Presumptions: There are one or more treatment conditions, W > 1, and a control
condition, W = 0. We see estimates of linear contrasts of the treatment condition(s), with
the control; contrasts among the treatment conditions themselves are not of primary interest.
There are one or more strata, within which propensity scores Pr(W = j|X) are taken to be
uniform. Contrasts are to be combined across blocks B using given weights. Here we concern
ourselves with estimation of variances and covariances of these contrasts, by combining the
technical devices of conditioning on stratum totals

ZI[Bi:b]I[Wi:c], b, c (1)

and the method of sandwich estimation.

There may be covariance adjustment, but in this case covariance parameters were es-
timated in a separate and prior fitting of the regression model. This needn’t have been a
linear model, but it’s presumed to be an M-estimate or representable as such, and to satisfy
smoothness and dimensionality conditions necessary for asymptotic linearity of the estima-
tor. The sample used to estimate these covariance parameters may contain, overlap or be
disjoint from the sample over which contrasts of treatment conditions are to be estimated.

Conjecture: clustering on one-many matched sets Call a block b a one-many matched
set if >, Z[B; =0b]Z[W; =0] > 1 while ) >, Z[B; =b]Z[W;=c|] =0. Under (1) and
for given values of the covariance and contrast parameters parameters, the within-block sum
of estimating functions, crossed with itself, unbiasedly estimates its expected value. (To do:
state me non-tautologically.)

Conj: clustering on homogeneously full matched sets. Call a block b a homogeneous
full match it is a full match in which no more than one treatment condition is represented.
Under (1) and for given values of the covariance and contrast parameters parameters, the
within-block sum of estimating functions, crossed with itself, unbiasedly estimates its ex-
pected value.

Conj: clustering on arbitrary full matched sets. Under (1) and for given values
of the covariance and contrast parameters parameters, the within-block sum of estimating
functions, crossed with itself, unbiasedly estimates its expected value.

Conj: strata with diverse representation of each represented condition (I'm not
sure whether we can handle strata with a single member of one treatment condition and two
members of another. Maybe it’s easy, maybe it’s not possible with the current scheme.)

Chain of estimating equations

A “detrending” step gives rise to parameter estimates é, empirical solutions of a system
of k estimating equations. The corresponding estimating function corresponds abstractly



to a k x 1 column vector U(f) and concretely, post-estimation, to a n x k matrix U(f) =
{[Us(0)]t : i}, and k x 1 column vector U(6) = n~1 3" U;(). The purpose of this step is to set
parameters involved in a residual transformation, e4(g|r), which in turn figures in subsequent
tests of treatment effect hypotheses.

Suppose U () and 0 to be partitionable as [Uy(6y) ; U1(0y,01) ; Ua(61, )] and 0 = (6, 61, «),
respectively, with neither 6y nor « figuring in the residual transformation, ey(g|r) = eq, (g|r),
and .

Us(01,a) :==eg(Y|R) — a.

(This structure would arise in robust MM-estimation of a linear detrender, which involves
preliminary estimation of the scale parameter. Then 6, consists of this scale parameter and
associated preliminary coefficients. Robust fitting ordinarily will not impose the constraint
that >, e;4(7;|r;) = 0, except with specially selected eq(-|-); i.e. o may differ from 0.) Since
Us(61,a) = 0, the definition of Us is equivalent to defining é& as [eél(f/]R)]. We also have
U(0) = [Uo(bh) ; Ui(bo,01); es(Y|R) — al; U = [Ug; Uy; Ua]".

Our goal is to test H : E{eg(Y|R)|Z = 1} = E{ey(Y|R)|Z = 0} The induced parameter
« figures in a device for representing the test statistic [69(37|R)] P [69(}7|R)] 4o N terms
of yet another link in the estimating function chain. Define

V(0,7) = Z{eg(Y|R) —a — 7},

5o that “/(97 T) = 7. { [@6(}7|R)}Z:1 — a}. This definition of 7, as the solution of V(é, T), is
equivalent to
T = [60({/|R>] Z=1 [69(}7’R)}
— (1= 2){[es(VIR)],_, — [eo(YIR)],_, }.
Z—1 " [69(}7|R)]Z:0 as

the (7,7) component of the covariance of (0,7) — which we estimate in turn by analysis of
the estimating equation stack B
U(e
om0

Vo,

To accomplish this analysis we repeatedly apply formulas for covariances of chains of esti-
mating equations.

So we can recover the variance of (this random multiple of) [69(37|R)]



AUU? BUU and {7(@)

~

Applied to U alone, the sandwich formula (Stefanski and Boos, 2002) alleges that V[0] ~
n~t Ay Buv Agty, where

) Uy(6p) Aw 0 0
Apy =VoU =V | Ui(0o,01) | =] Ao An 0
U2(90, 01, a) Ayg Az Ay

and
By Biy, Bi
BUU - BIO Bll Bél
BZO B21 BQQ

To simplify matrix algebra, define

B _ BOO Bi()
[o1][01] — BlO Bll )

Bz[m] = Utg[Uo; U1]-

This allows us to write

A 0
o= [ Aon 0]

Aoy —1

where Asjo = Vg0, [ea(Y|R))].

Also
Buy — | Douon n‘12Uf01]U2
- — t A )
n~ Uy Ujoy T o (V|R)
6% o =n"tU,U,. In virtue of Ao and Ayy both having 0 upper-right submatrices,
eo(V|R) 2 [01][01]
Al 0
A—l :|: _ 00 B ~ :| and
[o1j{o1] Al AnAy A
1
Al}lU _ A[Ol][Ol] 0 ] '
(Voo leo VIR } Aoy —1



Putting A;L and Byy together gives sandwich estimates of V(§) = Cov([fo, 0, 4d]).
Knowing that 6y won't directly contribute to the test statistic, one might restrict attention
to Byy and the submatrix of Ag,lU consisting of its lowermost rows, the gradients of U; (6, 0;)
and Us(6p, 01, ). If we calculate and store A;' AjgApg and Aj', we won’t also need to store
Aslin order to estimate Cov([fy, d]).

Ultimately we're interested in V7, not Cov(6); Cov([f; 7]) is more relevant. We'll see that
for computing the V(7) component of that covariance we won’t need Ay, either, provided
that we have A A10A4g) and Ajj'.

But it’s useful to note the quantities that a sandwich estimation routine will have to
have computed, directly or indirectly, en route to providing sandwich estimates of V(él):
A AlpAng and A7l if not necessarily the other part of A[Bh o) (i€ Agd).

1 AVU) Avv, BUV, BVV and COV(’?')

The sandwich formula also says Cov(0,7) ~ n 'A"'BA~*, where
PR AT EI [ TR
TV Avy | Avy VeV | (9/07)V

: ]

where
AVU = VQV = VgoyghaZ{ [69(?|R>] g1 o — T}
=Z-[0; Vo {lea(Y|R)] ,— } 5 —1],
and
B — |: BUU B€/U :| . |: BUU B n_lUtV :|
BVU BVV n_lth Z&EQ(Y/‘R)'Z:l ’
&2 i = VIV/(Z'Z).

The lower-left entry of A~'BA~t, ie. nV(#), depends only on B and A~'’s bottom row.
Applying inversion formulas for blocked matrices with upper-right 0’s as above,
Ay |

0
. 2
Z_IAVUA{]}J ‘ —71 ( )




The lower-left submatrix (left part of bottom row) is expressible as

Aoy 0 ]
{Vooor leo(Y IR} Ao —1
= [{(VonanleoTIR) Moy — {Vonnleo(FIR} Ajghon 1]

= [(Vapau LoV IR) 1y — leaV IR D Al 1]

27 Avu Al = [{Vanleo(TIR)] o} 5 —1]

— (105 Vi Gen(V TR,y ~ e TIRID) Al 1]

the final equality following from ey(-|-) = ey, (- -). So the bottom row as a whole is

{[0; Vo lleoVIR) oy — [V IR Ao SR

05 Vi (enlT Ry~ TR | iy g i } 1527

[Vel{[eo(ff\R)] = lea, (YR} AL Ao Agy 5 Ve {[eo(YIR)] 1oy — [ea(VIR)}AL 515 =271
and the lower-right entry of n=*A='BA~t is
w (o ol V RN, — e (PIRAT Awdid s AT 1 —27

Ag Al A Vi leo (YR)] ,-y — lea,(YIR)]}

B AV Aleo(YIR)] 1oy — [ea, (Y |R)]} 7
1
_z
with
B[Ol][Ol] n_1U6U2 n_lUf)V

n~'UU, a7 lUYV
n~'ULU, n~'ULU; n 'ULU, n ULV

~1 1 1yt > A2
n VU, n ViU, n ViU, deg(f/m)\z:l

B =

To summarize what this means for computation:

o What’s needed from the 0 and 1 fits in terms of A matrices (bread) is the same as
what a fitting or covariance estimation routine has to carry forward from stage 0 in
order to build a proper sandwich estimate of stage 1 coefficients, V(). For this one
needs only the lower, U; submatrix of A[Bh 01]"

« To complete A matrix calcs we also require a means of computing Vy, [eg(y|r)].

« In terms of B matrices (meat), one appears to need everything from stages 0 and 1:
not only By but also Ujgyy (from which Bjojjo1) can be regenerated).

5




Simplifications when detrending parameters are esti-
mated via M-S

The B-matrix requirements are meaningfully reduced in the important special case that
stages 0 and 1 comprise an S/M estimator chain, a.k.a. MM estimators Yohai (1987): one
gets away with passing forward U,, the stage-0 estimating function for the scale parameter,
but not other parts of remainder of Uy. . This is noted by Croux, Dhaene, and Hoorel-
beke (2004), whose development is the basis for sandwich estimates of variance for robust
regression as implemented in matlab, stata and R....
An upshot is that one could define a (k+1) xk “bread matrix” as the value of bread. lmrob ()

and an n X (k + 1) matrix [U, U] as the value of estfun.lmrob().
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