Skip to content
A collection of research papers on decision, classification and regression trees with implementations.
Branch: master
Clone or download
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
LICENSE Update LICENSE May 22, 2019
README.md Update README.md May 23, 2019
tree.png Add files via upload May 11, 2019

README.md

Awesome decision tree research papers

Awesome PRs Welcome

A curated list of decision, classification and regression tree research papers with implementations from the following conferences:

A similar collection about graph embedding and community detection papers with implementations.

2018

  • Adapting to Concept Drift in Credit Card Transaction Data Streams Using Contextual Bandits and Decision Trees (AAAI 2018)

    • Dennis J. N. J. Soemers, Tim Brys, Kurt Driessens, Mark H. M. Winands, Ann Nowé
    • [Paper]
  • MERCS: Multi-Directional Ensembles of Regression and Classification Trees (AAAI 2018)

    • Elia Van Wolputte, Evgeniya Korneva, Hendrik Blockeel
    • [Paper]
    • [Code]
  • Differential Performance Debugging With Discriminant Regression Trees (AAAI 2018)

    • Saeid Tizpaz-Niari, Pavol Cerný, Bor-Yuh Evan Chang, Ashutosh Trivedi
    • [Paper]
    • [Code]
  • Estimating the Class Prior in Positive and Unlabeled Data Through Decision Tree Induction (AAAI 2018)

    • Jessa Bekker, Jesse Davis
    • [Paper]
  • MDP-Based Cost Sensitive Classification Using Decision Trees (AAAI 2018)

  • Generative Adversarial Image Synthesis With Decision Tree Latent Controller (CVPR 2018)

  • Enhancing Very Fast Decision Trees with Local Split-Time Predictions (ICDM 2018)

  • Finding Influential Training Samples for Gradient Boosted Decision Trees (ICML 2018)

    • Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, Maarten de Rijke
    • [Paper]
    • [Code]
  • Learning Optimal Decision Trees with SAT (IJCAI 2018)

    • Nina Narodytska, Alexey Ignatiev, Filipe Pereira, João Marques-Silva
    • [Paper]
  • Extremely Fast Decision Tree (KDD 2018)

    • Chaitanya Manapragada, Geoffrey I. Webb, Mahsa Salehi
    • [Paper]
    • [Code]
  • Alternating optimization of decision trees with application to learning sparse oblique trees (NIPS 2018)

    • Miguel Á. Carreira-Perpiñán, Pooya Tavallali
    • [Paper]
  • Multi-Layered Gradient Boosting Decision Trees (NIPS 2018)

2017

  • Strategic Sequences of Arguments for Persuasion Using Decision Trees (AAAI 2017)

    • Emmanuel Hadoux, Anthony Hunter
    • [Paper]
  • BoostVHT: Boosting Distributed Streaming Decision Trees (CIKM 2017)

    • Theodore Vasiloudis, Foteini Beligianni, Gianmarco De Francisci Morales
    • [Paper]
  • Latency Reduction via Decision Tree Based Query Construction (CIKM 2017)

    • Aman Grover, Dhruv Arya, Ganesh Venkataraman
    • [Paper]
  • Enumerating Distinct Decision Trees (ICML 2017)

  • Gradient Boosted Decision Trees for High Dimensional Sparse Output (ICML 2017)

    • Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, Cho-Jui Hsieh
    • [Paper]
    • [Code]
  • Extremely Fast Decision Tree Mining for Evolving Data Streams (KDD 2017)

    • Albert Bifet, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff Holmes, Bernhard Pfahringer
    • [Paper]
  • LightGBM: A Highly Efficient Gradient Boosting Decision Tree (NIPS 2017)

    • Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu
    • [Paper]
    • [Code]
  • Variable Importance Using Decision Trees (NIPS 2017)

    • Jalil Kazemitabar, Arash Amini, Adam Bloniarz, Ameet S. Talwalkar
    • [Paper]
  • A Practical Method for Solving Contextual Bandit Problems Using Decision Trees (UAI 2017)

    • Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, Marek Petrik
    • [Paper]
  • Complexity of Solving Decision Trees with Skew-Symmetric Bilinear Utility (UAI 2017)

    • Hugo Gilbert, Olivier Spanjaard
    • [Paper]

2016

  • Sparse Perceptron Decision Tree for Millions of Dimensions (AAAI 2016)

    • Weiwei Liu, Ivor W. Tsang
    • [Paper]
  • Learning Online Smooth Predictors for Realtime Camera Planning Using Recurrent Decision Trees (CVPR 2016)

    • Jianhui Chen, Hoang Minh Le, Peter Carr, Yisong Yue, James J. Little
    • [Paper]
  • Online Learning with Bayesian Classification Trees (CVPR 2016)

    • Samuel Rota Bulò, Peter Kontschieder
    • [Paper]
  • Accurate Robust and Efficient Error Estimation for Decision Trees (ICML 2016)

  • Meta-Gradient Boosted Decision Tree Model for Weight and Target Learning (ICML 2016)

    • Yury Ustinovskiy, Valentina Fedorova, Gleb Gusev, Pavel Serdyukov
    • [Paper]
  • Boosted Decision Tree Regression Adjustment for Variance Reduction in Online Controlled Experiments (KDD 2016)

    • Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, Pavel Serdyukov
    • [Paper]
  • Yggdrasil: An Optimized System for Training Deep Decision Trees at Scale (NIPS 2016)

    • Firas Abuzaid, Joseph K. Bradley, Feynman T. Liang, Andrew Feng, Lee Yang, Matei Zaharia, Ameet S. Talwalkar
    • [Paper]
  • A Communication-Efficient Parallel Algorithm for Decision Tree (NIPS 2016)

    • Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhiming Ma, Tie-Yan Liu
    • [Paper]
    • [Code]

2015

  • Particle Gibbs for Bayesian Additive Regression Trees (AISTATS 2015)

    • Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh
    • [Paper]
  • DART: Dropouts meet Multiple Additive Regression Trees (AISTATS 2015)

  • Single target tracking using adaptive clustered decision trees and dynamic multi-level appearance models (CVPR 2015)

    • Jingjing Xiao, Rustam Stolkin, Ales Leonardis
    • [Paper]
  • Face alignment using cascade Gaussian process regression trees (CVPR 2015)

  • Tracking-by-Segmentation with Online Gradient Boosting Decision Tree (ICCV 2015)

    • Jeany Son, Ilchae Jung, Kayoung Park, Bohyung Han
    • [[Paper]](Tracking-by-Segmentation with Online Gradient Boosting Decision Tree)
  • Entropy evaluation based on confidence intervals of frequency estimates : Application to the learning of decision trees (ICML 2015)

    • Mathieu Serrurier, Henri Prade
    • [Paper]
  • A Decision Tree Framework for Spatiotemporal Sequence Prediction (KDD 2015)

    • Taehwan Kim, Yisong Yue, Sarah L. Taylor, Iain A. Matthews
    • [Paper]
  • Efficient Non-greedy Optimization of Decision Trees (NIPS 2015)

    • Mohammad Norouzi, Maxwell D. Collins, Matthew Johnson, David J. Fleet, Pushmeet Kohli
    • [Paper]

2014

  • On Building Decision Trees from Large-scale Data in Applications of On-line Advertising (CIKM 2014)

    • Shivaram Kalyanakrishnan, Deepthi Singh, Ravi Kant
    • [Paper]
  • Fast Supervised Hashing with Decision Trees for High-Dimensional Data (CVPR 2014)

    • Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, David Suter
    • [Paper]
  • One Millisecond Face Alignment with an Ensemble of Regression Trees (CVPR 2014)

    • Vahid Kazemi, Josephine Sullivan
    • [Paper]
  • Diagnosis determination: decision trees optimizing simultaneously worst and expected testing cost (ICML 2014)

    • Ferdinando Cicalese, Eduardo Sany Laber, Aline Medeiros Saettler
    • [Paper]

2013

  • Weakly Supervised Learning of Image Partitioning Using Decision Trees with Structured Split Criteria (ICCV 2013)

    • Christoph N. Straehle, Ullrich Köthe, Fred A. Hamprecht
    • [Paper]
  • Revisiting Example Dependent Cost-Sensitive Learning with Decision Trees (ICCV 2013)

    • Oisin Mac Aodha, Gabriel J. Brostow
    • [Paper]
  • Conformal Prediction Using Decision Trees (ICDM 2013)

    • Ulf Johansson, Henrik Boström, Tuve Löfström
    • [Paper]
  • Focal-Test-Based Spatial Decision Tree Learning: A Summary of Results (ICDM 2013)

    • Zhe Jiang, Shashi Shekhar, Xun Zhou, Joseph K. Knight, Jennifer Corcoran
    • [Paper]
  • Top-down particle filtering for Bayesian decision trees (ICML 2013)

    • Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh
    • [Paper]
  • Quickly Boosting Decision Trees - Pruning Underachieving Features Early (ICML 2013)

    • Ron Appel, Thomas J. Fuchs, Piotr Dollár, Pietro Perona
    • [Paper]
  • Knowledge Compilation for Model Counting: Affine Decision Trees (IJCAI 2013)

    • Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, Samuel Thomas
    • [Paper]

2012

  • Regression Tree Fields - An efficient, non-parametric approach to image labeling problems (CVPR 2012)

    • Jeremy Jancsary, Sebastian Nowozin, Toby Sharp, Carsten Rother
    • [Paper]
  • ConfDTree: Improving Decision Trees Using Confidence Intervals (ICDM 2012)

    • Gilad Katz, Asaf Shabtai, Lior Rokach, Nir Ofek
    • [Paper]
  • Improved Information Gain Estimates for Decision Tree Induction (ICML 2012)

  • Learning Partially Observable Models Using Temporally Abstract Decision Trees (NIPS 2012)

2011

  • Incorporating Boosted Regression Trees into Ecological Latent Variable Models (AAAI 2011)

    • Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich
    • [Paper]
  • Syntactic Decision Tree LMs: Random Selection or Intelligent Design (EMNLP 2011)

    • Denis Filimonov, Mary P. Harper
    • [Paper]
  • Speeding-Up Hoeffding-Based Regression Trees With Options (ICML 2011)

    • Elena Ikonomovska, João Gama, Bernard Zenko, Saso Dzeroski
    • [Paper]
  • On the Complexity of Decision Making in Possibilistic Decision Trees (UAI 2011)

    • Hélène Fargier, Nahla Ben Amor, Wided Guezguez
    • [Paper]
  • Parallel boosted regression trees for web search ranking (WWW 2011)

    • Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, Jennifer Paykin
    • [Paper]

2010

  • Discrimination Aware Decision Tree Learning (ICDM 2010)

    • Faisal Kamiran, Toon Calders, Mykola Pechenizkiy
    • [Paper]
  • Decision Trees for Uplift Modeling (ICDM 2010)

    • Piotr Rzepakowski, Szymon Jaroszewicz
    • [Paper]
  • Learning Markov Network Structure with Decision Trees (ICDM 2010)

  • Multivariate Dyadic Regression Trees for Sparse Learning Problems (NIPS 2010)

2009

  • Stochastic gradient boosted distributed decision trees (CIKM 2009)
    • Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng
    • [Paper]

2008

  • Predicting Future Decision Trees from Evolving Data (ICDM 2008)

    • Mirko Böttcher, Martin Spott, Rudolf Kruse
    • [Paper]
  • Bayes optimal classification for decision trees (ICML 2008)

2007

  • Sample compression bounds for decision trees (ICML 2007)

  • A Tighter Error Bound for Decision Tree Learning Using PAC Learnability (IJCAI 2007)

    • Chaithanya Pichuka, Raju S. Bapi, Chakravarthy Bhagvati, Arun K. Pujari, Bulusu Lakshmana Deekshatulu
    • [Paper]
  • Keep the Decision Tree and Estimate the Class Probabilities Using its Decision Boundary (IJCAI 2007)

    • Isabelle Alvarez, Stephan Bernard, Guillaume Deffuant
    • [Paper]
  • Real Boosting a la Carte with an Application to Boosting Oblique Decision Tree (IJCAI 2007)

    • Claudia Henry, Richard Nock, Frank Nielsen
    • [Paper]
  • Scalable look-ahead linear regression trees (KDD 2007)

    • David S. Vogel, Ognian Asparouhov, Tobias Scheffer
    • [Paper]
  • Mining optimal decision trees from itemset lattices (KDD 2007)

    • Siegfried Nijssen, Élisa Fromont
    • [Paper]

2006

  • Decision Tree Methods for Finding Reusable MDP Homomorphisms (AAAI 2006)

    • Alicia P. Wolfe, Andrew G. Barto
    • [Paper]
  • A Fast Decision Tree Learning Algorithm (AAAI 2006)

  • Anytime Induction of Decision Trees: An Iterative Improvement Approach (AAAI 2006)

    • Saher Esmeir, Shaul Markovitch
    • [Paper]
  • When a Decision Tree Learner Has Plenty of Time (AAAI 2006)

    • Saher Esmeir, Shaul Markovitch
    • [Paper]
  • Decision Trees for Functional Variables (ICDM 2006)

    • Suhrid Balakrishnan, David Madigan
    • [Paper]
  • A general framework for accurate and fast regression by data summarization in random decision trees (KDD 2006)

    • Wei Fan, Joe McCloskey, Philip S. Yu
    • [Paper]

2005

  • Representing Conditional Independence Using Decision Trees (AAAI 2005)

  • Use of Expert Knowledge for Decision Tree Pruning (AAAI 2005)

    • Jingfeng Cai, John Durkin
    • [Paper]
  • Effective Estimation of Posterior Probabilities: Explaining the Accuracy of Randomized Decision Tree Approaches (ICDM 2005)

    • Wei Fan, Ed Greengrass, Joe McCloskey, Philip S. Yu, Kevin Drummey
    • [Paper]
  • Exploiting Informative Priors for Bayesian Classification and Regression Trees (IJCAI 2005)

    • Nicos Angelopoulos, James Cussens
    • [Paper]
  • Ranking Cases with Decision Trees: a Geometric Method that Preserves Intelligibility (IJCAI 2005)

    • Isabelle Alvarez, Stephan Bernard
    • [Paper]

2004

  • On the Optimality of Probability Estimation by Random Decision Trees (AAAI 2004)

  • Occam's Razor and a Non-Syntactic Measure of Decision Tree Complexity (AAAI 2004)

  • Using Emerging Patterns and Decision Trees in Rare-Class Classification (ICDM 2004)

    • Hamad Alhammady, Kotagiri Ramamohanarao
    • [Paper]
  • Orthogonal Decision Trees (ICDM 2004)

    • Hillol Kargupta, Haimonti Dutta
    • [Paper]
  • Improving the Reliability of Decision Tree and Naive Bayes Learners (ICDM 2004)

    • David George Lindsay, Siân Cox
    • [Paper]
  • Communication Efficient Construction of Decision Trees Over Heterogeneously Distributed Data (ICDM 2004)

    • Chris Giannella, Kun Liu, Todd Olsen, Hillol Kargupta
    • [Paper]
  • Decision Tree Evolution Using Limited Number of Labeled Data Items from Drifting Data Streams (ICDM 2004)

    • Wei Fan, Yi-an Huang, Philip S. Yu
    • [Paper]
  • Lookahead-based algorithms for anytime induction of decision trees (ICML 2004)

    • Saher Esmeir, Shaul Markovitch
    • [Paper]
  • Detecting Structural Metadata with Decision Trees and Transformation-Based Learning (NAACL 2004)

    • Joungbum Kim, Sarah E. Schwarm, Mari Ostendorf
    • [Paper]
  • On the Adaptive Properties of Decision Trees (NIPS 2004)

    • Clayton D. Scott, Robert D. Nowak
    • [Paper]

2003

  • Postprocessing Decision Trees to Extract Actionable Knowledge (ICDM 2003)

    • Qiang Yang, Jie Yin, Charles X. Ling, Tielin Chen
    • [Paper]
  • K-D Decision Tree: An Accelerated and Memory Efficient Nearest Neighbor Classifier (ICDM 2003)

    • Tomoyuki Shibata, Takekazu Kato, Toshikazu Wada
    • [Paper]
  • Identifying Markov Blankets with Decision Tree Induction (ICDM 2003)

    • Lewis J. Frey, Douglas H. Fisher, Ioannis Tsamardinos, Constantin F. Aliferis, Alexander R. Statnikov
    • [Paper]
  • Comparing Naive Bayes, Decision Trees, and SVM with AUC and Accuracy (ICDM 2003)

    • Jin Huang, Jingjing Lu, Charles X. Ling
    • [Paper]
  • Boosting Lazy Decision Trees (ICML 2003)

    • Xiaoli Zhang Fern, Carla E. Brodley
    • [Paper]
  • Decision Tree with Better Ranking (ICML 2003)

    • Charles X. Ling, Robert J. Yan
    • [Paper]
  • Skewing: An Efficient Alternative to Lookahead for Decision Tree Induction (IJCAI 2003)

  • Efficient decision tree construction on streaming data (KDD 2003)

    • Ruoming Jin, Gagan Agrawal
    • [Paper]
  • PaintingClass: interactive construction%2C visualization and exploration of decision trees (KDD 2003)

    • Soon Tee Teoh, Kwan-Liu Ma
    • [Paper]
  • Accurate decision trees for mining high-speed data streams (KDD 2003)

    • João Gama, Ricardo Rocha, Pedro Medas
    • [Paper]
  • Near-Minimax Optimal Classification with Dyadic Classification Trees (NIPS 2003)

    • Clayton D. Scott, Robert D. Nowak
    • [Paper]

2002

  • Solving the Fragmentation Problem of Decision Trees by Discovering Boundary Emerging Patterns (ICDM 2002)

  • Learning Decision Trees Using the Area Under the ROC Curve (ICML 2002)

    • César Ferri, Peter A. Flach, José Hernández-Orallo
    • [Paper]
  • Finding an Optimal Gain-Ratio Subset-Split Test for a Set-Valued Attribute in Decision Tree Induction (ICML 2002)

    • Fumio Takechi, Einoshin Suzuki
    • [Paper]
  • SECRET: a scalable linear regression tree algorithm (KDD 2002)

    • Alin Dobra, Johannes Gehrke
    • [Paper]
  • Instability of decision tree classification algorithms (KDD 2002)

    • Ruey-Hsia Li, Geneva G. Belford
    • [Paper]
  • Extracting decision trees from trained neural networks (KDD 2002)

  • Dyadic Classification Trees via Structural Risk Minimization (NIPS 2002)

    • Clayton D. Scott, Robert D. Nowak
    • [Paper]

2001

  • Japanese Named Entity Recognition based on a Simple Rule Generator and Decision Tree Learning (ACL 2001)

  • Message Length as an Effective Ockham's Razor in Decision Tree Induction (AISTATS 2001)

    • Scott Needham, David L. Dowe
    • [Paper]
  • SQL Database Primitives for Decision Tree Classifiers (CIKM 2001)

    • Kai-Uwe Sattler, Oliver Dunemann
    • [Paper]
  • Mining Decision Trees from Data Streams in a Mobile Environment (ICDM 2001)

    • Hillol Kargupta, Byung-Hoon Park
    • [Paper]
  • Efficient Determination of Dynamic Split Points in a Decision Tree (ICDM 2001)

    • David Maxwell Chickering, Christopher Meek, Robert Rounthwaite
    • [Paper]
  • A Comparison of Stacking with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods (ICDM 2001)

    • Bernard Zenko, Ljupco Todorovski, Saso Dzeroski
    • [Paper]
  • Efficient algorithms for decision tree cross-validation (ICML 2001)

    • Hendrik Blockeel, Jan Struyf
    • [Paper]
  • Bias Correction in Classification Tree Construction (ICML 2001)

    • Alin Dobra, Johannes Gehrke
    • [Paper]
  • Breeding Decision Trees Using Evolutionary Techniques (ICML 2001)

    • Athanassios Papagelis, Dimitrios Kalles
    • [Paper]
  • Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers (ICML 2001)

    • Bianca Zadrozny, Charles Elkan
    • [Paper]
  • Temporal Decision Trees or the lazy ECU vindicated (IJCAI 2001)

    • Luca Console, Claudia Picardi, Daniele Theseider Dupré
    • [Paper]
  • A Decision Tree of Bigrams is an Accurate Predictor of Word Sense (NAACL 2001)

1999

  • Modeling decision tree performance with the power law (AISTATS 1999)

    • Lewis J. Frey, Douglas H. Fisher
    • [Paper]
  • Causal Mechanisms and Classification Trees for Predicting Chemical Carcinogens (AISTATS 1999)

  • POS Tags and Decision Trees for Language Modeling (EMNLP 1999)

  • Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ICML 1999)

    • Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting
    • [Paper]
  • The Alternating Decision Tree Learning Algorithm (ICML 1999)

  • Boosting with Multi-Way Branching in Decision Trees (NIPS 1999)

    • Yishay Mansour, David A. McAllester
    • [Paper]

1998

  • Learning Sorting and Decision Trees with POMDPs (ICML 1998)

    • Blai Bonet, Hector Geffner
    • [Paper]
  • Using a Permutation Test for Attribute Selection in Decision Trees (ICML 1998)

    • Eibe Frank, Ian H. Witten
    • [Paper]
  • A Fast and Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization (ICML 1998)

    • Michael J. Kearns, Yishay Mansour
    • [Paper]

1997

  • Pessimistic decision tree pruning based Continuous-time (ICML 1997)

  • PAC Learning with Constant-Partition Classification Noise and Applications to Decision Tree Induction (ICML 1997)

  • Option Decision Trees with Majority Votes (ICML 1997)

  • Integrating Feature Construction with Multiple Classifiers in Decision Tree Induction (ICML 1997)

    • Ricardo Vilalta, Larry A. Rendell
    • [Paper]
  • Functional Models for Regression Tree Leaves (ICML 1997)

  • The Effects of Training Set Size on Decision Tree Complexity (ICML 1997)

    • Tim Oates, David D. Jensen
    • [Paper]
  • Unsupervised On-line Learning of Decision Trees for Hierarchical Data Analysis (NIPS 1997)

    • Marcus Held, Joachim M. Buhmann
    • [Paper]
  • Data-Dependent Structural Risk Minimization for Perceptron Decision Trees (NIPS 1997)

    • John Shawe-Taylor, Nello Cristianini
    • [Paper]
  • Generalization in Decision Trees and DNF: Does Size Matter (NIPS 1997)

    • Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, Llew Mason
    • [Paper]

1996

  • Second Tier for Decision Trees (ICML 1996)

  • Non-Linear Decision Trees - NDT (ICML 1996)

    • Andreas Ittner, Michael Schlosser
    • [Paper]
  • Learning Relational Concepts with Decision Trees (ICML 1996)

    • Peter Geibel, Fritz Wysotzki
    • [Paper]

1995

  • A Hill-Climbing Approach for Optimizing Classification Trees (AISTATS 1995)

    • Xiaorong Sun, Steve Y. Chiu, Louis Anthony Cox Jr.
    • [Paper]
  • An Exact Probability Metric for Decision Tree Splitting (AISTATS 1995)

  • On Pruning and Averaging Decision Trees (ICML 1995)

    • Jonathan J. Oliver, David J. Hand
    • [Paper]
  • On Handling Tree-Structured Attributed in Decision Tree Learning (ICML 1995)

    • Hussein Almuallim, Yasuhiro Akiba, Shigeo Kaneda
    • [Paper]
  • Retrofitting Decision Tree Classifiers Using Kernel Density Estimation (ICML 1995)

    • Padhraic Smyth, Alexander G. Gray, Usama M. Fayyad
    • [Paper]
  • Increasing the Performance and Consistency of Classification Trees by Using the Accuracy Criterion at the Leaves (ICML 1995)

  • Efficient Algorithms for Finding Multi-way Splits for Decision Trees (ICML 1995)

    • Truxton Fulton, Simon Kasif, Steven Salzberg
    • [Paper]
  • Theory and Applications of Agnostic PAC-Learning with Small Decision Trees (ICML 1995)

    • Peter Auer, Robert C. Holte, Wolfgang Maass
    • [Paper]
  • Boosting Decision Trees (NIPS 1995)

    • Harris Drucker, Corinna Cortes
    • [Paper]
  • Using Pairs of Data-Points to Define Splits for Decision Trees (NIPS 1995)

    • Geoffrey E. Hinton, Michael Revow
    • [Paper]
  • A New Pruning Method for Solving Decision Trees and Game Trees (UAI 1995)

1994

  • A Statistical Approach to Decision Tree Modeling (ICML 1994)

  • In Defense of C4.5: Notes Learning One-Level Decision Trees (ICML 1994)

  • An Improved Algorithm for Incremental Induction of Decision Trees (ICML 1994)

  • Decision Tree Parsing using a Hidden Derivation Model (NAACL 1994)

    • Frederick Jelinek, John D. Lafferty, David M. Magerman, Robert L. Mercer, Adwait Ratnaparkhi, Salim Roukos
    • [Paper]

1993

  • Using Decision Trees to Improve Case-Based Learning (ICML 1993)

1991

  • Context Dependent Modeling of Phones in Continuous Speech Using Decision Trees (NAACL 1991)
    • Lalit R. Bahl, Peter V. de Souza, P. S. Gopalakrishnan, David Nahamoo, Michael Picheny
    • [Paper]

1989

  • Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications (NIPS 1989)
    • Les E. Atlas, Ronald A. Cole, Jerome T. Connor, Mohamed A. El-Sharkawi, Robert J. Marks II, Yeshwant K. Muthusamy, Etienne Barnard
    • [Paper]

1988

  • Multiple decision trees (UAI 1988)
    • Suk Wah Kwok, Chris Carter
    • [Paper]

1987

  • Decision Tree Induction Systems: A Bayesian Analysis (UAI 1987)
You can’t perform that action at this time.