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1. INTRODUCTION
This article revisits a familiar problem: the use of fixed effects models to facili-
tate causal inferences in longitudinal research. Motivating this reexamination
is a series of important policy studies in education. Such studies might aim
to assess the impact on student learning of certain teacher characteristics or
instructional practices, the impact on students of attending private schools or
charter schools, and the impact of new regulations governing school organi-
zation, resources, or incentives.

Educational policy studies of this kind commonly have a complex sample
design. Repeatedly observed students will typically be moving across class-
rooms and teachers within a school over time, and they will often be migrating
across schools or even districts over time as well. The interventions of in-
terest are often defined at the teacher, school, or district level. The question
then arises as to whether the fixed effects specification as described in clas-
sic econometric texts is the optimal specification for statistical inference. My
conclusion is that we can realize the benefits of the fixed effects specification
while overcoming some of its limitations by using an approach I call “adaptive
centering with random effects.” A brief review of relevant statistical history
and current educational applications sets the stage for the argument.

Statistical History

In foundational papers on the advantages of fixed effects analysis in longitu-
dinal data (Hausman 1978; Mundlak 1978), the design of interest involves the
collection of up to T longitudinal measurements on each of n units. These units
might be persons, firms, states, or countries. During the time period of inter-
est, some or all of these units are subject to an intervention or “treatment,” and
the aim is to assess the impact of this treatment on the continuous outcome yti

observed on unit i at time t for i ∈ (1, . . . , n); t ∈ (1, . . . , Ti ). Some authors have
referred to such a design as an “interrupted time series” (Campbell and Stanley
1963). Its beauty derives from the fact that the same unit is observed under two
or more treatment conditions; thus unobserved time-invariant characteristics
of the units can be removed from the estimated treatment effect.

The Fixed Effects Model

A simple model for such data is

yti = βxti + ui + eti (1)

where xti is the treatment status or “dosage,” β captures the association be-
tween the treatment and the outcome, ui is a fixed effect that represents
the combined effect of all time-invariant influences on the outcome, and eti
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is a zero-mean stochastic error term that varies over time within units but
not between them. The fixed effects approach absorbs the impact of the ui

by including dummy variables for each unit. It is therefore not necessary to
assume away the influence of time-invariant, unit-specific confounding vari-
ables. Two key assumptions then identify β as a causal effect: a functional form
assumption requires that the causal effect of interest is linear in xti and an
assumption of no time-varying confounding, that is, E (εti | xti ) = E (eti ) = 0.

The assumption of no time-varying confounding can be relaxed by including
measured time-varying covariates, though problems arise if such covariates are
both outcomes of previous treatments and predictors of exposure to later treat-
ments. Robins (2000) has developed methods for handling such time-varying
confounders; Hong and Raudenbush (2008) have extended these methods to
multilevel data. I do not consider time-varying confounders in detail in the
current article.

The Random Effects Model

The standard alternative model is the random effects model, which adds an
intercept θ to equation 1 and then regards the unit-specific effect ui as randomly
varying across a population of units:

yti = θ + βxti + ui + eti , (2)

where ui is now a zero-mean random variable. As Hausman (1978) noted,
one advantage of the random effects approach is that it can make use of more
information than can the fixed effects approach in estimating the treatment
effect. Suppose, for example, that some units were randomly assigned to
receive the same dosage of the treatment at every time point. The fixed effects
approach would effectively drop such units from the analysis; the impact of
the treatment on those units would be absorbed into the fixed effects ui . In
contrast, the random effects approach would exploit this information about the
treatment effect. The random effects approach is also more flexible than the
fixed approach in allowing the analyst to simultaneously study time-invariant
interventions in terms of main effects and interactions with xti . Finally, it is
straightforward to incorporate heterogeneity of treatment effects using random
coefficients within the random effects approach (see Raudenbush and Bryk
2002 for a review).

However, these advantages of the random effects approach come at a price.
Under the random effects model, one must assume that mean of ui does not
depend upon xti : E (ui | xti ) = E (ui ) = 0. Therefore if any characteristic of unit
i that is associated with the outcome also predicts access to the treatment, that
characteristic must be observed and included in equation 2. Effectively, one
must assume that all unobserved confounding variables are independent of
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treatment status once the observed confounders are controlled. The beauty of
the fixed effects specification 1 is that it does not require this strong assumption:
all time-invariant influences, including those not observable, are removed from
the error.

A question arising naturally from this literature is whether it is possible to
enjoy the best of both worlds: can we reap the key benefit of the fixed effects
approach in eliminating time-invariant confounding while also incorporating
some of the benefits of the random effects approach? We won’t be able to
buy the efficiency of the random effects approach without adding the key
assumption of no unobserved time-invariant confounding. But perhaps we
can incorporate the other benefits: multilevel treatments and treatment effect
heterogeneity. This reasoning lays part of the basis for using adaptive center-
ing with random effects. There is, however, an additional rationale: assuring
that the error structure of the model correctly reflects the clustered nature of
educational data.

Recent Educational Applications

During the past decade, there has been an explosion of interest in using longi-
tudinal test score data to study the effects of educational resources, practices,
and policies. In large part, this exciting new genre of research is now possible
because more and more states and school districts, responding to demands
for accountability, have assembled sophisticated longitudinal data systems
that annually test students and track them as they move across classrooms and
schools. For example, Clotfelter, Ladd, and Vigdor (2007a, 2007b) used longi-
tudinal data from North Carolina to study the impact of teacher qualifications
and the distribution of teacher qualifications by race. Bifulco and Ladd (2006)
used North Carolina data to study the impact of attending a charter school.
Chicago’s longitudinal data system has supported studies of remedial educa-
tion policies (Jacob and Lefgren 2004a), teacher training (Jacob and Lefgren
2004b), high-stakes testing in elementary schools (Neal and Schanzenbach,
in press) and in high schools (Roderick and Nagoka 2005). Harris and Sass
(2008) exploited longitudinal data from Florida to study teacher certification.
Hanushek, Kain, and Rivkin (2004) used Texas data to study student mobility
and a variety of other policies (see review by Hanushek and Rivkin 2006).

Applications of this type typically involve a nested structure that is not
explicitly represented in the statistical model. For example, in studies of the
impact of qualifications of elementary school teachers, the treatment variable
xti will take on the same value for every student who shares membership
in the same classroom in a given year. In a study of the impact of charter
schools, the identification strategy is typically to use school fixed effects in
order to isolate the within-student impact of moving from a charter school to
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a non-charter school or back again. However, the students attending a given
school at a given time create a cluster that is not represented in the model. In a
time series of repeated cross sections of students, a collection of students will
typically be clustered in classrooms within schools at a given time; the aim is
to study changes in a school mean (or adjusted mean) over time as a function
of changes in school policy or practice (Paterson 1991). Such a design has four
levels (students, classrooms, schools, time) that may or may not be reflected
in the model.

It is common to use Huber-White corrected standard errors to reflect
the statistical dependence that arises from aspects of clustering that are not
represented in the model (White 1980). However, this is often difficult. For
example, in a study of students moving across schools, any student can, in
principle, attend a school attended by another student who previously attended
any other school. The result is that the vector of residuals for any student is
potentially correlated with the vector of residuals of every other student, a fact
that makes computation of the Huber-White standard errors daunting given
the massive sample sizes of these studies.

A final characteristic of recent longitudinal policy studies in education is
a perceived need to control for two or more dimensions of fixed effects. For
example, in a study of the impact of teacher characteristics, one might want to
control for school fixed effects as well as child fixed effects. The same is true in
a study of students moving across schools, for example, a study of the impact
of charter schools. When a study involves hundreds of thousands of students
and hundreds or even thousands of schools, the computational complexity
may become burdensome.

It would be ideal if one could devise a general analytic approach that, like
the fixed effects approach, can absorb the contribution of unobserved, time-
invariant confounding while also explicitly reflecting the clustered design of
the sample and enabling efficient computation. Also, building on the historical
discussion of the previous section, it would be good if certain benefits of the
random effects model could be combined with the known benefits of the
fixed effects model. In particular, it would be good to allow treatments (or
explanatory variables) at multiple levels and to have a natural way to incorporate
treatment effect heterogeneity.

Claims

The article makes several claims:

1. By adaptively centering the treatment variable within the framework of a
random effects model, it is possible to replicate the results of the fixed
effects analysis. The replication is exact in the case of balanced data.
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When the data are unbalanced, point estimates of treatment effects are
identical to those of the fixed effects approach, while standard errors
are slightly different in small samples while converging with the sample
size.

2. Adaptive centering with random effects can naturally incorporate multiple
sources of clustering that arise in educational data. By better reflecting the
data collection design, the aim here is to obtain more efficient inference
and more realistic standard errors.

3. The approach naturally extends to settings in which there are multiple
treatments of interest and where these treatments vary at different levels.
For example, one might be interested in whether the benefits of teacher
knowledge are the same in public and private schools in a setting where
school sector (public versus private) is time invariant.

4. The approach naturally extends to incorporate heterogeneity of treatment
effects using random coefficients.

5. The computations are relatively straightforward.

Organization

Section 2 of this article provides a heuristic motivation for the approach based
on relevant literature, while section 3 illustrates how the approach works in
the context of a simple hypothetical data set with known parameters. Section 4
then proposes a general linear model with an arbitrary number of levels of clus-
tering. That section presents efficient estimators and standard errors within
the framework of maximum likelihood. It then illustrates how the approach
works with one dimension of confounding (e.g., time-invariant student-level
confounders) and two dimensions of confounding (e.g., time-invariant student
and school confounding). Extensions to an arbitrary number of dimensions of
confounding follow straightforwardly.

2. HEURISTIC MOTIVATION
In this section, I show how adaptive centering with random effects is linked
to familiar ideas in fixed effects, conventional ordinary least squares (OLS)
regression, and hierarchical linear models. In general, the aim is to decom-
pose a statistical association into its within- and between-context components.
Allison (2005) provides a more extensive discussion.

Centering in the Fixed Effects Model

One of the difficulties in estimating the parameters of the fixed effects model
(equation 1) arises when there are many persons and few time points per per-
son. That is, n is large but T is small. It would be awkward or even impossible
to include a dummy variable for each person because such an approach might
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involve thousands or even hundreds of thousands of parameters. Therefore,
statistical packages exploit centering to perform the computations. We note
that the person-specific mean of equation 1 is

ȳi = β x̄i + ui + ē i , (3)

where ȳi , x̄i , ē i are the person-specific means of yti , xti , eti , respectively. Sub-
tracting equation 3 from equation 1 yields

yti − ȳi = β(xti − x̄i ) + eti − ē i , (4)

revealing that the fixed effects estimate of β can be obtained by OLS where
the centered outcome is regressed on the centered predictor. Standard errors
and significance tests must be corrected for the loss of degrees of freedom
(centering of the outcome induces correlations within persons among the
errors eti − ē i ), but such corrections are trivial computationally.

Decompositions of Associations within and between Levels

The coefficient β represents the within-person association between x and y.
The between-person association can be obtained from the regression of “means
on means”:

ȳi = α + βb x̄i + ē i . (5)

Here βb represents the between-person coefficient. Note that if βb = β—that
is, if the within and between coefficients are equal—the random effects model
(equation 2) is justified: the between-person and the within-person information
can be exploited to generate a more efficient estimate of β than is possible using
the within-person information alone, as in the case of the fixed effects model.
Therefore a specification test for the appropriateness of the random effects
model would be a test of H0 : βb = β.

Substituting equation 5 back into equation 4 then yields the contextual
effects model (Firebaugh 1978; see Willms’s 1986 review of applications):

yti = α + βb x̄i + β(xti − x̄i ) + eti = α + (βb − β)x̄i + βxti + eti . (6)

Equation 6 suggests that a test of the x̄i in a linear model that controls for xti

is actually a specification test for the random effects model. However, such a
test will generally be inaccurate because it assumes that all variation between
persons is accounted for by x̄i . This problem is readily solved by the insertion
of the random effect, yielding

yti = α + βb x̄i + β(xti − x̄i ) + ui + eti

= α + (βb − β)x̄i + βxti + ui + eti .
(7)
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So testing the coefficient for x̄i when xti is controlled within the random effects
model tests the random effects specification. Although such a specification
test is valid, Hausman (1978) suggested a potentially more powerful test of the
random effects specification. Neuhaus and McCulloch (2006) show that the
decomposition of the association between x and y as shown in equation 7 not
only removes bias in estimating β in linear models but also greatly reduces bias
in generalized linear models with random effects. Such models are useful for
binary outcomes, counts, waiting times, and other limited dependent variables
where nonlinear functions relate the mean of the outcome to a linear model.

In sum, we now have reviewed two ways to identify the within-person coef-
ficient β: use a fixed effects model, which can be implemented by centering the
outcome and predictor as in equation 4, or use a random effects model in which
we control x̄i to “protect” ui from an association with xti (see Raudenbush and
Bryk 2002, chapter 5, for a thorough discussion and examples) as in equation 7.

The left-hand side of equation 7, however, suggests a third way: in the
model yti = α + βb x̄i + β(xti − x̄i ) + ui + eti , it is really not essential to control
x̄i because x̄i is orthogonal to (xti − x̄i ). The third way to identify β, then, is
to estimate a random effects model in which the predictor xti is adaptively
centered (that is, centered cluster by cluster), in this case around x̄i :

yti = α + β(xti − x̄i ) + ui + eti . (8)

One may reason that controlling for x̄i as in equation 7 does not hurt and may
help, so why eliminate x̄i as in equation 8? Controlling for x̄i is reasonable as
long as the model includes one or just a few covariates, x. However, in many
applications the number of covariates will increase, and it often becomes
burdensome to control multiple means because these means may be highly
intercorrelated. The inclusion of x̄i in the model is, however, always an option
and can easily be applied using the methods described below.

The simple example in the next section suggests that inferences about β

in equation 8 based on normal distribution and maximum likelihood are in
fact identical to those based on the fixed effects model 1 in the case of balanced
data. For unbalanced data, the point estimates are identical, while the standard
errors may differ negligibly in small samples. Section 4 provides a technical
justification for this approach and shows how the concept of adaptive centering
can be generalized to research designs with the complex forms of nesting that
typically arise in large-scale studies in education.

3. A SIMPLE ILLUSTRATIVE EXAMPLE
To illustrate the adaptive centering approach, consider the hypothetical data
set in table 1. We have twenty children, I = 1, . . . , n = 20 (rows of the table),
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Table 1. Outcome Data for 20 Hypothetical Children by 9 Teachers Nested with 3 Schools

School 1 School 2 School 3

Teacher 1 2 3 4 5 6 7 8 9

x −1 0 1 −1 0 1 −1 0 1

w Child

0 1 −2.4102 2.4628 6.2245

1 2 3.6396 4.1441 11.0898

1 3 2.1827 10.1339 12.3134

0 4 −3170 3.6596 4.8397

0 5 −.0727 1.6280 6.0525

0 6 −2.7852 1.4795 10.0131

0 7 .2350 6.0839 7.5142

0 8 −.8803 3.5167 9.7337

0 9 −1.5147 5.8636 10.2860

0 10 2.6814 7.6954 10.0192

1 11 4.4966 9.5578 11.1152

1 12 4.7195 8.2204 14.6855

1 13 4.3609 12.6474 16.8547

1 14 4.7778 11.9663 18.3998

1 15 8.5264 12.9066 18.6272

1 16 8.6820 11.8265 17.0661

1 17 9.5595 13.8078 16.3071

1 18 5.6075 12.7943 21.075

1 19 8.9094 13.5301 20.049

0 20 6.3465 7.3268 11.5147

each observed on three occasions (T = 3), with one occasion in each of three
schools, k = 1, 2, K = 3 (see the three major columns). Nested within each
school are three teachers, j = 1, . . . , Jk = 3, so there are nine teachers over
all. The treatment variable x ∈ {−1, 0, 1} is a teacher characteristic, though it
varies within children as they move across schools. This simple data set has
the basic structure of the data used in many important educational policy
studies reviewed above: students flow across teachers and schools over time;
as they do, they encounter varied “treatments” (our x). The goal is to exploit
the longitudinal character of the data such that within-student variations in
treatment are linked to within-student variations in the outcome.

I generated these data in such a way that the assumptions of the con-
ventional random effects model would be violated. Specifically, the outcome
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variable depends strongly on characteristics of children and of schools that the
analyst cannot observe and that are correlated with the treatment variable x.
More specifically, I generated the data according to the model

yti j k = θ + βxtik + ui + sk + εti j k (9)

where

ui = γwi + φ(childid)i

sk = δ(schoolid − 2)k

with

θ = 0; β = 2; γ = 5; δ = 4; φ = .5; εti j k ∼ N(0, 1).

The errors ε are mutually independent and independent of the other elements
of the model.

In this scenario, wi is unobserved, and the researcher is unaware of the
fact that linear functions of childid and schoolid contribute to the outcome. The
central aim is to estimate β = 2 using the observed y, x, childid, schoolid. The
fact that child and school effects are correlated with treatment x invalidates the
assumption of the standard random effects model when ui , sk are regarded as
random—that is,

E (yti j k | xtik) = θ + βxti + E (ui + sk | xtik)

= θ + βxtik + E (ui + sk) (10)

= θ + βxtik.

The failure of assumption 10 implies that estimation of the random effects
model will produce a biased estimate of β.

One-Dimensional Confounding

One-Dimensional Fixed Effects Model

Suppose first that the analyst wishes to control for time-invariant child differ-
ences but ignores the possibility of time-invariant school-level confounding.
Therefore this analyst fits model 1, yielding the estimates in table 2. The esti-
mate β̂ = 5.498, s e = 0.856 is far off the mark of β = 2, reflecting the failure
to control for school-level confounding.

Adaptive Centering with Random Effects

As an alternative, consider the random effects model (equation 8) that
uses adaptive centering of x around the student mean. We add normality
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Table 2. One-Dimensional Control: OLS Fixed Child Effects

yti j k = θ + βxti k + ui + εti j k, εti j k ∼ N (0, σ 2),

ui , i = 1, . . . , 19 fixed

Estimates of Fixed Effects

Parameter Estimate Std. Error t Sig.

Intercept 13.894087 2.217045 6.267 .000

x 5.498095 .865904 6.350 .000

[childid=1.00] −17.299841 3.366029 −5.140 .000

[childid=2.00] −11.268353 3.227033 −3.492 .001

[childid=3.00] −9.349477 3.227033 −2.897 .006

[childid=4.00] −14.832045 3.227033 −4.596 .000

[childid=5.00] −11.358169 3.013434 −3.769 .001

[childid=6.00] −12.825538 3.108690 −4.126 .000

[childid=7.00] −11.115732 3.108690 −3.576 .001

[childid=8.00] −9.770723 3.013434 −3.242 .002

[childid=9.00] −9.015820 3.013434 −2.992 .005

[childid=10.00] −12.593491 3.366029 −3.741 .001

[childid=11.00] −.006149 2.886346 −.002 .998

[childid=12.00] −1.020260 2.900742 −.352 .727

[childid=13.00] −.773729 2.943507 −.263 .794

[childid=14.00] −2.179455 3.013434 −.723 .474

[childid=15.00] −2.373398 3.108690 −.763 .450

[childid=16.00] .463474 2.943507 .157 .876

[childid=17.00] −.669300 3.013434 −.222 .825

[childid=18.00] 1.097582 2.943507 .373 .711

[childid=19.00] .268870 3.013434 .089 .929

[childid=20.00] 0(a) 0 . .

Estimates of Covariance Parameters

Parameter Estimate

σ 2 12.496491

assumptions ui ∼ N(0, τ 2), εti ∼ N(0, σ 2) to facilitate maximum likelihood
estimation (table 3). Inferences regarding β are identical to those based on
the fixed effects model (table 2) with no centering of x. A question of in-
terest in the next section will involve when and why these equivalences will
hold.

478



Stephen W. Raudenbush

Table 3. One-Dimensional Control: Child Random Effects with Person-Mean Centered x

yti j k = θ + β(xtik − x̄i ) + ui + εti j k , εti j k ∼ N(0, σ 2),

ui ∼ N(0, τ 2)

Note that this gives the same coefficient, standard error, and residual variance estimate as
the student fixed effects model.

Estimates of Fixed Effects

Parameter Estimate Std. Error df t Sig.

Intercept 8.029549 .927088 19 8.661 .000

(xti k − x̄i ) 5.498095 .865904 39.000 6.350 .000

Estimates of Covariance Parameters

Parameter Estimate

σ 2 12.496491

τ2 13.024353

Two-Dimensional Confounding

Two-Dimensional Fixed Effects Model

Now suppose that the analyst decides to control for time-invariant school-
level differences as well as for time-invariant child differences using the two-
dimensional fixed effects model. The estimates are given in table 4. We see that
β̂ = 2.57, s e = 0.288 is now within the vicinity of the true β = 2, reflecting
the benefit of controlling for unobserved school-level confounding in addition
to unobserved student-level confounding.

Adaptive Centering with Random Effects

Now consider the alternative random effects model with two dimensional
centering:

yti j k = θ + β(xtik − x̄i − x̄k + x̄) + ui + sk + εti j k (11)

where

ui ∼ N(0, τ 2), sk ∼ N(0, ω2), εti j k ∼ N(0, σ 2),

x̄i =
3∑

t=1

xtik/3, x̄k =
20∑

i=1

xtik/20.

Equation 11 is a “cross-classified random effects model” (Raudenbush and Bryk
2002, chapter 12) in which time series observations are regarded as crossed by
random levels of students and schools. Inferences (table 5) based on maximum
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Table 4. Two-Dimensional Controls: OLS Fixed Child and School Effects

yti j k = θ + βx j + ui + sk + εti j k, εti j k ∼ N (0, σ 2),

ui , i = 1, . . . , 19 fixed

sk = 1, 2 fixed

Estimates of Fixed Effects

Parameter Estimate Std. Error df T Sig.

Intercept 14.642231 .630345 37 23.229 .000

X 2.573106 .287937 37 8.936 .000

[childid=1.00] −11.449864 .998365 37 −11.469 .000

[childid=2.00] −6.393372 .946257 37 −6.756 .000

[childid=3.00] −4.474496 .946257 37 −4.729 .000

[childid=4.00] −9.957064 .946257 37 −10.523 .000

[childid=5.00] −8.433180 .864876 37 −9.751 .000

[childid=6.00] −8.925554 .901385 37 −9.902 .000

[childid=7.00] −7.215747 .901385 37 −8.005 .000

[childid=8.00] −6.845734 .864876 37 −7.915 .000

[childid=9.00] −6.090831 .864876 37 −7.042 .000

[childid=10.00] −6.743514 .998365 37 −6.755 .000

[childid=11.00] −.006149 .815539 37 −.008 .994

[childid=12.00] −.045263 .821167 37 −.055 .956

[childid=13.00] 1.176263 .837825 37 1.404 .169

[childid=14.00] .745534 .864876 37 .862 .394

[childid=15.00] 1.526586 .901385 37 1.694 .099

[childid=16.00] 2.413467 .837825 37 2.881 .007

[childid=17.00] 2.255688 .864876 37 2.608 .013

[childid=18.00] 3.047574 .837825 37 3.637 .001

[childid=19.00] 3.193858 .864876 37 3.693 .001

[childid=20.00] 0(a) 0 . . .

[schoolid=1.00] −7.679293 .367143 37 −20.916 .000

[schoolid=2.00] −3.340106 .347120 37 −9.622 .000

[schoolid=3.00] 0(a) 0 . . .

Estimates of Covariance Parameters

Parameter Estimate

σ 2 .997655
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Table 5. Two-Dimensional Controls: Random Child and School Effects with
Interaction-Contrast Centering

yti j k = θ + βxti k + ui + sk + εti k,

εti k ∼ N (0, σ 2)

ui ∼ N (0, τ2),

sk ∼ N (0, ψ2)

Estimates of Fixed Effects

Parameter Estimate Std. Error t Sig.

Intercept 8.029463 2.851520 2.816 .083

xti k − x̄i − x̄k + x̄ 2.573106 .287937 8.936 .000

Estimates of Covariance Parameters

Parameter Estimate

σ 2 .997655

τ2 16.857298

ψ2 21.815022

likelihood regarding β are identical to those based on the two-dimensional fixed
effects model (table 4) with no centering of x.

A Richer Class of Models

The results of this hypothetical example suggest that adaptive centering of
treatment indicators with random effects can replicate the fixed effects esti-
mates in any dimension. In fact, within the random effects framework, a richer
class of models can be estimated.

Accounting for Uncertainty

For example, it is possible to estimate a random effect for each teacher in the
context of our example:

yti j k = θ + β(xtik − x̄i − x̄k + x̄) + ui + c j (k) + sk + εti j k (12)

where we add the additional classroom random effect c j (k) ∼ N(0, ψ2). Speci-
fication of this random effect allows the analysis to incorporate uncertainty as-
sociated with classrooms, presumably providing more realistic standard errors
than when such clustering is ignored. An alternative method for obtaining con-
sistent standard errors is the Huber-White approach (White 1980). However,
that approach would require multiplying the vector of residuals of every stu-
dent with the vectors of residuals of every other student, given that the mobility
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of students over schools and teachers induces covariances of residuals across
all students. This would be computationally difficult in large applications.

Heterogeneous Treatment Effects

It is straightforward within the random effects framework to allow random
coefficients. Consider the model

yti j k = θ + u0i + s0k + c0 j (k)

+ (β + u1ik + s1k)(xtik − x̄i − x̄k + x̄) + εti j k
[

u0i

u1ik

]
∼ N

[(
0

0

)
,

(
τ00 τ01

τ10 τ11

)]
(13)

[
s0k

s1k

]
∼ N

[(
0

0

)
,

(
ω00 ω01

ω10 ω11

)]

c j (k) ∼ N(0, ψ2)

εti j k ∼ N(0, σ 2).

The variance components τ11, ω11 parameterize the heterogeneity of the treat-
ment effect across children and schools.

Multilevel Factorial Designs

We can also readily extend the random effects approach to incorporate multi-
level treatments and cross-level interactions. Consider the case of a between-
school characteristic or treatment that interacts with x:

yti j k = θ + u0i + s0k + c0 j (k) + (
β + u1ik + s1k

)(
xtik − x̄i − x̄k + x̄

)

+ γ0wk + γ1wk ∗ (
xtik − x̄i − x̄k + x̄

) + εti j k

[
u0i

u1ik

]
∼ N

[(
0

0

)
,

(
τ00 τ01

τ10 τ11

)]
(14)

[
s0k

s1k

]
∼ N

[(
0

0

)
,

(
ω00 ω01

ω10 ω11

)]

c j (k) ∼ N(0, ψ2)

εti j k ∼ N(0, σ 2).

In this case γ0 is the main effect of the between-school predictor w and γ1 is
the cross-level interaction effect. Such specifications are not possible within
the fixed effects framework.
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4. GENERAL STATISTICAL APPROACH
Let us now consider a general linear mixed model that can incorporate any
number of levels. For example, we might have students within schools within
districts in a cross-sectional study or repeated measures on students who are
cross classified by teachers within schools within districts. My aim is to derive
a general adaptive centering estimator that can remove confounding from
one or more sources of nesting, as is done in fixed effects models, while also
accurately reflecting the multilevel structure of the data and affording the
flexible features of the random effects model. After doing so, I will show the
form these estimators take in the case of one dimension of confounding and
two dimensions of confounding.

The General Model

Let us then consider the linear model

Y = 1θ + X̃β + Ab + e, b ∼ N(0,�), e ∼ N(0, V∗), (15)

where Y is a vector of outcomes; θ is a fixed, unknown intercept; β is a vector
of unknown fixed regression coefficients; b and e are vectors of unknown ran-
dom effects; 1 is a column vector with every element equal to unity; X̃ and A
are known design matrices dimensioned conformably, where A is composed
of elements 1 or 0 such that each element of the random effect vector b is
assigned the correct unit; and � and V

∗
are positive definite covariance matri-

ces, considered known. The assumption that the covariance components are
known is not realistic, but we will be interested here in asymptotic properties;
as the covariance component estimators converge to the true parameters, the
results in this section will hold approximately. The covariance matrix of the
outcome is given by

Var (Y) = V = A�AT + V∗. (16)

Without loss of generality, we shall center the covariates in X̃ around their
sample means:

X = X̃ − 1(1T V−11)−11T V−1X̃. (17)

As a result 1T V−1X = 0, and the maximum likelihood estimator of the coeffi-
cients of interest has the familiar generalized least squares form

β̂ = (XT V−1X)−1XT V−1Y. (18)

(In practice, “grand mean centering” of X̃ will not be needed because adaptive
centering as described below will insure that the overall sample mean of the
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covariate matrix will be null. However, grand mean centering as equation 17
simplifies the exposition below.)

A key assumption for this random effects model is that of no association
between the random effects b or e and the predictors, X, in which case

E (β̂ | X) = (XT V−1X)−1XT V−1 E [Y | X]

= β + (XT V−1X)−1XT V−1[AE (b | X) + E (e | X)]

= β + (XT V−1X)−1XT V−1[AE (b) + E (e)]

= β.

(19)

We may be willing to stipulate independence of e and X so that E (e | X) =
E (e) = 0 but not the independence of b and X. So equation 19 is not generally
applicable.

Definition

Let us define the adaptively centered design matrix

X∗ = X − A(AT V∗−1A)−1AT V∗−1X (20)

and reformulate our model 15 as

Y = 1θ + X∗β + Ab + e, b ∼ N(0,�), e ∼ N(0, V∗). (21)

Theorem

The maximum likelihood estimator of β and its covariance matrix will be

β̂ = (X∗T V∗−1X∗)−1X∗T V∗−1Y, Var(β̂) = (X∗T V∗−1X∗)−1, (22)

where E (β̂ | X∗) = β even if X is correlated with b.

Proof

We know that V−1 = V∗−1 − V∗−1A(AT V∗−1A + �−1)−1AT V∗−1 (Lindley and
Smith 1972). Therefore

β̂ = [X∗T V∗−1X − X∗T V∗−1A(AT V∗−1A + �−1)−1AT V∗−1X]−1

∗ X∗T V∗−1Y − X∗T V∗−1A(AT V∗−1A + �−1)−1AT V∗−1Y. (23)

However, given the adaptive centering definition (20),

AT V∗−1X∗ = AT V∗−1[X − A(AT V∗−1A)−1AT V∗−1X] = 0
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Hence equation 22 will hold and

E (β̂ | X∗) = β + (XT V∗−1X)−1XT V∗−1AE (b | X∗) = β. (24)

I will show in the next sections how to solve these equations in the case of
one-dimensional confounding (e.g., confounding of time-invariant child ef-
fects) and two-dimensional confounding (e.g., time-invariant child and school
effects). The approach extends, of course, to multiple dimensions of confound-
ing. We consider an arbitrary number of levels of nesting and crossing.

One-Dimensional Confounding

Let us now consider the case in which there is an L-level nested structure
with a treatment variable defined at level L-1. The aim is to remove confound-
ing associated with level L of the model. In the conventional random effects
model (Mundlak 1978) we have L = 2, where the first level (L = 1) involves
repeated measures nested within the second level (L = 2)—for example, chil-
dren. However, we might have repeated cross sections of students (level 1) who
are nested within classrooms (level 2) within waves of data collection (level 3)
within schools (level 4) where the treatment varies over time within schools.
In this case, L = 4 with treatment defined at level 3. After showing the general
result for the L-level model, I shall illustrate how the procedure works for
two-level (L = 2) and three-level models (L = 3).

L-Level Model

Without adaptive centering, the model is

Yr = 1r θ + Xβ + 1r br + er , br ∼ N(0, ω2Ir ), er ∼ N(0, VL−1,r ). (25)

Here Yr is the nr by 1 vector of outcomes within L-level unit r having el-
ements {yi j k...r }. The regression coefficient vector β is of central interest.
Correspondingly, Xr is the known design matrix for level-L unit r. In the
case of one-dimensional blocking, the random effects design is simply the
nr by 1 vector 1r , all of whose elements are unity. The covariance matrix
VL -1,r = Var (Yr | br ) and VL ,r = Var (Yr ) = ω21r 1T

r + VL−1,r . We now apply
adaptive centering (equation 20), yielding

X∗
r = Xr − 1r X̄r , (26)

where X̄r = (1T
r V−1

L−1,r 1r )−11T
r V−1

L−1,r Xr . This will produce an unbiased estimator
of β because 1T

r V−1
L ,r X∗

r = 0.

Two-Level Model

The two-level model is a special case of equation 25 with L = 2, r = j, so
that Y j is the n j by 1 vector of outcomes within level-2 unit j having elements
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{yi j }. The covariance matrix V1, j = Var (Y j | b j ) = σ 2I j and V2, j = Var (Y j ) =
ω21 j 1T

j + σ 2I j with σ 2 denoting the level-1 variance. For example, j may denote
the person and i the time point; σ 2 is the within-person variance; and ω2 is
the between-person variance. Without centering, the maximum likelihood
estimator is

β̂ =
⎛

⎝
J∑

j=1

XT
j V−1

2, j Xr

⎞

⎠
−1

J∑

j=1

XT
j V−1

2, j Yr . (27)

We now apply adaptive centering equation 20, yielding in this case X∗
j =

X j − 1 j X̄ j , where

X̄ j = (
1T

j 1 j
)−1

1T
j X j = 1/n j

n j∑

i=1

Xi j (28)

is simply the arithmetic mean. We then have 1T
j X∗

j = 0 so that

J∑

j=1

X∗T
j V−1

2, j X
∗
r = σ−2

J∑

j=1

X∗T
j

(
ω21 j 1T

j + σ 2I j
)−1

X∗
j

= σ−2
J∑

j=1

X∗T
j

[
I j − 1 j

(
1T

j 1 j + σ 2ω−2)1T
j

]
X∗

j

= σ−2

⎡

⎣
J∑

j=1

X∗T
j X∗

j −
J∑

j=1

X∗T
j 1 j

(
1T

j 1 j + σ 2ω−2)1T
j X∗

j

⎤

⎦

= σ−2
J∑

j=1

X∗T
j X∗

j . (29)

Similarly,
J∑

j=1

X∗T
j V−1

2, j Yr = σ 2
J∑

j=1

X∗T
j Y j , so in this case we have the OLS esti-

mator

β̂ =
⎛

⎝
J∑

j=1

XT
j X j

⎞

⎠
−1

J∑

j=1

XT
j Y j , Var (β̂) = σ 2

⎛

⎝
J∑

j=1

X∗T
j X∗

j

⎞

⎠
−1

. (30)

Three-Level Model

The three-level model is a special case of equation 25, with L = 3 and r =
k, where Yk is the nk by 1 vector of outcomes within level-3 unit k having
elements {yi j k}. The covariance matrix is Var (Yk) = V3,k = ω21k1T

k + V2k, with

V2,k = Jk⊕
j=1

V2 j k = Var (Yk | bk), and V2 j k = τ 21 j k1T
j k + σ 2I j k , where σ 2 is the
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level-1 variance, τ 2 is the level-2 variance, 1 j k is an n j k by 1 vector with all
elements equal to unity, and I j k is the n j k by n j k identity matrix. An example
involves students i = 1, . . . , n j k nested within classrooms j = 1, . . . , Jk that
are in turn nested within schools k = 1, . . . , K.

In the case of ω2, τ 2, and σ 2 known, the maximum likelihood estimator of
the regression coefficients is

β̂ =
(

K∑

k=1

XT
k V−1

3,kXk

)−1 K∑

k=1

XT
k V−1

3,kYk. (31)

Applying adaptive centering (equation 20), we now set

X∗
k = Xk − 1kX̄k

where

X̄k = (
1T
k V−1

2,k1k
)−1

1T
k V−1

2,kXk

=
⎛

⎝
Jk∑

j=1

(τ 2 + σ 2/n j k)−1

⎞

⎠
−1

Jk∑

j=1

(τ 2 + σ 2/n j k)−1X̄ j k. (32)

Here X̄ j k is the unweighted average of Xi j k .We then have 1T
k V−1

2,kX∗
k = 0. Sub-

stituting X∗
j for X j in equation 31, we now find that

J∑

k=1

X∗T
k V−1

3,kX∗
k =

K∑

k=1

X∗T
k

[
V−1

2,k − V−1
2,k1k

(
1T
k V−1

2,k1k + ω−2Ik
)

1T
k V−1

2,k

]
X∗

k

=
K∑

k=1

X∗T
k V−1

2,kX∗
k−

K∑

k=1

X∗T
k V−1

2,k1k(1T
k V−1

2,k1k + ω−2Ik)1T
k V−1

2,kX∗
k

=
K∑

k=1

X∗T
k V−1

2,kX∗
k . (33)

Using a similar argument,

J∑

k=1

X∗T
k V−1

3,kYk =
K∑

k=1

X∗T
k V−1

2,kYk. (34)

With these results in mind, we can see that

β̂ =
(

J∑

k=1

X∗T
k V−1

2,kX∗
k

)−1 K∑

k=1

X∗T
k V−1

2,kYk

Var (β̂) =
(

J∑

k=1

X∗T
k V−1

2,kX∗
k

)−1

, (35)
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which has the form of a generalized least squares estimator based on a two-level
hierarchical linear model.

Two-Dimensional Confounding

We now consider the case in which observations are nested within the cells of a
two-way cross classification. The idea is to remove the confounding associated
with two dimensions. For example, we might have repeated observations on
students cross-classified by schools. Alternatively, the time series may be cross
classified by students and schools where there are also classrooms nested
within schools. Our model is

Y = Xγ + Ru + Cv + e,

u ∼ N(0, ω2I), v ∼ N(0, ψ2I), e ∼ N(0, V∗).
(36)

Here R and C are matrices of indicators that assign random effects u to the
appropriate “rows” (e.g., children) and v to the appropriate “columns” (e.g.,
schools), respectively. Equation 36 is a special case of the general model (25)
with

A = (R C), b = (uT vT )T and

 =
[

ω2I, 0
0 ψ2I

]
.

(37)

Adaptive centering requires

X∗T V∗−1A = (X∗T V∗−1R X∗T V∗−1C) = (0 0). (38)

This suggests that we regress x on C and R, using generalized least squares
with weight matrix V∗−1, then extract residuals x

∗
. We illustrate this approach

in the case of V
∗ = σ 2I.

Here is an illustrative example: Marshall Jean at the University of Chicago
has assembled a data set on more than two hundred thousand students mov-
ing across more than five hundred schools in Chicago. The aim of the study
is to estimate the impact of certain school-level characteristics, which, along
with a vector of time-varying covariates, are collected in the matrix X. The two-
dimensional fixed effects estimation would remove time-varying confound-
ing attributable to students and schools. However, this is a computationally
difficult task. Can the adaptive centering approach be feasibly implemented in
this case?

In principle, we might regress X on C and R, using OLS (given the as-
sumption V

∗ = σ 2I). We would then extract residuals X
∗
, achieving condition
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(38). But this is computationally demanding given the dimension of R (over
200,000 rows). We used the following procedure:

Step 1. Regress X on R, save the residuals. This is equivalent to centering
around the child mean. Specifically, define xtik as the vector of explanatory
variables for student i attending school k at time t, t = 1, . . . , Tik ; i = 1, . . . , n j k ;
k = 1, . . . , K . Then we have x∗

tik = xtik − x̄.i .

Step 2. For each observation, regress C on R, save the residuals. This
is easier than it sounds. Simply define dummy variable Ctik = 1 if student
i attends school k at time t; Ctik = 0 otherwise. Do this for each school k

= 1, . . . K so that there are K dummy variables per occasion per student. Now
compute C∗

tik = Ctik − nik/ni , where nik is the number of observations for
student i in school k and ni is the total number of observations for student i.
Thus nik/ni is the proportion of student i’s observations that occurred while
in school k . The collection of those is equivalent to the predicted value of C
given R so that C∗

tik are the residuals.
Step 3. Compute a regression with X∗

tik (from step 1) as the outcome and with
J predictors C∗

tik = Ctik − nik/ni , k = 1, . . . K (from step 2). Save the residuals
from this regression, that is, save X∗∗

tik = X∗
tik − Ê (X∗

tik | C∗
ti1, . . . , C∗

ti K ). These
in fact are the variables to be used in our regressions. This approach satisfies
equation 38, removing time-invariant confounding attributable to children and
schools. In the special case of balanced data—that is, when each student is
observed the same number of times in each school (as in the hypothetical case
of section 3)—the result is X∗∗

tik = Xtik − X̄.i . − X̄..k + X̄ . . . as in section 3.
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