P V̂unit(τ̂)− P V̂pair(τ̂)

=
2

P

∑
p

Ŷp(1)Ŷp(0)− 2
1

P

∑
p

Ŷp(1)
1

P

∑
p

Ŷp(0)

P−→ 2 lim
P→+∞

{
1

P

∑
p

E[Ŷp(1)Ŷp(0)]− E[Ŷ (1)]E[Ŷ (0)]

}

= 2 lim
P→+∞

1

P

∑
p

{(
yp(0)− y(0)

) (
yp(1)− y(1)

)
− 1

2

∑
g

(ygp(0)− yp(0))(ygp(1)− yp(1))

}
. (22)

The first equality follows from Equation (11). The convergence arrow follows from the fact

E
[∣∣∣Ŷp(1)Ŷp(0)

∣∣∣1+ε/2] is bounded uniformly in p by Equation (16) and the Cauchy-Schwarz inequal-

ity, from the fact that E
[∣∣∣Ŷp(d)

∣∣∣1+ε/2] is also bounded uniformly in p, from Point 3 of Assumption

1, from the SLLN in Lemma 1 in Liu (1988), from the CMT, and from Point 2 of Assumption 3.

The last equality follows from the same steps as those used to prove Lemma 3. The result follows

from Equations (22), (20), and (18), and a reasoning similar to that used to prove Equation (21).

QED.

H.2 Proof of Lemma C.1

Point 1

First, we introduce the formulas for the PCVE and UCVE in a general linear regression. Let εigp

be the residual from the regression of Yigp on a K-vector of covariates Xigp, and X the (n ×K)

matrix whose rows are X ′igp. The PCVE of the OLS estimator, β̂, is defined as follows (Liang and

Zeger (1986), Abadie et al. (2017))

V̂pair(β̂) = (X ′X)−1

 P∑
p=1

 2∑
g=1

ngp∑
i=1

εigpXigp

 2∑
g=1

ngp∑
i=1

εigpXigp

′ (X ′X)−1. (23)

The UCVE of the OLS estimator, β̂, is defined as follows

V̂unit(β̂) = (X ′X)−1

 P∑
p=1

2∑
g=1

(ngp∑
i=1

εigpXigp

)(ngp∑
i=1

εigpXigp

)′ (X ′X)−1. (24)

Subtract from Equation (1) the average outcome in the population Y ≡ 1
n

∑
p

∑
g

∑
i Yigp =
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α̂+ τ̂W + ε, where W ≡ 1
n

∑
p

∑
g

∑
iWgp, and ε ≡ 1

n

∑
p

∑
g

∑
i εigp = 0 by construction. Then,

Yigp − Y = τ̂(Wgp −W ) + εigp. (25)

Apply Equation (23) to the residuals and covariates of the regression defined by Equation (25).19

Then,

V̂pair(τ̂) =

∑
p

[∑
g(Wgp −W )

∑
i εigp

]2
[∑

p

∑
g

∑
i(Wgp −W )2

]2 . (26)

The numerator of V̂pair(τ̂) equals

∑
p

[∑
g

(Wgp −W )
∑
i

εigp

]2
=
∑
p

[
(1−W )SETp −WSEUp

]2
=
∑
p

[
C

n
SETp −

T

n
SEUp

]2
. (27)

The first equality follows from the definition of SETp and SEUp. The second equality follows from

the definition of T and C.

The denominator of V̂pair(τ̂) equals

[∑
p

∑
g

∑
i

(Wgp −W )2

]2
=

[∑
p

∑
g

(Wgp −W )2ngp

]2

=

[
(1−W )2

∑
p

Tp +W
2∑

p

Cp

]2

=

[
C2

n2
T +

T 2

n2
C

]2
=

[
CT

n

]2
. (28)

The first equality follows from (Wgp−W ) being constant across units. The second equality follows

from the definition of Tp and Cp. The third equality follows from the definition of T and C.

19The clustered variance estimators of τ̂ in the demeaned regression in Equation (25) and in the regression with
an intercept in Equation (1) are equal (Cameron and Miller, 2015).
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Then, combining Equations (26), (27) and (28),

V̂pair(τ̂) =

∑
p

[
C
nSETp −

T
nSEUp

]2[
CT
n

]2
=
∑
p

[
SETp
T
− SEUp

C

]2
.

QED.

Point 2

Apply Equation (24) to the residuals and covariates of the regression defined by Equation (25).

Then,

V̂unit(τ̂) =

∑
p

∑
g

[
(Wgp −W )

∑
i εigp

]2[∑
p

∑
g

∑
i(Wgp −W )2

]2 . (29)

The numerator of V̂unit(τ̂) equals

∑
p

∑
g

[
(Wgp −W )

∑
i

εigp

]2
=
∑
p

∑
g

(Wgp −W )2

(∑
i

εigp

)2

=
∑
p

[
(1−W )2SET 2

p +W
2
SEU2

p

]
=
∑
p

[
C2

n2
SET 2

p +
T 2

n2
SEU2

p

]
. (30)

The second equality follows from the definition of SETp and SEUp. The third equality follows from

the definition of T and C. Then, combining Equations (28), (29) and (30),

V̂unit(τ̂) =

∑
p

[
C2

n2 SET
2
p + T 2

n2 SEU
2
p

]
[
CT
n

]2
=
∑
p

[
SET 2

p

T 2
+
SEU2

p

C2

]
.

QED.
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Point 3

Let SETp,fe =
∑2

g=1

∑ngp
i=1Wgpuigp and SEUp,fe =

∑2
g=1

∑ngp
i=1(1 −Wgp)uigp respectively be the

sum of the residuals uigp for the treated and untreated observations in pair p. Averaging Equation

(2) across units in pair p,

Y p = τ̂feW p + γ̂p + up, (31)

where Y p = 1
np

∑2
g=1

∑ngp
i=1 Yigp, W p = 1

np

∑2
g=1

∑ngp
i=1Wgp = 1

np

∑2
g=1Wgpngp =

Tp
np

, and up =

1
np

∑2
g=1

∑ngp
i=1 uigp. Substracting Equation (31) from Equation (2),

Yigp − Y p = τ̂fe(Wgp −W p) + uigp − up. (32)

{uijp′} is orthogonal to the pair-p fixed effect indicator {δigp}, so

P∑
p′=1

2∑
g=1

njp′∑
i=1

uijp′δigp = 0

⇔
2∑
g=1

ngp∑
i=1

uigp = 0, (33)

where the equivalence holds because δigp = 1 if and only if observation i belongs to pair p. This

implies that for all p up = 0. Equation (32) then becomes a regression with one covariate and the

same residuals as in Equation (2):

Yigp − Y p = τ̂fe(Wgp −W p) + uigp. (34)

Now, it follows from Equations (23) and (34) that20

V̂pair(τ̂fe) =

[∑P
p=1

(∑2
g=1

∑ngp
i=1 uigp(Wgp −W p)

)2]
(∑P

p=1

∑2
g=1

∑ngp
i=1(Wgp −W p)2

)2 . (35)

20The clustered variance estimators of τ̂fe in the regression residualized from the pair fixed effects in Equation (34)
and in the regression with pair fixed effects in Equation (2) are equal (Cameron and Miller, 2015).
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The denominator of V̂pair(τ̂fe) equals

[∑
p

∑
g

∑
i

(Wgp −W p)
2

]2
=

[∑
p

∑
g

(Wgp −W p)
2ngp

]2

=

[∑
p

[Tp(1−W p)
2 + CpW

2
p]

]2

=

[∑
p

(
Tp
C2
p

n2p
+ Cp

T 2
p

n2p

)]2

=

[∑
p

TpCp
np

]2

=

[∑
p

(n−11p + n−12p )−1

]2
. (36)

The numerator of V̂pair(τ̂fe) is equal to

P∑
p=1

 2∑
g=1

ngp∑
i=1

uigp(Wgp −W p)

2

=

P∑
p=1

 2∑
g=1

(Wgp −W p)

ngp∑
i=1

uigp

2

=

P∑
p=1

(
−W p(SETp,fe + SEUp,fe) + SETp,fe

)2
=

P∑
p=1

(SETp,fe)
2 , (37)
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where SETp,fe + SEUp,fe =
∑2

g=1

∑ngp
i=1 uigp = 0 from Equation (33). Finally,

SETp,fe =
∑
g,i

Wgp[Yigp − γ̂p − τ̂feWgp]

=
∑
g,i

WgpYigp − (γ̂p + τ̂fe)
∑
g,i

Wgp

=
∑
g,i

WgpYigp − (Y p − τ̂feW p + τ̂fe)W pnp

=
∑
g,i

WgpYigp −W p

∑
g,i

Yigp − (1−W p)τ̂feW pnp

=
∑
g,i

WgpYigp −W p

∑
g,i

WgpYigp +
∑
g,i

(1−Wgp)Yigp

− (1−W p)W pnpτ̂fe

= (1−W p)
∑
g,i

WgpYigp −W p

∑
g,i

(1−Wgp)Yigp − (1−W p)W pnpτ̂fe

= (1−W p)W pnp

(∑
g,iWgpYigp

W pnp
−
∑

g,i(1−Wgp)Yigp

(1−W p)np
− τ̂fe

)
=
n1pn2p
n2p

np

(∑
g,iWgpYigp∑
g,iWgp

−
∑

g,i(1−Wgp)Yigp∑
g,i(1−Wgp)

− τ̂fe

)
=

n1pn2p
n1p + n2p

(τ̂p − τ̂fe). (38)

The first equality follows from the definition of SETp,fe. The second equality follows from the

definition of uigp in Equation (2). The third equality follows from the definition ofW p and Equations

(31) and (33). The ninth equality follows from the definition of τ̂p.

Therefore, combining Equations (35), (36), (37) and (38),

V̂pair(τ̂fe) =
P∑
p=1

ω2
p(τ̂p − τ̂)2

QED.

Point 4

Applying the definition of the UCVE from Equation (24) to the regression in Equation (34),

V̂unit(τ̂fe) =

[∑P
p=1

∑2
g=1

(∑ngp
i=1 uigp(Wgp −W p)

)2](∑P
p=1

∑2
g=1

∑ngp
i=1(Wgp −W p)2

)2 . (39)
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The numerator of V̂unit(τ̂fe) equals

P∑
p=1

2∑
g=1

(ngp∑
i=1

uigp(Wgp −W p)

)2

=

P∑
p=1

2∑
g=1

(Wgp −W p)
2

(ngp∑
i=1

uigp

)2

=

P∑
p=1

(
(1−W p)

2SET 2
p,fe +W

2
pSEU

2
p,fe

)

=
P∑
p=1

SET 2
p,fe

(
C2
p

n2p
+
T 2
p

n2p

)

=
P∑
p=1

C2
pT

2
p

n2p
SET 2

p,fe

(
1

T 2
p

+
1

C2
p

)

=
P∑
p=1

(n−11p + n−12p )−2SET 2
p,fe

(
1

n21p
+

1

n22p

)
. (40)

The second equality follows from the definitions of SETp,fe and SEUp,fe. The third equality follows

from Equation (33), i.e., SETp,fe + SEUp,fe =
∑

g

∑
i uigp = 0, for all p, so SET 2

p,fe = SEU2
p,fe,

and the definitions of Tp and Cp. Finally, combining Equations (36), (38), (39) and (40),

V̂unit(τ̂fe) =

P∑
p=1

ω2
p(τ̂p − τ̂)2

((
n1p
np

)2

+

(
n2p
np

)2
)
.

QED.

H.3 Proof of Lemma D.1

Point 1

V̂pop(τ̂) =
1

P 2

R∑
r=1

(τ̂1r − τ̂2r)2,

=
1

P 2

R∑
r=1

(τ̂21r + τ̂22r − 2τ̂1r τ̂2r).
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Taking expected value,

E[V̂pop(τ̂)] =
1

P 2

R∑
r=1

E(τ̂21r + τ̂22r − 2τ̂1r τ̂2r),

=
1

P 2

R∑
r=1

(V(τ̂1r) + V(τ̂2r) + τ21r + τ22r − 2τ1rτ2r),

=
1

P 2

P∑
p=1

V(τ̂p) +
1

P 2

R∑
r=1

(τ1r − τ2r)2,

= V(τ̂) +
1

P 2

R∑
r=1

(τ1r − τ2r)2. (41)

The second equality follows from properties of the variance and that E[τ̂1r] = τ1r and E[τ̂2r] = τ2r.

The third equality follows from P = 2R. The fourth equality follows from Equation (3). QED.

Point 2

V̂brs(τ̂) =
1

P 2

∑
p

τ̂2p −
1

2

(
2

P 2

∑
r

τ̂1r τ̂2r +
τ̂2

P

)
.

=
1

2P 2

∑
p

(τ̂p − τ̂)2 +
1

2P 2

∑
r

(τ̂21r + τ̂22r − 2τ̂1r τ̂2r).

=
1

2
V̂pair(τ̂) +

1

2
V̂pop(τ̂).

QED.
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Point 3

E[V̂pop(τ̂)] ≤ E
[

P

P − 1
V̂pair(τ̂)

]
,

⇔ (2R− 1)

R∑
r=1

(τ1r − τ2r)2 ≤ 2R

P∑
p=1

(τp − τ)2,

⇔ (2R− 1)

R∑
r=1

(τ21r + τ22r − 2τ1rτ2r) ≤ 2R

R∑
r=1

[τ21r − 2τ1rτ + τ2 + τ22r − 2τ2rτ + τ2],

⇔ 0 ≤
R∑
r=1

(τ1r − τ2r)2 + 2R

R∑
r=1

[2τ1rτ2r − 2(τ1r + τ2r)τ + 2τ2],

⇔ 0 ≤
R∑
r=1

(τ1r − τ2r)2 + 4R

R∑
r=1

(τ1r − τ)(τ2r − τ).

The second inequality follows from Points 1 and 1 of this lemma. Let τ·r = 1
2(τ1r + τ2r). Then,

E[V̂pop(τ̂)] ≤ E
[

P

P − 1
V̂pair(τ̂)

]
,

⇔ 0 ≤
R∑
r=1

∑
p=1,2

2(τpr − τ·r)2 + 4R
R∑
r=1

(τ1r − τ·r + τ·r − τ)(τ2r − τ·r + τ·r − τ),

⇔ 0 ≤
R∑
r=1

∑
p=1,2

1

2
(τpr − τ·r)2 +R

R∑
r=1

[(τ1r − τ·r)(τ2r − τ·r) + (τ·r − τ)2],

⇔ 0 ≤
R∑
r=1

∑
p=1,2

1

2
(τpr − τ·r)2 +R

R∑
r=1

− ∑
p=1,2

1

2
(τpr − τ·r)2 + (τ·r − τ)2

 ,
⇔ 1

R

R∑
r=1

∑
p=1,2

1

2
(τpr − τ·r)2 ≤

1

R− 1

R∑
r=1

(τ·r − τ)2.

This proves inequality a).

Then, if 1
R

∑R
r=1

∑
p=1,2

1
2(τpr+τ·r)

2 ≤ 1
R−1

∑R
r=1(τ·r−τ)2, it follows from Point 2 of the lemma

and the previous display that

E
[
V̂pop(τ̂)

]
≤1

2
E
[
V̂pop(τ̂)

]
+

1

2
E
[

P

P − 1
V̂pair(τ̂)

]
≤1

2
E
[

P

P − 1
V̂pop(τ̂)

]
+

1

2
E
[

P

P − 1
V̂pair(τ̂)

]
=E

[
P

P − 1
V̂brs(τ̂)

]
,
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which proves inequality b).

Similarly, if 1
R

∑R
r=1

∑
p=1,2

1
2(τpr + τ·r)

2 ≤ 1
R−1

∑R
r=1(τ·r − τ)2, it follows from Point 2 of the

lemma and the previous display that

E
[
V̂brs(τ̂)

]
≤1

2
E
[
V̂pop(τ̂)

]
+

1

2
E
[

P

P − 1
V̂pair(τ̂)

]
≤1

2
E
[

P

P − 1
V̂pair(τ̂)

]
+

1

2
E
[

P

P − 1
V̂pair(τ̂)

]
=E

[
P

P − 1
V̂pair(τ̂)

]
,

which proves inequality c).

QED.

H.4 Proof of Theorem D.2

Point 1

P V̂pop(τ̂)− PV(τ̂) =
1

P

R∑
r=1

[τ̂21r − 2τ̂1r τ̂2r + τ̂22r]−
1

P

P∑
p=1

V(τ̂p)

=
1

P

P∑
p=1

τ̂2p −
2

P

R∑
r=1

τ̂1r τ̂2r −
1

P

P∑
p=1

[E(τ̂2p )− τ2p ]

=
P∑
p=1

τ̂2p − E[τ̂2p ]

P
− 1

R

R∑
r=1

τ̂1r τ̂2r +
1

P

R∑
r=1

(τ21r + τ22r)

P−→ lim
P→+∞

1

P

R∑
r=1

(τ1r − τ2r)2. (42)

The second equality follows from the properties of the variance. As P → +∞, by Lemma H.1,∑P
p=1

τ̂2p−E[τ̂2p ]
P

P−→ 0. Likewise, as R = P/2 → +∞, by Lemma 1 in Liu (1988),
∑R

r=1 τ̂1r τ̂2r/R −∑R
r=1 τ1rτ2r/R

P−→ 0, because E[|τ̂1r τ̂2r|1+ε/2] is uniformly bounded in r by Equation (55) and the

Cauchy-Schwarz inequality, (τ̂1r τ̂2r)
+∞
r=1 is a sequence of independent random variables by Point 3

of Assumption 1, and E(τ̂1r τ̂2r) = E(τ̂1r)E(τ̂2r) = τ1rτ2r. Finally, the convergence arrow follows

from Point 2 of Assumption 3 and some algebra.

The result follows from Equations (18) and (42) and a reasoning similar to that used to prove

Equation (21).

QED.
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Point 2

P V̂bsr(τ̂)− PV(τ̂) =
1

2
P (V̂pair(τ̂)− V(τ̂)) +

1

2
P (V̂pop(τ̂)− V(τ̂))

P−→ 1

2
lim

P→+∞

1

P

P∑
p=1

(τp − τ)2 +
1

2
lim

P→+∞

1

P

R∑
r=1

(τ1r − τ2r)2.

The first equality follows from Point 2 of Lemma 3.1. The convergence arrow follows from Equations

(20) and (42). The result follows from the previous display, Equation (18), and a reasoning similar

to that used to prove Equation (21).

QED.

Point 3

σ2pair ≤ σ2pop,

⇔ lim
P→+∞

1

R

R∑
r=1

(τ1r − τ2r)2 ≤ lim
P→+∞

1

R

P∑
p=1

(τp − τ)2,

⇔ lim
P→+∞

1

R

R∑
r=1

(τ21r + τ22r − 2τ1rτ2r) ≤ lim
P→+∞

1

R

R∑
r=1

[τ21r + τ22r − 2(τ1r + τ2r)τ + 2τ2],

⇔ 0 ≤ lim
P→+∞

1

R

R∑
r=1

[2τ1rτ2r − 2(τ1r + τ2r)τ + 2τ2],

⇔ 0 ≤ lim
P→+∞

1

R

R∑
r=1

(τ1r − τ)(τ2r − τ).

Then, σ2pair ≤ σ2bsr ≤ σ2pop ⇔ σ2pair ≤ σ2pop.

Point 4 is straightforward so we do not prove it.

QED.

H.5 Proof of Lemma G.1

Let eigp be the residual from the weighted least squares regression. One has

Yigp = α̃+ τ̃Wgp + eigp.

59



Let Ỹ = 1
n

∑
i,g,p VgpYigp. The previous display implies that

Ỹ = α̃
∑
i,g,p

Vgp
n

+ τ̃
1

n

∑
i,g,p

VgpWgp +
1

n

∑
i,g,p

Vgpeigp

= 2α̃+ τ̃ ,

where the second equality follows from 1
n

∑
i,g,p Vgpeigp = 0, by the first-order condition attached to

α̃ in the weighted OLS minimization problem. Then, combining the two preceding displays implies

that

Yigp −
1

2
Ỹ = τ̃

(
Wgp −

1

2

)
+ eigp. (43)

The next step is to compute the clustered variance estimators for the weighted least squares

estimator. To do so, we apply Equation (15) in Cameron and Miller (2015) to the residuals and

covariates of the regression defined by Equation (43). This equation implies that

V̂pair(τ̃) =

∑
p

[∑
g Vgp(Wgp − 1

2)
∑

i eigp

]2
[∑

p

∑
g

∑
i Vgp(Wgp − 1

2)2
]2 . (44)

Let Ŷigp = α̃+Wgpτ̃ , Ŷ (0) = α̃, and Ŷ (1) = α̃+ τ̃ . Note that

∑
i,g

Wgp
eigp
ngp

=
∑
i,g

Wgp(Yigp − Ŷigp)/ngp

=
∑
g

Wgpygp(1)− Ŷ (1)
∑
g

Wgp

= Ŷp(1)−
∑
p′

np′

n
Ŷp′(1) (45)

The second equality follows from WgpYigp = WgpYigp(1), the definition of ygp(1) and WgpŶigp =

WgpŶ (1). The third equality follows from the definition of Ŷp(1), Point 2 of Assumption 1, and the

definition of Ŷ (1).

Likewise,

∑
i,g

(1−Wgp)
eigp
ngp

= Ŷp(0)−
∑
p′

np′

n
Ŷp′(0) (46)
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The numerator of V̂pair(τ̃) equals

∑
p

[∑
g

Vgp

(
Wgp −

1

2

)∑
i

eigp

]2
=
∑
p

[∑
g

np

(
Wgp −

1

2

)
(Wgp + 1−Wgp)

∑
i

eigp
ngp

]2

=
∑
p

n2p

(1− 1

2

)∑
i,g

Wgp
eigp
ngp
− 1

2

∑
i,g

(1−Wgp)
eigp
ngp

2

=
∑
p

n2p
4

Ŷp(1)−
∑
p′

np′

n
Ŷp′(1)− Ŷp(0) +

∑
p′

np′

n
Ŷp′(0)

2

=
∑
p

n2p
4

[τ̂p − τ̃ ]2 . (47)

The second equality follows from the fact thatWgp− 1
2 = 1− 1

2 for the treated units andWgp− 1
2 = −1

2

for the untreated units. The third equality follows from Equations (45) and (46).

The denominator of V̂pair(τ̃) equals

[∑
p

∑
g

∑
i

Vgp

(
Wgp −

1

2

)2
]2

=

[
2n

1

4

]2
=
n2

4
. (48)

Then, combining Equations (44), (47) and (48),

V̂pair(τ̃) =
∑
p

n2p
n2

[τ̂p − τ̃ ]2 =
1

P 2

∑
p

n2p
n2

[τ̂p − τ̃ ]2 . (49)

QED.

H.6 Proof of Theorem G.2

It follows from Lemma H.1 that

τ̃ − τ∗ =
1

P

∑
p

np
n

(τ̂p − E[τ̂p])
P−→ 0, (50)

and

1

P

∑
p

(np
n

)2
[τ̂2p − E(τ̂2p )]

P−→ 0. (51)
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By a similar argument to the one used in the proof of Lemma H.1, one can also show that

1

P

∑
p

(np
n

)2
[τ̂p − E(τ̂p)]

P−→ 0. (52)

We now use Point 3 of Assumption 5 to derive the asymptotic distribution of (τ̃ − τ∗)/(S̃P /P ).

As
∑P

p=1 E
[
|npn |

2+ε|τ̂p − E [τ̂p] |2+ε/S̃2+ε
P

]
→ 0 for some ε > 0 (by Point 3 of Assumption 5), then,

by the Lyapunov central limit theorem, (τ̃ − τ∗)/(S̃P /P ) =
∑

p
np
n (τ̂p − E[τ̂p])/S̃P

d−→ N (0, 1) as

P → +∞, as S̃2
P = P 2V(τ̃) =

∑P
p=1V

(np
n τ̂p

)
.

Therefore,

(τ̃ − τ∗)/
√
V(τ̃)

d−→ N (0, 1). (53)

Then,

P V̂pair(τ̃)− PV(τ̃)

=
1

P

∑
p

(np
n

)2
(τ̂p − τ̃)2 − 1

P

P∑
p=1

(np
n

)2
V(τ̂p)

=
1

P

∑
p

(np
n

)2
(τ̂p − τ̃)2 − 1

P

P∑
p=1

(np
n

)2
[E(τ̂2p )− E[τ̂p]

2]

=
1

P

∑
p

(np
n

)2 (
τ̂2p − 2τ̃ τ̂p + τ̃2

)
− 1

P

P∑
p=1

(np
n

)2
[E(τ̂2p )− E[τ̂p]

2]

=
1

P

∑
p

(np
n

)2
(τ̂2p − E[τ̂2p ])− 2τ̃

1

P

∑
p

(np
n

)2
τ̂p + τ̃2

1

P

∑
p

(np
n

)2
+

1

P

P∑
p=1

(np
n

)2
E[τ̂p]

2

P−→ − 2τ∞ lim
P→+∞

1

P

∑
p

(np
n

)2
E[τ̂p] + (τ∞)2 lim

P→+∞

1

P

∑
p

(np
n

)2
+ lim
P→+∞

1

P

∑
p

(np
n

)2
E[τ̂p]

2

= lim
P→+∞

1

P

∑
p

(np
n

)2 [
E[τ̂p]

2 − 2τ∞ E[τ̂p] + (τ∞)2
]

= lim
P→+∞

1

P

P∑
p=1

(np
n

)2
[E[τ̂p]− τ∞]2. (54)

The first equality follows from Equation (49) and the fact that the (τ̂p)
P
p=1 are independent across

p by Point 3 of Assumption 1. The second equality follows from the definition of variance. The

convergence in probability follows from Equations (50) and (51), (52), and Point 2 of Assumption

5.
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Then,

τ̃ − τ∗√
V̂pair(τ̃)

=
τ̃ − E[τ̃ ]√

V(τ̃)

√
PV(τ̃)

P V̂pair(τ̃)

d−→ N (0, σ2wls).

The convergence in distribution follows from Equation (54), Equation (53), Lemma H.2, the Slutsky

Lemma, and the CMT.

QED.

H.7 Proof of Lemma G.3

E

[∑
p

ω̃2
p(τ̂p − τ̂fe)2

]
=
∑
p

ω̃2
p E[(τ̂p − τ̂fe)2]

=
∑
p

ω̃2
p

[
V(τ̂p − τ̂fe) + [E(τ̂p − τ̂fe)]2

]
=
∑
p

ω̃2
p

[
V(τ̂p) + V(τ̂fe)− 2Cov(τ̂p, τ̂fe) + [E(τ̂p − τ̂fe)]2

]
=
∑
p

ω̃2
p

[
V(τ̂p) + V(τ̂fe)− 2ωpV(τ̂p) + [E(τ̂p − τ̂fe)]2

]
=
∑
p

ω̃2
p [1− 2ωp]V(τ̂p) + V(τ̂fe)

∑
p

ω̃2
p +

∑
p

ω̃2
p[E(τ̂p − τ̂fe)]2

=
∑
p

ω2
pV(τ̂p) + V(τ̂fe)

∑
p

ω̃2
p +

∑
p

ω̃2
p[E(τ̂p − τ̂fe)]2

= V(τ̂fe)
(

1 +
∑

p ω̃
2
p

)
+
∑
p

ω̃2
p[E(τ̂p − τ̂fe)]2

The first equality follows from the linearity of the expectation and the fact that the weights ωp

are not stochastic. The fourth equality follows from Point 3 of Assumption 1. The sixth equality

follows from the definition of ω̃p. The seventh equality follows from the definition of the variance,

the definition of τ̂fe and Point 3 of Assumption 1.

QED.
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H.8 Auxiliary Lemmas to prove Theorems B.1, D.2, and G.2

Lemma H.1. Let q ≥ 1, under Points 2 and 3 of Assumption 1, and Assumption 2 or Point 1 of

Assumption 3,

1

P

∑
p

(np
n

)q
[τ̂ qp − E(τ̂ qp )]

P−→ 0

Proof. Assumption 2 implies Point 1 of Assumption 3, so it is sufficient to show that the result

holds under Points 2 and 3 of Assumption 1, and Point 1 of Assumption 3.

Note that by Point 3 of Assumption 1, ((
np
n τ̂p)

q − E[(
np
n τ̂p)

q])Pp=1, q ≥ 1, is a sequence of

independent random variables with mean zero.

Note that, for all p,

E
[∣∣∣np
n
τ̂p

∣∣∣q+ε]1/(q+ε) =
np
n

E
[∣∣∣Ŷp(1)− Ŷp(0)

∣∣∣q+ε]1/(q+ε)
≤ N

((
E
[∣∣∣Ŷp(1)

∣∣∣q+ε])1/(q+ε)

+

(
E
[∣∣∣Ŷp(0)

∣∣∣q+ε])1/(q+ε)
)

= N

(E[∣∣∣∣∣∑
g

Wgpygp(1)

∣∣∣∣∣
q+ε])1/(q+ε)

+

(
E

[∣∣∣∣∣∑
g

(1−Wgp)ygp(0)

∣∣∣∣∣
q+ε])1/(q+ε)


≤ N

(∑
g

(
E
[∣∣Wgpygp(1)

∣∣q+ε])1/(q+ε) +
∑
g

(
E
[∣∣(1−Wgp)ygp(0)

∣∣q+ε])1/(q+ε))

= N

(∑
g

(
E[Wgp]

∣∣ygp(1)
∣∣q+ε)1/(q+ε) +

∑
g

(
E[1−Wgp]

∣∣ygp(0)
∣∣q+ε)1/(q+ε))

= N

(∑
g

(
1

2

∣∣ygp(1)
∣∣q+ε)1/(q+ε)

+
∑
g

(
1

2

∣∣ygp(0)
∣∣q+ε)1/(q+ε)

)

< N
4

21/(q+ε)
M < +∞. (55)

The first equality follows from the definition of τ̂p. The first inequality follows from Minkowski’s

inequality, and from Point 1 of Assumption 5. The third line follows from the definitions of Ŷp(1)

and Ŷp(0). The fourth line follows from Minkowski’s inequality. The fifth line follows from Wgp

being a binary variable. The sixth line follows from Point 2 of Assumption 1. The seventh line

follows from Point 1 of Assumption 3.

Using the LLN in Lemma 1 in Liu (1988), the previous facts and the fact that almost sure
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convergence implies convergence in probability, one concludes that

1

P

∑
p

(np
n

)q
[τ̂ qp − E(τ̂ qp )]

P−→ 0. (56)

QED.

Lemma H.2. [Strictly positive limit for PV(τ̃)] Under Point 2 of Assumption 3 and Point 1 of

Assumption 5, limP→+∞ PV(τ̃) > 0.

Proof. Note that

lim
P→+∞

PV(τ̃) = lim
P→+∞

1

P

∑
p

(np
n

)2
V(τ̂p)

≥ 1

N2
lim

P→+∞

1

P

∑
p

V(τ̂p)

=
1

N2
lim

P→+∞
PV(τ̂)

> 0.

The first equality follows from the definition of τ̃ and Point 3 of Assumption 1. The first inequality

follows from the fact that 0 < 1
N ≤

np
n ≤ N (which follows from Point 1 of Assumption 5). The

second equality follows from the definition of V(τ̂). The second inequality follows from Point 2 of

Assumption 3.

QED.
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