
Presumptions: There are one or more treatment conditions, W ≥ 1, and a control
condition, W = 0. We see estimates of linear contrasts of the treatment condition(s), with
the control; contrasts among the treatment conditions themselves are not of primary interest.
There are one or more strata, within which propensity scores Pr(W = j|X) are taken to be
uniform. Contrasts are to be combined across blocks B using given weights. Here we concern
ourselves with estimation of variances and covariances of these contrasts, by combining the
technical devices of conditioning on stratum totals∑

i

I [Bi = b] I [Wi = c] , b, c (1)

and the method of sandwich estimation.
There may be covariance adjustment, but in this case covariance parameters were es-

timated in a separate and prior fitting of the regression model. This needn’t have been a
linear model, but it’s presumed to be an M-estimate or representable as such, and to satisfy
smoothness and dimensionality conditions necessary for asymptotic linearity of the estima-
tor. The sample used to estimate these covariance parameters may contain, overlap or be
disjoint from the sample over which contrasts of treatment conditions are to be estimated.

Conjecture: clustering on one-many matched sets Call a block b a one-many matched
set if

∑
i I [Bi = b] I [Wi = 0] ≥ 1 while

∑
c>0

∑
i I [Bi = b] I [Wi = c] = 0. Under (1) and

for given values of the covariance and contrast parameters parameters, the within-block sum
of estimating functions, crossed with itself, unbiasedly estimates its expected value. (To do:
state me non-tautologically.)

Conj: clustering on homogeneously full matched sets. Call a block b a homogeneous
full match it is a full match in which no more than one treatment condition is represented.
Under (1) and for given values of the covariance and contrast parameters parameters, the
within-block sum of estimating functions, crossed with itself, unbiasedly estimates its ex-
pected value.

Conj: clustering on arbitrary full matched sets. Under (1) and for given values
of the covariance and contrast parameters parameters, the within-block sum of estimating
functions, crossed with itself, unbiasedly estimates its expected value.

Conj: strata with diverse representation of each represented condition (I’m not
sure whether we can handle strata with a single member of one treatment condition and two
members of another. Maybe it’s easy, maybe it’s not possible with the current scheme.)

Chain of estimating equations
A “detrending” step gives rise to parameter estimates θ̂, empirical solutions of a system
of k estimating equations. The corresponding estimating function corresponds abstractly
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to a k × 1 column vector U(θ) and concretely, post-estimation, to a n × k matrix U(θ) =
{[Ui(θ)]

t : i}, and k×1 column vector Ū(θ) = n−1
∑

Ui(θ). The purpose of this step is to set
parameters involved in a residual transformation, eθ̂(ỹ|r), which in turn figures in subsequent
tests of treatment effect hypotheses.

Suppose U(θ) and θ to be partitionable as [U0(θ0) ; U1(θ0, θ1) ; U2(θ1, α)] and θ = (θ0, θ1, α),
respectively, with neither θ0 nor α figuring in the residual transformation, eθ(ỹ|r) ≡ eθ1(ỹ|r),
and

U2(θ1, α) := eθ(Ỹ |R)− α.

(This structure would arise in robust MM-estimation of a linear detrender, which involves
preliminary estimation of the scale parameter. Then θ0 consists of this scale parameter and
associated preliminary coefficients. Robust fitting ordinarily will not impose the constraint
that

∑
i eθ̂(ỹi|ri) = 0, except with specially selected eθ(·|·); i.e. α may differ from 0.) Since

U2(θ̂1, α̂) = 0, the definition of U2 is equivalent to defining α̂ as [eθ̂1(Ỹ |R)]. We also have
U(θ) = [U0(θ0) ; U1(θ0, θ1) ; eθ(Ỹ|R)− α]; Ū = [Ū t

0; Ū
t
1; Ū2]

t.
Our goal is to test H : E{eθ(Ỹ |R)|Z = 1} = E{eθ(Ỹ |R)|Z = 0} The induced parameter

α figures in a device for representing the test statistic
[
eθ(Ỹ |R)]

Z=1
−
[
eθ(Ỹ |R)]

Z=0
in terms

of yet another link in the estimating function chain. Define

V (θ, τ) = Z{eθ(Ỹ |R)− α− τ},

so that V̄ (θ, τ) = Z̄ ·
{[

eθ(Ỹ |R)
]
Z=1

− α
}

. This definition of τ̂ , as the solution of V̄ (θ̂, τ), is
equivalent to

τ̂ =
[
eθ(Ỹ |R)

]
Z=1

−
[
eθ(Ỹ |R)

]
= (1− Z̄)

{[
eθ(Ỹ |R)]

Z=1
−
[
eθ(Ỹ |R)]

Z=0

}
.

So we can recover the variance of (this random multiple of)
[
eθ(Ỹ |R)]

Z=1
−
[
eθ(Ỹ |R)]

Z=0
as

the (τ, τ) component of the covariance of (θ̂, τ̂) — which we estimate in turn by analysis of
the estimating equation stack [

Ū(θ)
V̄ (θ, τ)

]
= 0.

To accomplish this analysis we repeatedly apply formulas for covariances of chains of esti-
mating equations.
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AUU , BUU and V̂(θ̂)

Applied to U alone, the sandwich formula (Stefanski and Boos, 2002) alleges that V[θ̂] ≈
n−1A−1

UUBUUA
−t
UU , where

AUU =∇θŪ = ∇θ

 Ū0(θ0)
Ū1(θ0, θ1)

Ū2(θ0, θ1, α)

 =

 A00 0 0
A10 A11 0
A20 A21 A22



and

BUU =

 B00 Bt
10 Bt

20

B10 B11 Bt
21

B20 B21 B22

 .

To simplify matrix algebra, define

A[01][01] = ∇θ0,θ1

[
Ū0(θ0)

Ū1(θ0, θ1)

]
=

[
A00 0
A10 A11

]
,

A2[01] = ∇θ0,θ1Ū2 = [A20 ; A21] = [0 ; ∇θ1 [eθ(Ỹ |R)]];

B[01][01] =

[
B00 Bt

10

B10 B11

]
,

B2[01] = Ut
2[U0 ; U1].

This allows us to write

AUU =

[
A[01][01] 0
A2[01] −1

]

where A2[01] = ∇θ0,θ1 [eθ(Ỹ |R)].
Also

BUU =

[
B[01][01] n−1Ut

[01]U2

n−1U t
2U[01] σ̂2

eθ(Ỹ |R)

]
,

σ̂2
eθ(Ỹ |R)

= n−1U ′
2U2. In virtue of A[01][01] and AUU both having 0 upper-right submatrices,

A−1
[01][01] =

[
A−1

00 0
A−1

11 A10A
−1
00 A−1

11

]
and

A−1
UU =

[
A−1

[01][01] 0

{∇θ0,θ1 [eθ(Ỹ |R)]}A−1
[01][01] −1

]
.
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Putting A−1
UU and BUU together gives sandwich estimates of V(θ̂) = Cov([θ̂0, θ̂1, α̂]).

Knowing that θ̂0 won’t directly contribute to the test statistic, one might restrict attention
to BUU and the submatrix of A−1

UU consisting of its lowermost rows, the gradients of U1(θ0, θ1)
and U2(θ0, θ1, α). If we calculate and store A−1

11 A10A
−1
00 and A−1

11 , we won’t also need to store
A−1

00 in order to estimate Cov([θ̂1, α̂]).
Ultimately we’re interested in Vτ̂ , not Cov(θ̂); Cov([θ̂; τ̂ ]) is more relevant. We’ll see that

for computing the V(τ̂) component of that covariance we won’t need A−1
00 , either, provided

that we have A−1
11 A10A

−1
00 and A−1

11 .
But it’s useful to note the quantities that a sandwich estimation routine will have to

have computed, directly or indirectly, en route to providing sandwich estimates of V(θ̂1):
A−1

11 A10A
−1
00 and A−1

11 , if not necessarily the other part of A−1
[01][01] (ie A−1

00 ).

1 AV U , AV V , BUV , BV V and Cov(τ̂ )

The sandwich formula also says Cov(θ̂, τ̂) ≈ n−1A−1BA−t, where

A = ∇θ,τ

(
Ū
V̄

)
=

[
AUU 0
AV U AV V

]
=

[
AUU 0
∇θV̄ (∂/∂τ)V̄

]
=

[
AUU 0
AV U −Z̄

]
,

where

AV U = ∇θV̄ = ∇θ0,θ1,αZ̄{
[
eθ(Ỹ |R)

]
Z=1

− α− τ}

= Z̄ · [0 ; ∇θ1{[eθ(Ỹ |R)]Z=1} ; −1],

and
B =

[
BUU Bt

V U

BV U BV V

]
=

[
BUU n−1UtV

n−1VtU Z̄σ̂2
eθ(Ỹ |R)|Z=1

]
,

σ̂2
eθ(Ỹ |R)|Z=1

= VtV/(Z′Z).
The lower-left entry of A−1BA−t, ie. nV̂(τ̂), depends only on B and A−1’s bottom row.
Applying inversion formulas for blocked matrices with upper-right 0’s as above,

A−1 =

[
A−1

UU 0

Z̄−1AV UA
−1
UU −Z̄−1

]
. (2)
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The lower-left submatrix (left part of bottom row) is expressible as

Z̄−1AV UA
−1
UU =

[
{∇θ0,θ1 [eθ(Ỹ |R)]Z=1} ; −1

] [ A−1
[01][01] 0

{∇θ0,θ1 [eθ(Ỹ |R)]}A−1
[01][01] −1

]
=

[
{∇θ0,θ1 [eθ(Ỹ |R)]Z=1}A

−1
[01][01] − {∇θ0,θ1 [eθ(Ỹ |R)]}A−1

[01][01] ; 1
]

=
[
(∇θ0,θ1{[eθ(Ỹ |R)]Z=1 − [eθ(Ỹ |R)]})A−1

[01][01] ; 1
]

=

[[
0 ; ∇θ1{[eθ(Ỹ |R)]Z=1 − [eθ(Ỹ |R)]}

]
A−1

[01][01] ; 1

]
,

the final equality following from eθ(·|·) ≡ eθ1(· ·). So the bottom row as a whole is[[
0 ; ∇θ1{[eθ(Ỹ |R)]Z=1 − [eθ(Ỹ |R)]}

]
A−1

[01][01] ; 1 ; −Z̄−1

]
[[
0 ; ∇θ1{[eθ(Ỹ |R)]Z=1 − [eθ(Ỹ |R)]}

] [ A−1
00 0

A−1
11 A10A

−1
00 A−1

11

]
; 1 ; −Z̄−1

]
[
∇θ1{[eθ(Ỹ |R)]Z=1 − [eθ1(Ỹ |R)]}A−1

11 A10A
−1
00 ; ∇θ1{[eθ(Ỹ |R)]Z=1 − [eθ(Ỹ |R)]}A−1

11 ; 1 ; −Z̄−1

]
and the lower-right entry of n−1A−1BA−t is

n−1
[
∇θ1{[eθ(Ỹ |R)]Z=1 − [eθ1(Ỹ |R)]}[A−1

11 A10A
−1
00 ; A−1

11 ] ; 1 ; −Z̄−1
]

·B


A−t

00A
t
10A

−t
11∇t

θ1
{[eθ(Ỹ |R)]Z=1 − [eθ1(Ỹ |R)]}

A−t
11∇t

θ1
{[eθ(Ỹ |R)]Z=1 − [eθ1(Ỹ |R)]}

1
−Z̄−1

 ,

with

B =


B[01][01] n−1Ut

0U2 n−1Ut
0V

n−1Ut
1U2 n−1Ut

1V
n−1Ut

2U0 n−1Ut
2U1 n−1Ut

2U2 n−1Ut
2V

n−1VtU0 n−1VtU1 n−1VtU2 Z̄σ̂2
eθ(Ỹ |R)|Z=1

 .

To summarize what this means for computation:

• What’s needed from the 0 and 1 fits in terms of A matrices (bread) is the same as
what a fitting or covariance estimation routine has to carry forward from stage 0 in
order to build a proper sandwich estimate of stage 1 coefficients, V(θ1). For this one
needs only the lower, U1 submatrix of A−1

[01][01].

• To complete A matrix calcs we also require a means of computing ∇θ1 [eθ(y|r)].

• In terms of B matrices (meat), one appears to need everything from stages 0 and 1:
not only B[01][01] but also U[01] (from which B[01][01] can be regenerated).
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Simplifications when detrending parameters are esti-
mated via M-S
The B-matrix requirements are meaningfully reduced in the important special case that
stages 0 and 1 comprise an S/M estimator chain, a.k.a. MM estimators Yohai (1987): one
gets away with passing forward Uσ, the stage-0 estimating function for the scale parameter,
but not other parts of remainder of U0. . This is noted by Croux, Dhaene, and Hoorel-
beke (2004), whose development is the basis for sandwich estimates of variance for robust
regression as implemented in matlab, stata and R.…

An upshot is that one could define a (k+1)×k “bread matrix” as the value of bread.lmrob()
and an n× (k + 1) matrix [Uσ U1] as the value of estfun.lmrob().
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