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ABSTRACT
Nearest-neighbor matching is a popular nonparametric tool to create balance between treatment and
control groups in observational studies. As a preprocessing step before regression, matching reduces the
dependence on parametric modeling assumptions. In current empirical practice, however, the matching
step is often ignored in the calculation of standard errors and confidence intervals. In this article, we show
that ignoring the matching step results in asymptotically valid standard errors if matching is done without
replacement and the regression model is correctly specified relative to the population regression function
of the outcome variable on the treatment variable and all the covariates used for matching. However,
standard errors that ignore the matching step are not valid if matching is conducted with replacement or,
more crucially, if the second step regression model is misspecified in the sense indicated above. Moreover,
correct specification of the regression model is not required for consistent estimation of treatment effects
with matched data. We show that two easily implementable alternatives produce approximations to the
distribution of the post-matching estimator that are robust to misspecification. A simulation study and an
empirical example demonstrate the empirical relevance of our results. Supplementary materials for this
article are available online.
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1. Introduction

Matching methods are widely used to create balance between
treatment and control groups in observational studies. Often-
times, matching is followed by a simple comparison of means
between treated and nontreated (Cochran 1953; Rubin 1973;
Dehejia and Wahba 1999). In other instances, however, match-
ing is used in combination with regression or with other esti-
mation methods more complex than a simple comparison of
means. The combination of matching in a first step with a
second-step regression estimator brings together parametric
and nonparametric estimation strategies and, as demonstrated
in Ho et al. (2007), reduces the dependence of regression esti-
mates on modeling decisions. Moreover, matching followed by
regression allows the estimation of elaborate models, such as
those that include interaction effects and other parameters that
go beyond average treatment effects.

In this article, we develop valid standard error estimates
for regression after matching. The large sample properties of
average treatment effect estimators that employ a simple com-
parison of mean outcomes between treated and nontreated after
matching on covariates are well understood (see, e.g., Abadie
and Imbens 2006). However, studies that employ regression
models after matching usually ignore the matching step when
performing inference on post-matching regression coefficients.
We show that this practice is not generally valid if the sec-
ond step regression is misspecified in a sense we make precise
below. We propose two easily implementable and robust-to-
misspecification approaches to the estimation of the standard
errors of regression coefficient estimators in matched samples

CONTACT Alberto Abadie abadie@mit.edu Department of Economics, MIT, Cambridge, MA 02142.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

(with matching done without replacement). First, we show that
standard errors that are clustered at the level of the matched
sets are valid under misspecification. Second, we show that a
nonparametric block bootstrap that resamples matched pairs or
matched sets, as opposed to resampling individual observations,
also yields valid inference under misspecification. Furthermore,
we show that standard errors that ignore the matching step
can both underestimate or overestimate the variation of post-
matching estimates. The procedures that we propose in this
article are straightforward to implement with standard statistical
software.

We will consider the following setup. Let W be a binary
random variable representing exposure to the treatment or con-
dition of interest (e.g., smoking), so W = 1 for the treated,
and W = 0 for the nontreated. Y is a random variable repre-
senting the outcome of interest (e.g., forced expiratory volume)
and X is a vector of covariates (e.g., gender or age). We will
study the problem of estimating how the treatment affects the
outcomes of the individuals in the treated population (i.e., those
with W = 1). In particular, we will analyze the properties
of a two-step (first matching, then regression) estimator often
used in empirical practice. This estimation strategy starts with
an unmatched sample, S , from which treated units and their
matches are extracted to create a matched sample, S∗. Matching
is done without replacement and on the basis of the values of
X. Then, using data for the matched sample only, the researcher
runs a regression of Y on Z, where Z is a vector of functions
of W and X (e.g., individual variables plus interactions). We
aim to obtain valid inferential methods for the coefficients of
this regression, possibly under misspecification. To be precise,
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by “misspecification” we mean that there is no version of the
conditional expectation of Y given W and X that follows the
functional form employed in the second-step estimator. For
example, as explained below, a difference in means between
treated and nontreated in the second step would be “misspeci-
fied” if the conditional expectation of Y given X and W depends
on X. To simplify the exposition, here we have described a
setting where Z depends only on the treatment, W, and on the
covariates used in the matching stage, X. Our general framework
in Section 2 allows Z to depend on other covariates not in X.

The intuition behind the results in this article is that, if Y
depends on X, then matching on X creates dependence between
the outcomes of treated units and their matches. This depen-
dence is absorbed by the second-step regression function as
long as the regression function is correctly specified relative
to the population regression of Y on W and X. However, if
the second-step regression is misspecified relative to the pop-
ulation regression of Y on W and X, dependence between
treated units and matches remains in the regression residuals.
Ignoring this dependence produces biased inference. Clustered
standard errors and analogous block bootstrap procedures take
into account the dependence between the outcomes of treated
units and their matches, restoring valid inference.

A special case of our setup is that of the standard matching
estimator for the average treatment effect on the treated, which
is given by the regression coefficient on treatment W in a regres-
sion of Y on Z = (1, W)′. However, the framework allows for
richer analysis, such as the analysis of linear interaction effects
of the treatment with covariates, Z = (1, W, WX′, X′)′.

To illustrate the implications of our results, consider the
simple case when Z = (1, W)′. As we mentioned previously,
for Z = (1, W)′ the sample regression coefficient on W cor-
responds to the simple matching estimator often employed in
applied studies, which is based on a post-matching comparison
of means between treated and nontreated. Under well-known
conditions this estimator is consistent for the average effect of
the treatment on the treated (see, e.g., Abadie and Imbens 2012),
irrespective of the true form of the expectation of Y given W and
X. Notice, however, that even in this simple scenario, our results
imply that regression standard errors that ignore the matching
step are not valid in general. Although the expectation of Y given
W is linear because W is binary, a linear regression of Y on
Z = (1, W)′ will be misspecified relative to the regression of Y
on W and X, unless Y is mean-independent of X given W over
a set of probability one.

The rest of the article is organized as follows. Section 2 starts
with a detailed description of the setup of our investigation.
We then characterize the parameters estimated by the two-step
procedure described above. We show that these parameters are
equal to the regression coefficients in a regression of Y on Z in
a population for which the distribution of matching covariates
X in the control group has been modified to coincide with that
of the treated. Under selection on observables—that is, if treat-
ment is as good as random conditional on X—post-matching
regression estimands are equal to the population regression
coefficients in an experiment where the treatment is randomly
assigned in a population that has the same distribution of X as
the treated. We next establish consistency with respect to this
vector of parameters, show asymptotic normality, and describe

the asymptotic variance of the post-matching estimator. In
Section 3, we discuss different ways of constructing standard
errors. Based on the results of Section 2, we show that standard
errors that ignore the matching step are not generally valid
if the regression model is misspecified in the sense indicated
above, while clustered standard errors or an analogous block
bootstrap procedure yield valid inference. Section 4 presents
simulation evidence, which confirms our theoretical results.
Section 5 applies our results to the analysis of the effect of
smoking on pulmonary function. In this application, matching
before regression and the use of the robust standard errors
proposed in this article substantially affect empirical findings.
Section 6 concludes.

The appendix contains the proofs of our main results. A
supplementary appendix contains proofs of intermediate results
and two extensions. In particular, the standard errors derived in
this article are valid for unconditional inference. Alternatively,
one could perform inference conditional on the values of the
regressors, X and W, in the sample. Notice that, in this case, the
first step matches are fixed. We discuss this alternative setting
in the supplementary appendix, where we show that, for the
conditional case, the usual regression standard errors are not
generally valid, but valid standard errors can be calculated using
the formulas in Abadie, Imbens, and Zheng (2014). Also, for
concreteness and following the vast majority of applied practice,
in the main text of this article we restrict our analysis to linear
regression after matching. In the supplementary appendix, we
provide an extension of our result to general M-estimation after
matching.

2. Post-Matching Inference

In this section, we discuss the asymptotic distribution of the least
squares estimator obtained from a linear regression of Y on Z
after matching on observables, X.

2.1. Post-Matching Least Squares

Consider a standard binary treatment setting along the lines of
Rubin (1974) with potential outcomes Y(1) and Y(0), of which
we only observe Y = Y(W) for treatment W ∈ {0, 1}. Let S be
a set of observed covariates.

We will assume that the data consist of random samples of
treated and nontreated. This assumption could be easily relaxed,
and we adopt it only to simplify the discussion.

Assumption 1 (Random sampling). S = {(Yi, Wi, Si)}N
i=1 is a

pooled sample obtained from N1 and N0 independent draws
from the population distribution of (Y , S) for the treated (W =
1) and nontreated (W = 0), respectively, so N = N0 + N1.

Consider an (m × 1) vector of covariates X = f (S) ∈ X ⊆
R

m, and letS∗ ⊆ S be the matched sample generated by match-
ing without replacement each treated unit to M nontreated units
on the basis of their X-values. We will denote J (i) the set of
nontreated units matched to treated unit i. For simplicity, in our
notation we omit the dependence ofJ (i) on N and M. Often, for
matching without replacement, the setsJ (i) form the collection
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of nonoverlapping subsets of {j : Wj = 0}, each of cardinality
M, that minimizes the sum of the matching discrepancies.

N∑
i=1

Wi
∑

j∈J (i)
d(Xi, Xj), (1)

where d : X × X �→ [0, ∞) is a metric. More generally, our
conditions do not require a matching scheme that directly min-
imizes (1), as long as Assumption 3 and the Lipschitz conditions
in Assumption 4 and Proposition 3 hold for some metric, d(·, ·),
under the adopted matching scheme.

The matched sample,S∗ = ⋃
Wi=1 ({i} ∪ J (i)), has size n =

(M + 1)N1. We use a double subscript notation to refer to the
observations in the matched sample. For instance, Yn1, . . . , Ynn
refers to the values of the outcome variable for the units in S∗,
with analogous notation for other variables. Within the matched
sample, observations will be rearranged so that the first N1
observations are the treated units.

Let Z = g(W, S) be a (k × 1) vector of functions of (W, S),
and let β̂ be the vector of sample regression coefficients obtained
from regressing Y on Z in the matched sample,

β̂ = argmin b∈Rk
1
n

n∑
i=1

(Yni − Z′
nib)2

=
(

1
n

n∑
i=1

ZniZ′
ni

)−1
1
n

n∑
i=1

ZniYni. (2)

In Section 2.3, we will introduce a set of assumptions under
which β̂ exists with probability approaching one.

As we mentioned above, when Z = (1, W)′ the regression
coefficient on W in the matched sample is given by

τ̂ = 1
N1

n∑
i=1

WniYni − 1
MN1

n∑
i=1

(1 − Wni)Yni

= 1
N1

N∑
i=1

Wi

(
Yi − 1

M
∑

j∈J (i)
Yj

)
,

which is the usual matching estimator for the average effect of
the treatment on the treated.

2.2. Characterization of the Estimand

Before we study the sampling distribution of β̂ , we first char-
acterize its population counterpart, which we will denote by
β . That is, our first task is to obtain a precise description of
the nature of the parameters estimated by β̂ . Although post-
matching regressions are often used in empirical practice, to
the best of our knowledge, the precise nature of post-matching
estimands has not been previously derived.

The goal of matching is to change the distribution of the
covariates in the sample of nontreated units, so that it repro-
duces the distribution of the covariates among the treated. To
do so, it is necessary that the support of the matching variables,
X, for the treated is inside the support for the nontreated.

Assumption 2 (Support condition). Let X1 = supp(X|W = 1)

and X0 = supp(X|W = 0), then
X1 ⊆ X0.

We now describe the population distribution targeted by the
matched sample, S∗. Let P(·|W = 1) and P(·|W = 0) be the
matching source distributions of (Y , S) from where the treated
and nontreated samples in S are, respectively, drawn, and let
E[·|W = 1] and E[·|W = 0] be the corresponding expectation
operators. For given P(·|W = 1) and P(·|W = 0) and a given
number of matches, M, we define a matching target distribution,
P∗, over the triple (Y , S, W), as follows:

P∗(W = 1) = 1
1 + M

,

and for each measurable set, A,

P∗((Y , S) ∈ A|W = 1) = P((Y , S) ∈ A|W = 1),

and

P∗((Y , S) ∈ A|W = 0) = E[P((Y , S) ∈ A|W = 0, X)|W = 1].
That is, in the matching target distribution: (i) treatment is
assigned in the same proportion as in the matched sample; (ii)
the distribution of (Y , S) among the treated is the same as in the
matching source; (iii) the distribution of (Y , S) among the non-
treated is generated by integrating the conditional distribution
of (Y , S) given X and W = 0 over the distribution of X given
W = 1, in the matching source. As a result, under the matching
target distribution, the distribution of X given W = 0 coincides
with the distribution of X given W = 1.

Under regularity conditions stated below, estimation on
the matched sample, S∗, asymptotically recovers parameters
of the matching target distribution, P∗, in which the treated
and nontreated have the same distribution of X, but possibly
different outcome and covariate distributions conditional on
X. As a result, comparisons of outcomes between treated and
nontreated in the matched sample, S∗, produce the controlled
contrasts of the Oaxaca–Blinder decomposition (Blinder 1973;
Oaxaca 1973; DiNardo, Fortin, and Lemieux 1996). More gen-
erally, under regularity conditions, regression coefficients of Y
on Z in the matched sample, S∗, asymptotically recover the
analogous regression coefficients in the target population:

β = argmin b∈Rk E∗[(Y − Z′b)2]
= (E∗[ZZ′])−1E∗[ZY]. (3)

Matching methods are often motivated by a selection-on-
observables assumption, that is, by the assumption that treat-
ment assignment is as good as random conditional on observed
covariates. To formalize the assumption of selection on observ-
ables and its implications in our framework, consider source
populations expressed this time in terms of potential outcomes
and covariates, Q(·|W = 1) and Q(·|W = 0), which represent
the distributions of (Y(1), Y(0), S) given W = 1 and W = 0,
respectively. These distributions are defined in such a way that
P(·|W = 1) and P(·|W = 0) can be obtained by integrating
out Y(0) from Q(·|W = 1) and Y(1) from Q(·|W = 0),
respectively. For given Q(·|W = 1) and Q(·|W = 0), selection
on observables means

(Y(1), Y(0), S)|X, W = 1 ∼ (Y(1), Y(0), S)|X, W = 0
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almost surely with respect to the distribution of X|W = 1. That
is, the joint distribution of covariates and potential outcomes
is independent of treatment assignment conditional on the
matching variables. Because in this article, we focus on causal
parameters defined for a population with distribution of the
matching variables equal to X|W = 1, for our purposes it is
enough that the selection-on-observables assumption holds for
the distribution of (Y(0), S) only,

(Y(0), S)|X, W = 1 ∼ (Y(0), S)|X, W = 0. (4)

Proposition 1 (Estimand under selection on observables). Sup-
pose that Assumption 2 holds and that β , as defined in Equation
(3), exists. Then if selection on observables, as defined in Equa-
tion (4), holds, the coefficients β are the same as the population
coefficients that would be obtained from a regression of Y on Z
in a setting where:

1. (Y(1), Y(0), S) has distribution Q(·|W = 1),
2. treatment is randomly assigned with probability 1/(M + 1).

This result formalizes the notion that matching under selec-
tion on observables allows researchers to reproduce an exper-
imental setting under which average treatment effects can be
easily evaluated through a least squares regression of Y on Z.
The results in this article, however, apply to the general estimand
β in Equation (3), regardless of the validity of the selection-on-
observables assumption.

2.3. Consistency and Asymptotic Normality

In this section, we will establish large sample properties of β̂ ,
as N1, N0 → ∞ with N0 ≥ MN1. Throughout this article, we
will assume that the sum of matching discrepancies vanishes
quickly enough to allow asymptotic unbiasedness and root-n
consistency:

Assumption 3 (Matching discrepancies).

1√
N1

N∑
i=1

Wi
∑

j∈J (i)
d(Xi, Xj)

p−→ 0.

Abadie and Imbens (2012) derived primitive conditions for
Assumption 3, which require N1 = O(N1/r

0 ) for some r greater
than the number of covariates in X (excluding those that take on
a finite number of values). This condition highlights the impor-
tance of obtaining matches from a large reservoir of untreated
units, especially when the dimensionality of X is large. Of
course, in concrete empirical settings, the adequacy of matching
should not rely on asymptotic results. Instead, the quality of
the matches needs to be evaluated for each particular sample.
Abadie and Imbens (2011) and Imbens and Rubin (2015) dis-
cussed measures of the discrepancy between the distributions
of the covariates of treated and nontreated. For example, the
normalized difference in Abadie and Imbens (2011) is (m1 −
m0)/

√
(s2

1 + s2
0)/2, where mw and s2

w are the means and standard
deviations of a covariate (typically, products of/and powers of
the components of X) for the units with W = w in the matched
sample.

For any real matrix A, let ‖A‖ = √
tr(A′A) be the Euclidean

norm of A. The next assumption collects regularity conditions
on the conditional moments of (Y , Z) given (X, W).

Assumption 4 (Well-behavedness of conditional expectations).
For w = 0, 1, and some δ > 0,

E[‖Z‖4|W = w, X = x] and
E[‖Z(Y − Z′β)‖2+δ|W = w, X = x]

are uniformly bounded on Xw. Furthermore,

E[ZZ′|X = x, W = 0], E[ZY|X = x, W = 0]
and var(Z(Y − Z′β)|X = x, W = 0)

are componentwise Lipschitz in x with respect to d(·, ·).

To ensure the existence of β̂ with probability approaching
one as n → 0, we assume invertibility of the Hessian, H =
E∗(ZZ′). Notice that

H =
E
[

E[ZZ′|X, W=1]+ME[ZZ′|X, W=0]∣∣W=1
]

1 + M
. (5)

Assumption 5 (Linear independence of regressors). H is invert-
ible.

The next proposition establishes the asymptotic distribution
of β̂ .

Proposition 2 (Asymptotic distribution of the post-matching esti-
mator). Under Assumptions 1–5,

√
n(β̂ − β)

d→ N (0, H−1JH−1),

where

J =

var
(

E[Z(Y − Z′β)|X, W = 1]
+ME[Z(Y − Z′β)|X, W = 0]∣∣W = 1

)
1 + M

+

E
[

var(Z(Y − Z′β)|X, W = 1)

+Mvar(Z(Y − Z′β)|X, W = 0)
∣∣W = 1

]
1 + M

and H is as defined in Equation (5).

All proofs are in the appendix.

3. Post-Matching Standard Errors

In the previous section, we established that

√
n(β̂ − β)

d→ N (0, H−1JH−1)

for the post-matching estimator obtained from a regression of
Y on Z within the matched sample S∗. In this section, our goal
is to estimate the asymptotic variance, H−1JH−1.

bbh
Highlight
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3.1. Standard Errors Ignoring the Matching Step

Ho et al. (2007) argued that matching can be seen as a prepro-
cessing step, prior to estimation, so the matching step can be
ignored in the calculation of standard errors. Here, we consider
commonly applied “sandwich” standard error estimates for iid
data (Eicker 1967; Huber 1967; White 1980a, 1980b, 1982). In an
iid setting, sandwich standard errors are valid in large samples
even if the regression is misspecified relative to the conditional
expectation of Y given Z, in which case the population regres-
sion parameters are the coefficients of an L2 approximation
to the conditional expectation. As we will show, however, the
assumption of iid data does not apply in matched samples.

Sandwich standard errors can be computed as the square root
of the main diagonal of the matrix Ĥ−1̂JsĤ−1/n, where

Ĥ = 1
n

n∑
i=1

ZniZ′
ni (6)

and

Ĵs = 1
n

n∑
i=1

Zni(Yni − Z′
niβ̂)2Z′

ni. (7)

The following proposition derives the probability limit of Ĵs with
data from a matched sample.

Proposition 3 (Convergence of Js). Suppose that Assumptions 1–
5 hold. Assume also that E[Z(Y − Z′β)2Z′|X = x, W = 0] is
Lipschitz onX0 and E[Y4|X = x, W = w] is uniformly bounded
on Xw for all w = 0, 1. Then, Ĵs

p→ Js, where

Js =

E
[

E[Z(Y − Z′β)2Z′|X, W = 1]
+ME[Z(Y − Z′β)2Z′|X, W = 0]∣∣W = 1

]
1 + M

.

Notice that Js = E∗[Z(Y − Z′β)2Z]. That is, Js is equal to the
inner matrix of the sandwich asymptotic variance when data are
iid with distribution P∗. However, since the matched sample S∗
is not an iid sample from P∗, Ĵs is not generally consistent for J.
The difference between the limit of the sandwich standard errors
Ĥ−1̂JsĤ−1 and the actual asymptotic variance H−1JH−1 is given
by H−1�H−1, where

� =
−ME

[
�0(X)�1(X)′ + �1(X)�0(X)′|W = 1

]
−(M − 1)ME

[
�0(X)�0(X)′|W = 1

]
M + 1

, (8)

and

�w(x) = E
[
Z(Y − Z′β)|X = x, W = w

]
,

for w = 0, 1.
Therefore, bias in the estimation of the variance may arise

when �0(X) �= 0. The following example provides a simple
instance of this bias.

Example 1 (Inconsistency of sandwich standard errors). Assume
the sample outcomes are drawn from

Y = τW + X + ε, (9)

where X is a scalar random variable with var(X|W = 1) =
σ 2

X , and ε has mean zero, variance σ 2
ε , and is independent of

W and X. Consider the case where we match the values of X
for N1 treated units to N1 untreated units (M = 1) without
replacement. Let j(i) be the index of the untreated observation
that serves as a match for treated observation i. For simplicity,
suppose that X is discrete and all matches are perfect, Xi = Xj(i)
for every treated unit i, so we can ignore potential biases gen-
erated by matching discrepancies. Within the matched sample,
S∗, we run a linear regression of Y on Z = (1, W)′ to obtain the
regression coefficient on W,

τ̂ = 1
N1

N∑
i=1

Wi(Yi − Yj(i)). (10)

τ̂ is the usual matching estimator for the average effect of the
treatment on the treated. Notice that, in the previous expression,
Yi − Yj(i) = τ + εi − εj(i), with variance 2σ 2

ε . Variation in X
is taken care of through matching. Therefore, all variation in τ̂

comes through the error term, ε. Because n = 2N1, it follows
that

n var(̂τ ) = 4σ 2
ε .

Consider now the residuals of the ordinary least squares (OLS)
regression of Yni on a constant and Wni in the matched sample:

ε̂ni = Yni − μ̂ − τ̂Wni ≈ Xni + εni,

where μ̂ is the intercept of the sample regression line. For this
simple case, the sandwich variance estimator for τ̂ is

n ṽar(̂τ ) = 4
n

n∑
i=1

ε̂2
ni ≈ 4σ 2

X + 4σ 2
ε .

That is, in this example, the sandwich variance estimator over-
estimates the variance of τ̂ because it does not take into account
the dependence generated by matching between the regression
residuals of the treated units and their matches.

Sections 3.2 and 3.3 discuss variance estimators that adjust
for the matching step by taking into account the dependence of
regression errors between treated units and their matches. For
matching with M = 1 and a second-step regression of Y on a
constant and W, the clustered variance estimator of Section 3.2
becomes

n v̂ar(̂τ ) = 2
n

n∑
i=1

(̂εi − ε̂j(i))
2 ≈ 4σ 2

ε ,

restoring valid inference.

The next example shows that ignoring the matching step may
result in underestimation of the variance.

Example 2 (Underestimation of the variance). In the same setting
as Example 1, assume that data are generated by

Y = τW + X − 2WX + ε. (11)

The post-matching estimator of τ from a regression of Y on
(1, W)′ is τ̂ as in Equation (10). In this case, if all matches are
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perfect, so Xi = Xj(i), we obtain Yi − Yj(i) = τ − 2Xi + εi − εj(i).
Therefore,

n var(̂τ ) = 8σ 2
X + 4σ 2

ε .

Least squares regression residuals are

ε̂ni = Yni − μ̂ − τ̂Wni ≈ Xi − 2WniXni + εni

=
{

−Xni + εni if Wni = 1,
Xni + εni if Wni = 0,

implying

nṽar(̂τ ) = 4
n

n∑
i=1

ε̂2
ni ≈ 4σ 2

X + 4σ 2
ε ,

for the conventional sandwich variance estimator. Again, the
sandwich variance estimator does not take into account depen-
dencies between sample units induced by matching. In this
example, matching on X induces a negative correlation between
the regression residuals of the treated units and their matches.
As a result, the sandwich variance estimator underestimates the
variance of τ̂ . Once again, the clustered variance estimator of
Section 3.2 takes into account the correlation between regres-
sion error induced by matching, and produces valid inference,

n v̂ar(̂τ ) = 2
n

n∑
i=1

(̂εi − ε̂j(i))
2 ≈ 8σ 2

X + 4σ 2
ε .

Sandwich standard errors would be valid in Examples 1 and 2
if the specifications for the post-matching regressions included
the terms containing X in Equations (9) and (11), respectively.
Indeed, sandwich standard errors are generally valid if the
regression is correctly specified in a specific sense defined in the
following result.

Proposition 4 (Validity of sandwich standard errors under correct
specification). Assume that the post-matching regression,

Y = Z′β + ε,

is correctly specified with respect to the conditional distribution
of Y given (Z, X, W), that is, E[ε|Z, X, W] = 0. Then, under the
assumptions of Proposition 3, Js = J and the sandwich variance
estimator, Ĥ−1̂JsĤ−1, is consistent for the asymptotic variance
of

√
n(β̂ − β).

Notice, however, that correct specification is precisely the
condition under which matching would not be required to
obtain a consistent estimator of β , since direct estimation with-
out matching would be valid. Moreover, a correct specification
(in the sense defined above) of the post-matching regression
is not required for consistent estimation of causal parameters.
For example, under regularity conditions, a simple difference in
means between the treated and a matched sample of untreated
units is consistent for the average effect of the treatment on the
treated. Consistent estimators of the variance exist for the sim-
ple difference in means in a matched samples. These variance
estimators are different from the sandwich variance estimator,
and do not rely on correct specification of the post-matching
regression (see Abadie and Imbens 2012).

Finally, Equation (8) implies that the conditions of Proposi-
tion 4 can be slightly weakened to require only that the regres-
sion function is correctly specified among the nontreated, in
the sense that E[ε|Z, X, W = 0] = 0. This is because for
the estimators studied in this article, matching affects only the
distribution of the covariates for the nontreated. In addition,
for the special case M = 1, it is sufficient that the regression
function is correctly specified among the treated, in the sense
that E[ε|Z, X, W = 1] = 0.

3.2. Match-Level Clustered Standard Errors

We have shown that sandwich standard errors are not generally
valid for the post-matching least squares estimator. In this sec-
tion, we will demonstrate that, when matching is done without
replacement, clustered standard errors (Liang and Zeger 1986;
Arellano 1987) can be employed to obtain valid estimates of the
standard deviation of post-matching regression coefficients. In
particular, we will consider standard errors clustered at the level
of the matched sets.

Consider an estimator of the asymptotic variance of β̂ given
by Ĥ−1̂JĤ−1, where Ĥ is as in Equation (6) and Ĵ is given by the
clustered variance formula applied to the matched sets,

Ĵ = 1
n

n∑
i=1

Wi
(

Zi(Yi − Z′
iβ̂) +

∑
j∈J (i)

Zj(Yj − Z′
jβ̂)

)
×
(

Zi(Yi − Z′
iβ̂) +

∑
j∈J (i)

Zj(Yj − Z′
jβ̂)

)′
.

Clustered standard errors can be readily implemented using
standard statistical software. The next result shows that match-
level clustered standard errors are valid in large samples for the
post-matching estimator (provided matching is done without
replacement).

Proposition 5 (Validity of clustered standard errors). Under the
assumptions of Proposition 3, we obtain that

Ĵ
p→ J.

In particular, the clustered estimator of the variance is consis-
tent, that is,

Ĥ−1̂JĤ−1 − nvar(β̂)
p→ 0.

The intuition behind this result is that matching on covariates
makes regression errors statistically dependent among units in
the same matched sets, {i}∪J (i), i = 1, . . . , N1. Standard errors
clustered at the level of the matched set take this dependency
into account.

3.3. Matched Bootstrap

Proposition 5 shows that clustered standard errors are valid for
the asymptotic variance of the post-matching estimator. In this
section, we show that a clustered version of the nonparametric
bootstrap (Efron 1979) is also valid. This version of the boot-
strap relies on resampling of matched sets instead on individual
observations.
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Recall that we reordered the observations in our sample,
so that the first N1 observations are the treated. Consider the
nonparametric bootstrap that samples treated units together
with their M matches partners from S∗ to obtain

β̂∗ =
(

1
n

n∑
i=1

VniZniZ′
ni

)−1
1
n

n∑
i=1

VniZniYni,

where (Vn1, . . . , VnN1) has a multinomial distribution with
parameters (N1, (1/N1, . . . , 1/N1)), and Vnj = Vni if j >

N1 and j ∈ J (i). In this bootstrap procedure, N1 units are
drawn at random with replacement from the N1 treated sample
units. Untreated units are drawn along with their treated match.
Effectively, the matched bootstrap samples matched sets of one
treated unit and M untreated units. The next proposition shows
validity of the matched bootstrap.

Proposition 6 (Validity of the matched bootstrap). Under the
assumptions of Proposition 5, we have that

sup
r∈Rk

∣∣P (√
n(β̂∗ − β̂) ≤ r

∣∣S) − P(N (0, H−1JH−1) ≤ r)
∣∣ p→ 0.

Proposition 6 shows that the bootstrap distribution pro-
vides an asymptotically valid approximation of the limiting
distribution of the post-matching estimator, but that does not
necessarily imply that the associated bootstrap variance is an
asymptotically valid estimate of the variance of the estimator.

The formal analysis of the bootstrap variance is complicated
by the fact that, in forming the bootstrap estimate β̂∗, the
empirical analog

Ĥ∗ = 1
n

n∑
i=1

VniZniZ′
ni

of the Hessian H for a given bootstrap draw may be ill-
conditioned or noninvertible. In fact, because the bootstrap may
sample the same matched set N1 times, noninvertibility of the
Hessian may happen with positive probability for any sample
size. To circumvent this issue, we fix constants c > 0 and
α ∈ (0, 1/2) and consider the alternative bootstrap estimator

β̃∗ =
{

β̂∗ if ‖Ĥ∗ − Ĥ‖ ≤ c/nα ,
β̂ otherwise.

That is, β̃∗ is equal to β̂∗ whenever the bootstrap Hessian, Ĥ∗, is
close to the matched sample Hessian, Ĥ. Otherwise, β̃∗ is equal
to the post-matching estimator, β̂ . As the sample size grows, β̃∗
is equal to β̂∗ with probability approaching one.

Proposition 7 (Validity of bootstrap standard errors). Under the
assumptions of Proposition 5 and E[‖Z‖8|W = w, X = x]
uniformly bounded on Xw, the bootstrap distribution given by
β̃∗ is valid in the sense of Proposition 6, and yields a valid
estimate of the asymptotic variance of β̂ , that is,

nvar(β̃∗|S)
p→ H−1JH−1

as n → ∞.

The use of β̃∗ in Proposition 7 is a formal device to make the
outcome of each bootstrap iteration well-defined. For practical
purposes, however, bootstrap standard errors based on β̂∗ will
perform well unless the bootstrap Hessians are ill-conditioned.
Bootstrap standard errors based on β̂∗ perform very well in our
simulations of Section 4.

It is useful to relate the results in this section, which pertain to
matching without replacement, to previous results for matching
with replacement. In particular, for matching with replacement
Abadie and Imbens (2008) showed that the nonparametric boot-
strap fails to consistently estimate the standard error of a simple
matching estimator. The consistency results that we obtain in
this section is for matching without replacement, and do not
directly extend to matching with replacement. The reason is that
matching with replacement creates dependencies in the data
that are not preserved by resampling matched sets.

4. Simulations

In this section, we study the performance of the post-matching
standard error estimators from Section 3 in a simulation exercise
using two data generating processes (DGPs).

4.1. DGP1: Robustness to Misspecification

Let U(a, b) be the uniform distribution on [a, b]. We generate
data according to

Y = WX + 5X2 + ε,

where X|W = 1 ∼ U(−1, 1), X|W = 0 ∼ U(−1, 2), and
ε ∼ N (0, 1). We sample N1 = 50 treated and N0 = 200 non-
treated units. We first match treated and untreated units on the
covariates, X, without replacement and with M = 1 match per
treated unit. We consider the following post-matching regres-
sion specifications.

Specification 1:

Y = α + τ0W + τ1WX + β1X + ε.

Specification 2:

Y = α + τ0W + τ1WX + β1X + β2X2 + ε.

Specification 2 is correct relative to the conditional expectation
E[Y|X, W], while specification 1 is not. Regression estimands
can always be seen as L2 approximations to E[Y|W, X], regard-
less of the specification adopted for estimation (see, e.g., White
1980b). For our simulation results, we will focus on estimators of
τ0 and τ1, the regression coefficients on terms involving W. For
the DGP and the two specifications adopted for this simulation,
it can be shown that τ0 = 0 and τ1 = 1 under the matching
target distribution.

Table 1 reports the results of the simulation exercise. In
a regression that uses the full sample without matching, the
estimates of τ0 and τ1 are biased under misspecification (specifi-
cation 1), while they are valid under correct specification (spec-
ification 2). After matching, both specifications yield valid esti-
mates for τ0 and τ1. However, sandwich standard error estimates
are inflated under misspecification, while average clustered and
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Table 1. Monte Carlo results for DGP1 (10,000 iterations).

(a) Target parameter: coefficient τ0 = 0 on W

Average
Full sample Post-matching standard error

Mean Std. Mean Std.
Specification of τ̂0 of τ̂0 of τ̂0 of τ̂0 Sandwich Cluster Bootstrap

1 −0.85 0.404 0.00 0.204 0.359 0.197 0.199
2 0.00 0.165 0.00 0.204 0.196 0.196 0.199

(b) Target parameter: coefficient τ1 = 1 on the interaction WX

Average
Full sample Post-matching standard error

Mean Std. Mean Std.
Specification of τ̂1 of τ̂1 of τ̂1 of τ̂1 Sandwich Cluster Bootstrap

1 −4.00 0.646 0.99 0.358 0.728 0.340 0.348
2 1.00 0.286 1.00 0.356 0.337 0.338 0.346

matched bootstrap standard errors (with 1000 bootstrap draws)
closely approximate the standard deviation of τ̂0 and τ̂1. Under
correct specification (specification 2), all standard error esti-
mates perform well.

4.2. DGP2: High Treatment-Effect Heterogeneity

In the simulation in the previous section, sandwich standard
errors overestimate the variation of the post-matching estimator
under misspecification. In this section, we present an example in
which sandwich standard errors are too small. We generate data
according to

Y = WX + 20WX2 − 10X2 + ε

with ε ∼ N (0, 1) as above. For this DGP2, the conditional
treatment effect is nonlinear with

E[Y|W = 1, X] − E[Y|W = 0, X] = X + 20X2.

Sample sizes, matching settings, and regression specifications
are as in DGP1. Notice that both regression specifications are
incorrect relative to E[Y|X, W], as they do not capture nonlinear
conditional treatment effects. Like in Section 4.1, regression
coefficients represent the parameters of an L2 approximation
to E[Y|W, X] over the distribution of (W, X) in Proposition 1.
Direct calculations yield τ0 = 6.67 and τ1 = 1 for both
specifications in the matching target distribution.

Table 2 presents the results of the simulation exercise for
DGP2. The large heterogeneity in conditional treatment effects
is not captured by either regression specification, and sandwich
standard errors that ignore the matching step underestimate
the variation of the post-matching estimator. In contrast, the
average clustered and matched bootstrap (with 1000 bootstrap
draws) standard errors proposed in this article closely reflect the
variability of the post-matching estimators.

5. Application

This section reports the results of an empirical application where
we look at the effect of smoking on the pulmonary function of
youths. The application is based on data originally collected in

Table 2. Monte Carlo results for DGP2 (10,000 iterations).

(a) Target parameter: coefficient τ0 = 6.67 on W

Average
Full sample Post-matching standard error

Mean std. mean std.
Specification of τ̂0 of τ̂0 of τ̂0 of τ̂0 Sandwich Cluster Bootstrap

1 8.25 0.754 6.55 0.883 0.630 0.869 0.897
2 6.70 0.857 6.55 0.883 0.630 0.869 0.897

(b) Target parameter: coefficient τ1 = 1 on the interaction WX

Average
Full sample Post-matching standard error

Mean Std. Mean Std.
Specification of τ̂1 of τ̂1 of τ̂1 of τ̂1 Sandwich Cluster Bootstrap

1 11.00 1.209 1.01 1.950 1.330 1.848 1.932
2 1.90 1.877 1.01 1.950 1.330 1.848 1.933

Boston, Massachusetts, by Tager et al. (1979, 1983), and sub-
sequently described and analyzed in Rosner (1995) and Kahn
(2005). The sample contains 654 youth, N1 = 65 who have ever
smoked regularly (W = 1) and N0 = 589 who never smoked
regularly (W = 0). The outcome of interest is the subjects’
forced expiratory volume (Y), ranging from 0.791 to 5.793 liters
per second (
/sec). In addition, we use data on age (X1, ranging
from 3 to 19 with the youngest ever-smoker aged 9) and gender
(X2, with X2 = 1 for males and X2 = 0 for females).

The use of matching to study the causal effect of smoking is
motivated by the likely confounding effects of age and gender.
For instance, while the causal effect of smoking on respiratory
volume is expected to be negative, older children are more likely
to smoke and have a larger respiratory volume, which induces a
positive association between smoking and respiratory volume.

We first match every smoker in the sample to a nonsmoker
(M = 1), without replacement, based on age (X1) and gender
(X2). Within the resulting matched sample of 65 smokers and
65 nonsmokers, we run linear regressions with the following
specifications:
Specification 1:

Y = α + τ0W + ε.

Specification 2:

Y = α + τ0W + β1X1 + β2X2 + ε.

Specification 3:

Y = α + τ0W + τ1W(X1 − E[X1]) + τ2W(X2 − E[X2])
+ β1(X1 − E[X1]) + β2(X2 − E[X2]) + ε.

The first specification yields the matching estimator for the
average treatment effect τ0 as the regression coefficient on W,
while the second adds linear controls in X1 and X2. The third
specification also includes interaction terms of smoking with
age and gender.

Table 3 reports regression estimates of τ0, τ1, and τ2 along
with standard errors (regression coefficients on terms not
involving W are omitted from Table 3 for brevity). Estimates for
the first specification demonstrate the problem of confounding
in this application. Without controlling for age and gender, there
is a positive correlation between smoking and forced expiratory
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Table 3. OLS and post-matching estimates for the smoking dataset.

Dependent variable: forced expiratory volume

Smoker Smoker×age Smoker×male

Coeff. Std. error Coeff. Std. error Coeff. Std. error

Sandwich Cluster Sandwich Cluster Sandwich Cluster

Specification 1:
OLS 0.711 0.099
Post-matching −0.066 0.132 0.095

Specification 2:
OLS −0.154 0.104
Post-matching −0.077 0.104 0.096

Specification 3:
OLS 0.495 0.187 −0.182 0.036 0.461 0.193
Post-matching −0.077 0.102 0.093 −0.092 0.054 0.038 −0.021 0.249 0.212

function. After matching on age and gender, the sign of the
regression coefficient on smoking becomes negative. In this
specification, the clustered standard error for the post-matching
estimate is considerably smaller than the corresponding sand-
wich standard error.

Specification 2 includes linear controls for age and gender.
The sign and magnitude of the least squares estimate of the
coefficient on the smoker variable changes substantially between
specifications 1 and 2, while the magnitude of the post-matching
estimate stays roughly constant. This result illustrates the higher
robustness across specifications of the post-matching estimator
relative to least squares on the unmatched sample (Ho et al.
2007). When specification 2 is adopted for regression, the sign
of the coefficient on the smoker variable is not affected by
matching. Also, for this specification, clustered and sandwich
standard errors are similar. Both findings are consistent with
the adopted regression specification moving closer toward the
correct specification of E[Y|W, X1, X2].

In specification 3, which includes interactions between the
smoker variable and age and gender, the use of matching and
the use of robust standard errors matters for the substantive
results of the analysis. First, notice that the coefficient on the
interaction of gender with treatment is large, significant and
positive without matching, suggesting that the effect of smok-
ing is more severe for girls than for boys. After matching,
the sign changes, and the estimated coefficient is small and
insignificant. This suggests that the large interaction finding
with OLS for this coefficient is caused by misspecification.
Second, in the post-matching regression we find a negative
estimate for the interaction of treatment with age. With sand-
wich standard errors, this effect is not significant (at the 5%
level). The robust standard errors proposed in this article are
smaller and result in a rejection of the null hypothesis of a
zero interaction coefficient between smoker and age (at the
5% level).

6. Conclusion

This article establishes valid inference for regression on a sample
matched without replacement. Standard errors that ignore the
matching step are not generally valid if the regression spec-
ification is incorrect relative to the expectation of the out-
come conditional on the treatment and the matching covariates.
However, using a correct specification relative to E[Y|W, X]

is not necessary to consistently estimate treatment parameters
after matching. For example, under selection on observables,
simple differences in means in a matched sample can be used
to estimate average treatment effects.

We propose two alternatives—standard errors clustered at
the matched set level and an analogous block bootstrap—that
are robust to misspecification and easily implementable with
standard statistical software. A simulation study and an empiri-
cal example demonstrate the usefulness of our results.

To conclude, we outline potential extensions of our results.
First, in this article, we discuss only matching without replace-
ment, and the results do not directly carry over to matching
with replacement as in Abadie and Imbens (2006). Match-
ing with replacement (i.e., allowing nontreated units to be
used as a match more than once) creates additional depen-
dencies between matched sets that are not reflected in sand-
wich standard errors or in the robust standard errors pro-
posed in this article. While the negative result about post-
matching standard errors extend to matching with replace-
ment (standard errors that ignore the matching step are not
generally valid for matching is done with replacement, see
Abadie and Imbens 2006), the positive results we describe do
not directly apply: Even when the linear regression is cor-
rectly specified, sandwich standard errors do not correctly
capture the variance of the post-matching estimates, since
the overlap between matched sets is not accounted for. Clus-
tered standard errors, as well as the analogous block bootstrap
that samples treated units with all their matching partners,
do not provide an immediate solution since one untreated
unit may now be part of multiple such clusters or bootstrap
groups.

In addition, our analysis applies to the case when matching
is done directly on the covariates, avoiding substantial com-
plications created by the presence of nuisance parameters in
the matching step when matching is done on the estimated
propensity score (see Rosenbaum and Rubin 1983; Abadie and
Imbens 2016). Finally, our analysis assumes that the quality
of matches is good enough for matching discrepancies not to
bias the asymptotic distribution of the post-matching regression
estimator. Post-matching regression adjustments may, in prac-
tice, help eliminate the bias as in the bias-corrected matching
estimator in Abadie and Imbens (2011). These are angles that we
do not explore in this article and interesting avenues for future
research.

bbh
Highlight
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Appendix: Proofs

Preliminary Lemmas A.1 and A.2 and Propositions A.1–A.3 are in a
supplementary appendix.

Proof of Proposition 1. Let EQ(·|W=1) and EQ(·|W=0) be expectation
operators for Q(·|W = 1) and Q(·|W = 0). Notice first that for any
measurable function q,

EQ(·|W=1)[q(Y(1), S)] = E[q(Y , S)|W = 1]. (A.1)

The result holds also replacing W = 1 with W = 0, and after
conditioning on X. In particular,

EQ(·|W=0)[q(Y(0), S)|X] = E[q(Y , S)|X, W = 0]. (A.2)

The regression coefficient in the population defined by (a) and (b) is
the minimizer of

1
M + 1

EQ(·|W=1)[(Y(1) − g(1, S)′b)2]

+ M
M + 1

EQ(·|W=1)[(Y(0) − g(0, S)′b)2].
Notice that

EQ(·|W=1)[(Y(1) − g(1, S)′b)2] = E[(Y − g(1, S)′b)2|W = 1]
= E∗[(Y − Z′b)2|W = 1],

where the first equality follows from Equation (A.1) and the second
equality follows from the definitions of P∗(·|W = 1) and Z. Similarly,

EQ(·|W=1)[(Y(0) − g(0, S)′b)2]
= EQ(·|W=1)[EQ(·|W=1)[(Y(0) − g(0, S)′b)2|X]]
= EQ(·|W=1)[EQ(·|W=0)[(Y(0) − g(0, S)′b)2|X]]
= E[E[(Y − g(W, S)′b)2|X, W = 0]|W = 1]
= E∗[(Y − Z′b)2|W = 0].

In the last equation, the first equality follows from the law of iterated
expectations, the second equality follows from selection on observ-
ables, the third equality follows from (A.2) and (A.1), and the last
equation follows from the definition of P∗(·|W = 0). Therefore,

1
M + 1

EQ(·|W=1)[(Y(1) − g(1, S)′b)2]

+ M
M + 1

EQ(·|W=1)[(Y(0) − g(0, S)′b)2]

= 1
M + 1

E∗[(Y − Z′b)2|W = 1]

+ M
M + 1

E∗[(Y − Z′b)2|W = 0] = E∗[(Y − Z′b)2],
which implies the result of the proposition.

Proof of Proposition 2. This proof is based on two lemmas in the sup-
plementary appendix about the asymptotic distribution of averages in
matched samples based on a martingale representation of matching
estimators similar to Abadie and Imbens (2012). Lemma A.1 establishes
convergence in probability, while Lemma A.2 deals with root-n consis-
tency and asymptotic normality. By Lemma A.1,

1
n
∑

i∈S∗
ZiZ′

i
p→ H.

By Lemma A.2,

Ĥ
√

n
(
β̂ − β

) = √
n

⎛⎝ 1
n
∑

i∈S∗
(ZiYi − ZiZ′

iβ)

⎞⎠ d→ N (0, J),

where we note that E[ZY − ZZ′β|W = 0, X = x] is Lipschitz. Hence,
√

n
(
β̂ − β

)

=

p→H−1︷︸︸︷
Ĥ−1 √

n

⎛⎝ 1
n
∑

i∈S∗
(ZiYi − ZiZ′

iβ)

⎞⎠
︸ ︷︷ ︸

d→N (0,J)

d→ N (0, H−1JH−1).

Proof of Proposition 3. We have that

Ĵs = 1
n
∑

i∈S∗
Zi(Yi − Z′

iβ̂)2Z′
i

= 1
n
∑

i∈S∗
Zi(Yi − Z′

iβ)2Z′
i

+ 1
n
∑

i∈S∗
Zi
(
(Yi − Z′

iβ̂)2 − (Yi − Z′
iβ)2

)
Z′

i .

Notice that

1
n
∑

i∈S∗
Zi
(
(Yi − Z′

iβ̂)2 − (Yi − Z′
iβ)2

)
Z′

i

= (β̂ − β)′
(

1
n
∑

i∈S∗
Zi(Z′

iZi)Z′
i(β̂ + β) − 2

1
n
∑

i∈S∗
Zi(Z′

iZi)Yi

)
.

By assumption, the functions

E[‖Z‖4|X = x, W = w] and E[|Y|4|X = x, W = w]
are uniformly bounded on Xw, for w = 0, 1. By Hölder’s inequality,

E

⎡⎣∥∥∥∥∥∥ 1
n
∑

i∈S∗
ZiZ′

iZiZ′
i

∥∥∥∥∥∥
⎤⎦ and E

⎡⎣∥∥∥∥∥∥ 1
n
∑

i∈S∗
ZiZ′

iZiY ′
i

∥∥∥∥∥∥
⎤⎦

are thus finite. Then, for ε ∈ (0, 1/2), by Markov’s inequality, we obtain

1
n
∑

i∈S∗
Zi((Yi − Z′

iβ̂)2 − (Yi − Z′
iβ)2)Z′

i

= n1/2−ε(β̂ − β)′
(∑

i∈S∗ Zi(ZiZ′
i)Z′

i/n
n1/2−ε

(β̂ + β)

−2
∑

i∈S∗ Zi(ZiZ′
i)Yi/n

n1/2−ε

)
p→ 0.

As a result,

Ĵs = 1
n
∑

i∈S∗
Zi(Yi − Z′

iβ)2Z′
i + op(1),

and the claim follows from Lemma A.1 in the supplementary appendix,
which deals with consistency of averages in matched samples.

Proof of Proposition 4. Under correct specification, we find that

�W(X) = E[Z(Y − Z′β)|W, X] = E[Zε|W, X]
= E[E[Zε|Z, W, X]|W, X] = E[Z E[ε|Z, W, X]︸ ︷︷ ︸

=0

|W, X] = 0.
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Proof of Proposition 5. First, note that

Ĵ = 1
n

∑
Wi=1

(
Zi(Yi−Z′

iβ) + ∑
j∈J (i) Zj(Yj−Z′

jβ)
)

(
Zi(Yi−Z′

iβ) + ∑
j∈J (i) Zj(Yj−Z′

jβ)
)′ +oP(1),

where we replace β̂ by β analogous to the proof of Proposition 3. Write

G = Z(Y − Z′β) �w(x) = E[Z(Y − Z′β)|W = w, X = x].
Note that �0(x) is Lipschitz on X , and that Gi has uniformly bounded
fourth moments. We decompose

Ĵ = 1
n

∑
Wi=1

(
Gi + ∑

j∈J (i)Gj
) (

Gi + ∑
j∈J (i)Gj

)′ + oP(1)

= 1
n

∑
Wi=1

(�1(Xi) + M�0(Xi)) (�1(Xi) + M�0(Xi))
′

+ 1
n
∑

i∈S∗

(
Gi−�Wi(Xi)

) (
Gi−�Wi(Xi)

)′
+ 1

n
∑

Wi=1

∑

 �=
′∈J (i)∪{i}

(
G
 − �W


(X
)
) (

G
′ − �W
′ (X
′)
)′

+ 1
n

∑
Wi=1

(
(�1(Xi) + M�0(Xi))

(
Gi − �1(Xi) + ∑

j∈J (i)(Gj − �0(Xj))
)′

+
(

Gi − �1(Xi) + ∑
j∈J (i)(Gj − �0(Xi))

)
(
�1(Xi) + M�0(Xj)

)′ ) + oP(1).

Here, the oP terms absorb the deviation due to using β̂ instead of β , as
well as the matching discrepancies in the conditional expectations. The
first sum is iid with

1
n

∑
Wi=1

(�1(Xi) + M�0(Xi)) (�1(Xi) + M�0(Xi))
′

p→ E
[
(�1(X) + M�0(X))(�1(X) + M�0(X))′|W = 1

]
1 + M

= var(

E[·|W=1]=0︷ ︸︸ ︷
�1(X) + M�0(X) |W = 1)

1 + M
,

while the second is a martingale with

1
n
∑

i∈S∗

(
Gi − �Wi(Xi)

) (
Gi − �Wi(Xi)

)′
p→

E[var(Z(Y − Z′β)|W = 1, X)

+Mvar(Z(Y − Z′β)|W = 0, X)|W = 1]
1 + M

by Lemma A.1 in the supplementary appendix, which establishes con-
sistency of averages in matched samples. Under appropriate reordering
of the individual increments, all other sums can be represented as aver-
ages of mean-zero martingale increments. Since the second moments of
the increments are uniformly bounded, they vanish asymptotically.

Proof of Proposition 6. In this proof, we invoke Proposition A.2 in the
supplementary appendix, which establishes a general result on the
validity of the matched bootstrap for averages within matched samples.
Write

Ĥ∗ = 1
n
∑

i∈S∗
VniZniZ′

ni.

Note first that

H−1√n(Ĥ∗(β̂∗ − β) − Ĥ(β̂ − β))

= H−1√n

(
1
n

n∑
i=1

(Vni − 1)Zni(Yni − Z′
niβ)

)
d→ N (0, H−1JH−1),

conditional on S , by Proposition A.2. Now,

√
n(β̂∗ − β̂) = (Ĥ∗)−1H(H−1√n(Ĥ∗(β̂∗ − β) − Ĥ∗(β̂ − β))

= (Ĥ∗)−1H︸ ︷︷ ︸
p→I

(H−1√n(Ĥ∗(β̂∗ − β) − Ĥ(β̂ − β)))

+ ((Ĥ∗)−1Ĥ − I)︸ ︷︷ ︸
p→O

√
n(β̂ − β)

d→ N (0, H−1JH−1),

conditional on S , where we have used that Ĥ∗ − Ĥ
p→ O conditional

on S .

Proof of Proposition 7. First, P(β̃∗ = β̂∗|S) ≥ P(‖Ĥ∗ − Ĥ‖ ≤
c

nα |S)
p→ 1 as n → ∞. Indeed, since Z has bounded conditional eighth

moments, we also have that E[‖ZZ′‖4|W = w, X = s] is uniformly
bounded in Xw. It follows with Proposition A.2 in the supplementary
appendix, which establishes the validity of the matched bootstrap, that

sup
r∈R(dim Z)2

∣∣P(
√

n vec(Ĥ∗ − Ĥ) ≤ r|S) − P(N (0, �H) ≤ r)
∣∣ p→ 0

as n → ∞ and thus in particular P(nα‖Ĥ∗ − Ĥ‖ ≤ c|S)
p→ 1 for all

α ∈ (0, 1/2), c > 0.

Second, since for Ã ∩ B = A ∩ B generally

|P(A) − P(Ã)| ≤ |P(A ∩ B) − P(Ã ∩ B)|︸ ︷︷ ︸
=0

+ |P(A ∩ Bc) − P(Ã ∩ Bc)|︸ ︷︷ ︸
≤P(Bc)

≤ 1 − P(B),

for (r) = P
(
N (0, H−1JH−1) ≤ r

)
we have specifically that

sup
r∈Rk

∣∣∣P (√
n(β̃∗ − β̂) ≤ r

∣∣∣S) − (r)
∣∣∣

≤ sup
r∈Rk

( ∣∣P (√
n(β̂∗ − β̂) ≤ r

∣∣S) − (r)
∣∣

+
∣∣∣P (√

n(β̂∗ − β̂) ≤ r
∣∣S) − P

(√
n(β̃∗ − β̂) ≤ r

∣∣∣S)∣∣∣︸ ︷︷ ︸
≤1−P(β̃∗=β̂∗|S)

)

≤ sup
r∈Rk

∣∣P (√
n(β̂∗ − β̂) ≤ r

∣∣S) − (r)
∣∣

︸ ︷︷ ︸
p→0

+ 1 − P(β̃∗ = β̂∗|S)︸ ︷︷ ︸
p→0

p→ 0.

This shows that this alternative bootstrap is valid in the sense of
Proposition 6.
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Third, for the bootstrap variance, we find

β̂∗ − β̂ = (
Ĥ∗)−1

⎛⎝ 1
n
∑

i∈S∗
VniZniYni − Ĥ∗β̂

⎞⎠
= (

Ĥ∗)−1 1
n
∑

i∈S∗
VniZni(Yni − Z′

niβ̂)

= Ĥ−1 1
n
∑

i∈S∗
VniZni(Yni − Z′

niβ̂)

︸ ︷︷ ︸
=�̂∗

+
((

Ĥ∗)−1 − Ĥ−1
) 1

n
∑

i∈S∗
VniZni(Yni − Z′

niβ̂)

︸ ︷︷ ︸
=R̂∗

.

Since 1
n
∑

i∈S∗ Zni(Yni − Z′
niβ̂) = 0 and thus nvar

(
1
n
∑

i∈S∗ VniZni

(Yni − Z′
niβ̂)

∣∣S) = Ĵ,

nvar
(
�̂∗∣∣S) = Ĥ−1nvar

⎛⎝ 1
n
∑

i∈S∗
VniZni(Yni − Z′

niβ̂)

∣∣∣∣∣∣S
⎞⎠ Ĥ−1

= Ĥ−1̂JĤ−1 p→ H−1JH−1,

which is a valid estimate of the asymptotic variance of β̂ . However, the
remainder term R̂∗ generally does not have a bounded second moment
since Ĥ∗ is badly conditioned for some bootstrap draws.

To show that β̃∗ yields valid standard errors, we collect a number
of preliminary results. Consider the random variables �̂∗ and �̃∗ =
�̂∗1nα‖Ĥ∗−Ĥ‖≤c.

√
n�̂∗ converges in distribution to N (0, �) with

� = H−1JH−1, conditional on S , by Proposition A.2. Since P(�̃∗ =
�̂∗|S)

p→ 1, the same holds true for
√

n�̃∗ by the above argument.
Also, we have established that

E
(√

n�̂∗∣∣S) = 0, var
(√

n�̂∗∣∣S) p→ �

and thus E[n‖�̂∗‖2|S] p→ tr(�). Since E[n‖�̃∗‖2|S] ≤
E[n‖�̂∗‖2|S], and n‖�̃∗‖2 and n‖�̂∗‖2 have the same weak limit
(with expectation tr(�)) by the continuous mapping theorem,
E[n‖�̃∗‖2|S] p→ tr(�) by Proposition A.3 in the supplementary
appendix. Consequently,

E[n‖�̂∗‖2|S] − E[n‖�̃∗‖2|S] = P(nα‖Ĥ∗−Ĥ‖
> c|S) E[n‖�̂∗‖2|nα‖Ĥ∗−Ĥ‖ > c,S] p→ 0. (A.3)

Next, note that for conformable random variables A, B if
var(A|S)

p→ �, E[‖B‖2|S] p→ 0 then var(A + B|S)
p→ �.

Indeed,

|(var(A + B|S) − var(A|S))ij| = |cov(Ai, Bj|S)

+ cov(Aj, Bi|S) + cov(Bi, Bj|S)|
≤ √

var(Ai|S)
√

var(Bj|S) +
√

var(Aj|S)
√

var(Bi|S)

+ √
var(Bi|S)

√
var(Bj|S)

p→ 0.

Hence, setting A = √
n�̂∗ and B = √

n(β̃∗ − β̂ − �̂∗), to establish the
desired result var(

√
n(β̃∗− β̂)|S)

p→ H−1JH−1 it suffices to show that

E
[

n‖β̃∗ − β̂ − �̂∗‖2
∣∣∣S] p→ 0 (A.4)

as n → ∞.

Toward establishing (A.4), note first that whenever nα‖Ĥ∗−Ĥ‖ ≤ c
then also

‖(Ĥ∗)−1 − Ĥ−1‖ = ‖(Ĥ∗)−1(Ĥ − Ĥ∗)Ĥ−1‖
≤ ‖(Ĥ∗)−1‖ ‖Ĥ − Ĥ∗‖ ‖Ĥ−1‖
≤ λ−1

min(Ĥ∗) λ−1
min(Ĥ) ‖Ĥ − Ĥ∗‖ dim(Z),

where

λmin(Ĥ∗) = λmin(Ĥ + Ĥ∗ − Ĥ) = min‖x‖=1
x′(Ĥ + Ĥ∗ − Ĥ)x

≥ min‖x‖=1
x′Ĥx + min‖x‖=1

x′(Ĥ∗ − Ĥ)x

≥ λmin(Ĥ) − ‖Ĥ∗ − Ĥ‖

and thus

‖(Ĥ∗)−1 − Ĥ−1‖
≤ (λmin(Ĥ) − ‖Ĥ∗ − Ĥ‖)−1 λ−1

min(Ĥ) ‖Ĥ∗ − Ĥ‖ dim(Z)

≤ (λmin(Ĥ) − cn−α)−1 λ−1
min(Ĥ) cn−α dim(Z). (A.5)

If follows that

E
[

n‖β̃∗ − β̂ − �̂∗‖2
∣∣∣∣S]

= P(nα‖Ĥ∗ − Ĥ‖ ≤ c|S) E[n‖
=β̂∗︷︸︸︷
β̃∗

− β̂ − �̂∗‖2|nα‖Ĥ∗ − Ĥ‖ ≤ c,S]

+ P(nα‖Ĥ∗ − Ĥ‖ > c|S) E[n‖ β̃∗︸︷︷︸
=β̂

− β̂ − �̂∗‖2|nα‖Ĥ∗ − Ĥ‖ > c,S]

= P(nα‖Ĥ∗ − Ĥ‖ ≤ c|S)

E[n
≤‖(Ĥ∗)−1−Ĥ−1‖2‖ 1

n
∑

i∈S∗ VniZni(Yni−Z′
niβ̂)‖2︷ ︸︸ ︷

‖R̂∗‖2 |

nα‖Ĥ∗ − Ĥ‖ ≤ c,S]

+ P(nα‖Ĥ∗ − Ĥ‖ > c|S) E[n‖�̂∗‖2|nα‖Ĥ∗ − Ĥ‖ > c,S]
(A.5)≤ ( λmin(Ĥ)︸ ︷︷ ︸

p→λmin(H)>0

−cn−α)−1 λ−1
min(Ĥ) cn−α dim(Z)

P(nα‖Ĥ∗ − Ĥ‖ ≤ c|S) E[‖n−1/2∑
i∈S∗VniZni

(Yni − Z′
niβ̂)‖2|nα‖Ĥ∗ − Ĥ‖ ≤ c,S]︸ ︷︷ ︸

≤E[‖ 1√
n
∑

i∈S∗ VniZni(Yni−Z′
niβ̂)‖2|S]=tr(̂J)

p→tr(J)

+ P(nα‖Ĥ∗ − Ĥ‖ > c|S) E[n‖�̂∗‖2|nα‖Ĥ∗ − Ĥ‖ > c,S]︸ ︷︷ ︸
(A.3)

p→ 0

p→ 0.

Hence, var(
√

n(β̃∗ − β̂)|S) and var(
√

n�̂∗|S) have the same proba-
bility limit H−1JH−1, which is also the asymptotic variance of β̂ .
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Supplementary Materials

The supplementary appendix contains proofs of intermediate results and
extensions.
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