Test Driven Database
Development With DbFit

Gojko Adzic

Marisa Seal

Test Driven Database Development With DbFit

Gojko Adzic
Marisa Seal

Published 2008-08-22

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where these designations appear in this book, and the authors were aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information
or programs contained herein.

This is a free document, and you have the right to redistribute it unmodified, in original form. All
other rights are reserved by the authors.

This document contains copyright protected portions from Test Driven .NET Development with
FitNesse (ISBN:978-0-9556836-0-2, published by Neuri Limited in 2008), used with publisher's
permission.

You can access the most recent version of this document online at http://www.fitnesse.info/dbfit,
where you will also find links to contact the authors or provide feedback.

http://www.fitnesse.info/dbfit

B0 s 0 Yo 11 Lo u (o) s KNSR N 1

Project S0alS ...coeeeerniiiiiiiiie et 1
Featuresccoooviiiiiiiiiiiii 1
What's wrong with xUnitccooiiiiiiiiiiiii e, 2
How this document is organisedcccoeeeeiiiiiniiiiiiinnieiiiinneeennnnn. 4
2. Database unit testscccooviiiiiiiiiiiiiii S
Installing DDFItcoouuiiiiiiiiiii et 5
Hello World from the databaseccccccoeeiiiiiiiiiii. 8
Step 1: Creating a new test Pageccceeeevvviiiiiiiiiiiiieiiinennns 8

Step 2: Setting up the environmentcccoeeeieiiiiinninnnnn... 9

Step 3: Connect to the databasec...coceeviiiiiiiiiiiiiiinnien. 9

Step 4: Testing a simple QUeTYcoeeevviriiiiiiiriiiiiiieeeiieeees 10

Step 5: Running the testccciiiiiiiiiiiiiii s 11
Traffic HEItS «oovvneiiiiie e, 13
Managing Wiki cOntentcoeeuiiiiiiiiiiiiiiiiiiiiiiee e 14
O1gaNISING PAZES w.uvirniiiiiiiiiiieieie ettt 14
Writing tests in Excel/Wordccoivieiiiiiiiiiiiiiniiiiieeceeenn. 15
Formatting textcooviiiiiiiiiiii 16
Preventing unwanted formattingcccccoeeeeviieiiiininnnennnnn. 16

A note on flow and standalone modes before we continue............. 17
3. DDFit for Integration testsccceeumiiiiiiiiiiiiiiiine e 19
Why use DbFit for integration tests?cc.ccceeviieiiiiiirieiiiineenen. 19
Installing DDFitcoouuniiiiiiiiiiiii e 19
Why not use generic ADO.NET/JDBC interfaces?cccccceeeeeeee. 21
Connecting to the databaseccc.ccoooiiiiiiiiiiiiiiiiiceeen, 21
Connecting in flow modecccoeviiiiiiiiiiiiiiiniiiiiee e, 22
Connecting in standalone modeccccceeieiiiiinieiiinnneennnn. 23
Storing connection properties in a fileccc..coeeeiiiieins 24
Transaction Managementcceeveeuieiiiiiiiieiinieieneiinennnnee 25

4. Command referenceccooeiiiiiiiiiiiiiiniiiiiiii 27
SEt-UP SCTIPt .iiniiiii e 27
QUETY ettt et et 28
Ordering and row matchingccceiviiiiiiiiiiiiiiniiiinnnees 29
USING PATAMELETS ...uvivnniiiiiiiiiiiiiiiiii ettt ceri e eeaaee 30
Avoiding parameter MappPingc.ceeeeevmereeerinireeeiinereeeenneneeens 30
Multi-line queries and special charactersccccceeeeeennn... 31
Working with padded charsccccoeeveeiiiiiiiiiiinniiiieeceennen. 31
INSEIT Louviiiiiiiiiii 32
Storing auto-generated valuesccceevieiiiiiieieeiiinneeennnnn. 32
UPAALE et 34
Execute Procedureccccceeeeiiiiiiiiiiiiiiiiiiiii 35
Calling FUNCHONSvviiiiiiiiiiiiie et 36

Test Driven Database Development With DbFit

Expecting eXCeptionsccoveevuiiiiiiiiiiiiiiiiiiiiiiiiieiieccieeee 36
EXECULE ..ovviiiiiiiiiiiiii 37
INSPECE e 38
STOTE QUETY ceuviiiiiiiiiiii et 39
Compare Stored QUETIESuvvvieiruirieiiiiireeiiiieeeetieeeeeereeeeenaanes 40

S. BESt PraCHICES couuiiiniiiiiiiiii ittt 43
[NitialiSing eSS wevuieiiiii e e 43
Markup variables can help you keep your data straight 43
Reusing DDFit tablesccooiiiiiiiiiiiiiiiiii e 45

6. Frequently asked qUeSHIONScc..eviieiimiiiiiiiiiiiiiiiie e, 49
I'd like to use DbFit with Sybase/PostGRE. Is that possible? 49
NULLs and blank cellsccoooiiiiiiiiiiiiiiniiiiiiiii i, 49
DbFit complains that it cannot read columns or parameters.

WHRhaAt'S WIONE? ..ooeiiiiieeiiiie ettt ettt eeeie e eeenaees 49
Does DbFit require any special database privileges? 50
Does DbFit support VARBINARY columns?cccceeveeiinirieeiinnnnees 50
My stored procedure returns a result set. How do [use it? 50
DDbFit says that my VARBINARY is System.Byte[]ccccoeeeeveinnnees 50
Does DbFit support GUID colummns?cccuevreeeiiireiiinnreeeiinnnees 51
DbFit complains about an unsupported type. What's wrong?........ 51
Can you extend DDbFit to support Oracle collection types? 51
How can we use Windows-integrated authentication? 51
DBFit complains about invalid fixtures/methodscc......ccc....... 52
Why does DbFit not see the time portion of my Date fields? 52
DbFit complains about registering a SQL Server driver 52

vi

Chapter 1.

Introduction

DDbFit makes test driven database development easy. Depending on whether you
are primarily working in a database environment or in a .NET/Java environ-
ment, you can look at DbFit as:

+ For database developers — a neat unit-testing tool for stored procedures
and database objects, which finally allows you to write database tests in a
tabular, relational form, without requiring you to learn or use an object-
oriented language.

+ For .NET/Java developers —a set of FIT fixtures which enables FIT/FitNesse
tables to execute directly against a database.

Project goals

This dual nature of DbFit is reflected in two main project goals:

+ Support efficient database acceptance and unit testing by providing
database developers a good tool to express and manage tests in a relational
language, without any .NET/Java knowledge required.

+ Support efficient .NET/Java integration testing by providing standardised
FitNesse fixtures to manage database state from FitNesse.

Features

Here is a quick overview of DbFit functionality:

- Regression testing for queries and SQL statements
+ Functional testing for stored procedures and functions

- Various short-cuts to make writing test scripts easier and more effi-
cient: automatic transaction control, building regression tests for queries,
inspecting database meta-data, and more.

- Support for Oracle, SQLServer 2000 and 2005, DB2, MySql 5 and Derby
(MySQL and Derby are supported only in the Java version. Java version
supports SqlServer partially — not all data types are implemented at the
moment.)

Introduction

What's wrong with xUnit

DbFit is the result of a three year long effort to apply agile develop-
ment practices in a database-centric environment. Lack of proper tools for
database-level testing was one of the major obstacles in that effort, and
DDbFit finally solved that issue. Here is a very short summary of that jour-
ney and reasons why DbFit was originally created. If you are interested in
finding out more about the wider problem and applying agile practices to
databases, see my article Fighting the monster' and Scott Ambler's site http://
www.agiledata.org.

Agile practices and databases do not often go hand in hand. For starters, most
of the innovation today is in the object-oriented and web space, so database
tools are a bit behind. Compared to say Idea or Eclipse, the best IDE available
for Oracle PL/SQL development is still in the ice ages. This has influenced
the database testing tools and libraries — most of the tools currently avail-
able are copies of JUnit translated into the database environment. Examples
are utPLSQL2 and TSQLUnit.3 Some other tools, like DbUnit* just focus on
setting the stage for Java or .NET integration tests, not really for executing
tests directly against database code.

The problem with xUnit-like database testing tools is that they require too
much boilerplate code. I could never get database developers to really use
them when no one was looking over their shoulders. Writing tests was
simply seen as too much overhead. All the buzz about object-relational
mismatch over the last few years was mostly about relational models getting
in the way of object development. This is effectively the other side of the
problem, with object tools getting in the way of relational testing.

FIT testing framework, on the other hand, does not suffer from that
mismatch. FIT is an acceptance testing framework developed by Ward
Cunningam, which is customer oriented and has nothing to do with
database unit testing whatsoever. But FIT tests are described as tables, which
is much more like the relational model than Java code. FIT also has a nice
Web-wiki front-end called FitNesse, which allows database developers to
write tests on their own without help from Java or .NET developers. DbFit
utilises the power of these two tools to make database tests easy.

1http: //gojko.net/2007/11/20/fighting-the-monster/
2http: //utplsql.sourceforge.net/

3http: //tsqlunit.sourceforge.net/

4http: //www.dbunit.org/

http://www.agiledata.org
http://www.agiledata.org
http://gojko.net/2007/11/20/fighting-the-monster/
http://utplsql.sourceforge.net/
http://tsqlunit.sourceforge.net/
http://www.dbunit.org/

What's wrong with xUnit

My goal with DbFit was not just to enable efficient database testing — it
was to motivate database developers to use an automated testing framework.
That is why DbFit has quite a few shortcuts to make database testing easier
through DbFit than even doing manual validations in PL/SQL or TSQL. I will
explain these later on, but for starters — DbFit automatically manages trans-
actions for you (rolling back by default to make tests repeatable), retrieves
the correct data types from metadata, and declares variables and parameters.

Here is a preview of what you will able to do with DbFit (everything will
be explained in more detail later). To call stored procedures, just create a
table with the Execute Procedure command, put the procedure name after the
command, and list your procedure parameters in second row. Put a ques-
tion mark after output parameter names. Then put different combinations
of inputs and expected values for output parameters into the table. The table
in Figure 1.1 shows three tests for the ConcatenateStrings stored procedure.
Notice that there are no variable declarations, no type guessing, no special
code to compare values. Just the table.

Figure 1.1. Test stored procedures by just listing parameter values

story Bookmarks Took

P

(T |1 Mtpuffocahostis0sspipDay.ConcatenationTest <) [JR-

@ ConcatenatlonTest

et Up: .XpDay.SetUp Expand All | Collapse All
m dbfit.MySqlTest
m Connect localhost root | |dbfit
m CONCATENATESTRINGS JOINS TWO STRINGS AND ADDS A BLANK
E it's not really that complicated :)
Execute Procedure ConcatenateStrings
m first string second string concatenated?
Hello World Hello World
m Arthur Dent Arthur Dent
m Ford Prefect Ford Prefect

Do
77 start €36 EY [o' ciwmoowstsyste..) xpDay.Cc

Relational data access is very similar — again using tables. The Insert
command puts data into a table or a view. It again reads the table, looking
for the column names in the second row, and data in all subsequent rows.
There is again no type information or any kind of any boilerplate code. The
Query command will execute any SQL query you specify and compare the
actual results with what you specified in the table below the command. See

Introduction

Figure 1.2. This is database testing in a pure relational form, very close to
how you are used to thinking about database objects.

Figure 1.2. Manage data in a tabular form, like you are used to thinking about it

@ INSERT PUTS DATA IN
o

Insert. Users

username name

adent Arthur Dent
fpref Ford Prefect
fpref2 Ford Prefect

QUERY VERIFIES RECORDS AFTER

Query Select * from Users
username name

adent Arthur Dent

fpref Ford Prefect

Tstat. € 3 6EO [man

How this document is organised

As database developers and .NET/Java developers would use DbFit somewhat
differently, the following two chapters will introduce DbFit to each of those
groups. It will not harm you to read both chapters, but you might as well
skip one if you want and then come back at a later time. The introduction
for database developers focuses more on how to use FitNesse generally. The
introduction for .NET/Java developers focuses more on how DbFit works
with FIT/FitNesse and discusses integration tests.

After those introductory chapters, we review all test table types (fixtures)
available in DbFit. The document ends with a list of frequently asked ques-
tions and some pointers about where to go next.

Chapter 2.

Database unit tests

This chapter introduces DbFit to database developers, and explains how to
use DDbFit for database unit testing. DbFit is an extension to FitNesse', so you
will use the FitNesse server to manage and run DbFit tests. This chapter will
give you a brief introduction to installing and using FitNesse to write and
manage tests. We will also do a quick sanity check to make sure that you
installed and set up everything properly, and then you can continue with
Chapter 4where you will learn what types of test tables are available and
how to use them.

I will not explain how DbFit works under the hood or how it fits into the
larger picture of FitNesse fixtures — if you are interested in that topic read
the next chapter as well. For more information on using FitNesse, tips and
tricks for test management, and information about how to include FitNesse
tests into your version control and continuous build system, see my book
Test Driven .NET Development with FitNesse®.

Installing DbFit

There are two ways to run DbFit — through Java or through .NET. As a
database developer, you do not have to know Java or .NET to write and run the
tests. The only significant difference between the two implementations is
that the Java and .NET versions support different databases. Microsoft SQL
Server is fully supported only in the .NET version, and MySQL and Derby
is supported only in the Java version. Both .NET and Java versions support
Oracle and DB2.

1http://www.fitnesse.org
thtp://gojko.net/fitnesse/book

http://www.fitnesse.org
http://gojko.net/fitnesse/book

Database unit tests

Figure 2.1. Databases supported in DbFit

DbFit Java DbFit .NET

QOracle ¥i| ¥i|
MySQL ¥i|
Microsoft SQL Server ¥ ¥i|
Derby (JavaDB) ¥i|
IEM DB2 i i

If you decide to use the Java version, you need only Java JRE 5 or later (get it
from http//java.sun.com). To use the .NET version, you need both the Java
JRE and Microsoft's .NET Framework runtime 2 or later (you should have
that already installed if you are running Windows, but if you do not, get it
from http://msdn.microsoft.com/netframework).

To install DbFit for database unit testing, I suggest that you download
the dbfit-complete package from http://sourceforge.net/projects/dbfit. That
package includes DbFit libraries and all required dependencies, includ-
ing .NET and Java test runners for FitNesse, and the FitNesse server itself.
It also contains this document in a Wiki form and lots of examples for all
supported functions and databases in the AcceptanceTests test suites. (The
package does not include Java JRE or the .NET Framework, so you'll have to
download those separately). If you already know your way around FitNesse,
or want to upgrade an existing installation, then you can get only the DbFit
library without any dependencies by downloading either the dbfit-dotnet-
binaries or dbfit-java-binaries package from the DbFit SourceForge site. In
this chapter, I presume that you are using the dbfit-complete package.

There is no special installation procedure required — just unpack dbfit-
complete-XXX.zip somewhere on your disk, and run startFitnesse.bat (or
startFitnesse.sh on Linux). FitNesse works as a web application with its
own web server. The batch file you started will try to set up FitNesse on
port 8085 by default. If this port is already taken on your machine, open
startFitnesse.bat in any editor and change 8085 to some other free port
number. [use 8085 in the examples, so if you use another one, remember to
enter the correct port when you try out the examples. When FitNesse starts,
you should see a command window with this message:

‘FitNesse (20070619) Started...

http//java.sun.com
http://msdn.microsoft.com/netframework
http://sourceforge.net/projects/dbfit

Installing DbFit

port: 8085

root page:
logger:

FitNesse.wiki.FileSystemPage at ./FitNesseRoot
none

authenticator: FitNesse.authentication.PromiscuousAuthenticator
html page factory: FitNesse.html.HtmlPageFactory
page version expiration set to 14 days.

Open http://localhost:8085/ and you should see the welcome page
(Figure 2.2).

FitNesse is up and running. When you want to shut it down later, just press
Ctr1+C in the command window (or close the command window).

You might want to set up a test database to try out some examples. There
are no specific requirements for anything to be in the database for DbFit
to work, but you might want to create a database user for testing and grant
the user privileges to connect and create resources. If you want to try out
examples from the AcceptanceTests suite in the dbfit-complete package, you'll
need to create some test objects as well. Scripts to create the objects can
be found in the scripts folder of the release — Oracle, SQL Server, DB2 and
MySQL scripts are provided.

@

FitNesse.bat failed. What's wrong?

Read the exception from the command window. If the error
mentions versions, check that you have Java 5 or 6 installed and
that the correct version is being executed when you run java.exe.
Run java.exe -version from a command window to see which
version of Java is being executed by default. You can run FitNesse
with a different Java version either by pointing to the correct
JRE in the system executable path (right-click My Computer,
select Properties, then go to the Advanced tab, click Environ-
ment Variables, and edit the Path variable), or by entering the
full path to a different java.exe in startFitnesse.bat.

If the error report states that there is a security problem
or the port is unavailable, enter a different port number in
startFitnesse.bat and try again.

http://localhost:8085/

Database unit tests

Figure 2.2. DbFit/FitNesse welcome page

=) FrontPage - Mozilla Firefox =B X
File Edit View Hislory Bookmarks Tools Help

@- -@ (1% | ntipunocainost80ss/ ~[»] [Cl-]

FrontPage

:

WELCOME TO THE WONDERFUL WORLD OF FITNESSE!

START BY BROWSING THE FOLLOWING PAGES:

S e

Hello World from the database

Let's run a quick test to make sure that you have everything set up correctly
and that FitNesse can connect to your test database. In doing so, we'll
also explain how to manage tests with FitNesse. FitNesse is a collaborative
Wiki site for building and executing tests. Tests are described by tables that
contain both input values and expected results. FitNesse runs tests by read-
ing HTML files, looking for tables, and using data in the tables to execute
tests and compare results to expectations. To keep things simple for now,
we'll just run a query and verify the results.

Step 1: Creating a new test page

Open http://localhost:8085/HelloWorld in your browser. You should see a
screen telling you that there is no HelloWorld page and a link to create a new
page. Click on the link and FitNesse opens the page editor: a big text box
with several buttons. This is where we'll create our new test page. Notice that
the page name is a CamelCase word. FitNesse is really strict about that. All
page names have to start with a capital letter, have at least one more capital
letter, and all capital letters have to be separated by at least one lowercase
letter. This convention causes a lot of headaches for FitNesse newbies, but
after a while you'll get used to it. Here are some good page names:

- HelloWorld
+ TestFluxCapacitor

http://localhost:8085/HelloWorld

Step 2: Setting up the environment

+ IsPaymentWorkingCorrectly
Here are some page names that will get you in trouble:

+ helloworld (no capital letters)

+ Testfluxcapacitor (just one capital letter)

+ isPaymentWorkingCorrectly (starts with a lowercase letter)
+ TestFCapacitor (two consecutive capital letters)

Step 2: Setting up the environment

In order to load the DbFit extension into FitNesse, your test pages have to
load the correct libraries. To run the .NET version of DbFit, paste the follow-
ing into your test page:

!define COMMAND PATTERN {%m %p}

!define TEST RUNNER {dotnet2\FitServer.exe}
!define PATH SEPARATOR {:}

Ipath dotnet2*.d11

To run the Java version, paste this into your test page:

!path Tib/*.jar

Step 3: Connect to the database

DbFit requires two commands to connect to the database. The first line spec-
ifies the database type (or test type), and the second defines connection
properties. These two lines will typically be the first on every test page. Here
is how to connect to a MySQL database:

!'|dbfit.MySqlTest|

!'|Connect|Tocalhost|dbfit user|password|dbfit|

Notice the MySqlTest in the first line above. That tells DbFit which type of
database driver to use. For SQL Server 2005, you should use SQLServerTest.
For MySql use MySqlTest. For Oracle, use OracleTest. For Db2, use DB2Test.
For Derby (JavaDB), use DerbyTest. If you are using an older version of
SqlServer, try SqlServer2000Test. 3 The Connect command has several flavours.
The default is to use four parameters:

3 SQLServer2000 is only supported in the .NET version of DbFit.

Database unit tests

I'|Connect|SERVICE_NAME [USER_NAME | PASSWORD | DATABASE._NAME |

SERVICE_NAME is the host, instance, or service name, depending on the type of
driver used. For Oracle in .NET, this can be a TNS name as well (in that case,
the fourth argument can be omitted). In the Java version, Oracle Thin driver
is used, so the second argument should be the host name (with optional
port separated by a colon), and you will have to specify the database SID as
fourth argument as well.

If you want to use non-standard connection properties, or initialise your
connection differently, call Connect with a single argument — the full
ADO.NET or JDBC connection string. Here is an example:

!'|Connect|data source=Instance;user id=User;password=Pwd;database=TestDB; |

You can use this feature, for example, to utilise Windows integrated authen-
tication or to use the OCI driver for Oracle under Java. A typical database
developer will not know these settings directly, but you can ask Java or NET
developers on your team to help out with the correct connection string.

There is one more option to connect to the database — store connection
properties in a file on the server. You can use this, for example, if your admin-
istrators require that the database password is not shown in plain text on
the test pages. See section “Storing connection properties in a file” on page
24 for more information.

Command structure

A Notice how each command starts with an exclamation mark (!),
followed by a pipe symbol (]|). Command arguments are then
separated by the pipe symbol as well. In FitNesse, tables are
used to describe commands, tests, inputs and expected results
(you will see the table when the page is saved). In the FitNesse
wiki syntax, tables are described simply by separating cells with
the pipe symbol. The exclamation mark before the first row of
the table is optional, and tells FitNesse not to apply any smart
formatting to table contents.

Step 4: Testing a simple query

Now let's write a simple query test. We will send a request to the database,
pull out the result set, and compare it with our expectations. In DbFit, that

10

Step 5: Running the test

is done with the Query command. The second cell of the first table row, after
the Query keyword, should contain the query we are executing. The second
row then contains the result set structure — names of the columns that we
want to inspect. You don't have to specify the full result set here, just the
columns that are interesting for a particular test. All rows after that contain
expected results. Query disregards result set order —if the order is important
you can use OrderedQuery. Here is a simple MySql query:

!'|Query| select 'test' as x|
||
| test|

The same syntax should work for SQLServer. For Oracle, use this table:

!'|Query| select 'test' as x from dual|
x|
| test|

Step 5: Running the test

Now, click Save. FitNesse will create a new page and display it in your
browser. Next, you have to tell FitNesse that this is a test page (Figure 2.3)
— click the Properties button on the left, check the Test check-box and then
click Save Properties (Figure 2.4).

Figure 2.3. Our new page is stored in FitNesse

=) Helloworid - Mozilla Firefox

e e e
¢ > E@uORE o) G

HelloWorld

classpath .,
dbfit.MySqtTest

Refactor

Connect localhost dbfit_user password dbfit

_—
Query select ‘test’ as x
g

test

Sl

11

Database unit tests

Figure 2.4. Use page properties to tell FitNesse that the page contains a test

) Properties: HelloWorkd - Mozila Firefox.

File Edit View Higtoy Bookmarks Tools Help

€« »-@URE I») @] Y

@ HelloWorld

PAGE PROPERTIES

Actions: Navigation: Secunty Last modified anonymously
F - Test P - VirtualWiki URL: (DEPRECATED)

[- Suite RecentChangesecure -read [

F - Edit = - Files r- Suites:

= - Versions - Search secure-write [—

~ - Properties r-

~ - Refactor secure-test

v -

Wi

hereUsed Save Properties

Wiki Import. Supply the URL for the wiki you'd like to import.

Remote Wiki URL: |

- - Automatically update imported content when executing tests
Import

Symbolic Links e}
[0]
[@

[owme

Page properties define what the user can do with the page — more precisely,
which buttons will be offered in the left-hand menu. When the page reloads,
you will notice a new button on the left: Test. Click it to make FitNesse run
the test. You should see a page similar to Figure 2.5 telling you that the
test passed.

Figure 2.5. Our first test passed. Hurrah!

) Test Resuts: HelloWor - Mozilla Firefox

Fle_Edt View rigoy Bookmarks Toos Help
«->- QoMb <[> Gl Furant =
@ =

HelloWorld ;

TEST RESULTS

_ \Assertluns 1 right, Owrong 0 ignored, 0 exceptions
dbfit.MySqlTest

Connect localhost dbfit_user password dbfit
uery select ‘test" as x

test

DbFit Project on SourceForge | DbFit documentation and reference | Comments and feedback [
T copyright (c) 2006-2008 Gojko Adzic | Cover photo by Michael Hall ‘ =
Done [

12

Traffic lights

If the test result is green, your setup works, you can connect to the database,
and we can continue. If the test was result yellow, something is wrong. Read
the error messages to check if the database connection properties are wrong.
Double-check that you have entered correct paths to DbFit library files. The
paths are relative to the folder in which you started FitNesse, so if you use
the dbfit-complete package, Java libraries will be in the 1ib folder, and .NET
libraries will be in the dotnet?2 folder. If the test result did not contain a table
at all, you probably wanted to use the .NET test runner but specified the
wrong path in the TEST RUNNER variable.

Traffic lights

Click the Edit button on the left and add another row to the expected results,
so that you can see how FitNesse prints the results when a test fails.

FitNesse is a traffic light which can tell you whether your code is ready to
be released or not. If a test fails, the light turns red, and FitNesse will show
both expected and actual results. In the case of queries, it will compare
the contents of the FitNesse table with what actually came out from the
database, and print out missing or suprlus rows (Figure 2.6).

Figure 2.6. FitNesse clearly shows what's wrong

=) Test Resutis: HelloWorkd - Mazila Firefox.

File Edit View Higtoy Bookmarks Tools Help

@->-@ % L1 htpinocainost80BSHelowordtest ~[] [@-

Tests Executed OK
TEST RESULTS

@ HelloWorld 1

\Assertiuns: 1 right, 1 wrong, 0 ignored, 0 exceptions
w

dbfit.MySqlTest

Query select ‘test" as x

ETE
test

hey there missing

Connect localhost dbfit_user password dbfit

DbFit Project on SourceForge | DbFit documentation and reference | Comments and feedback

Sl

13

Database unit tests

A note on transaction management

To make tests automatically repeatable, DbFit executes each test in a
separate transaction, and rolls back on the end of the test. You can
commit or rollback manually as well if you want to persist the effects
of a test (this will be explained in Chapter 4). Note, however, that it is
a very good practice to make tests repeatable. If you intend to persist
anything, make sure that unique constraints do not prevent the test
from repeating.

Managing Wiki content

Those are the basics of FitNesse. Tables describe commands, inputs and
expected outputs. You can use DbFit commands in FitNesse tables to do
things such as execute stored procedures, and execute and compare queries.
The rest of this chapter will focus on managing content in FitNesse — see
Chapter 4 for detailed information on all available DbFit commands and
their table syntax.

Organising pages

In FitNesse, subwikis are the equivalent of web folders, database schemas or
C# namespaces. They can be used to manage related pages more easily as a
group. Instead of a slash /, which is the separator in a web folder name, the
dot symbol . is used to separate levels of hierarchy in FitNesse.

For example, URL PurchaseTicketSuite.NotEnoughFunds leads to the NotE-
noughFunds page in the PurchaseTicketSuite subwiki. Just as a page can be
turned into a test via the Properties button, a subwiki can be turned into a
test suite. A test suite is a group of related tests that allows us to control their
common properties from one place.

To create a subwiki (and a test suite), first create the main subwiki page. In
the previous example, that would be PurchaseTicketSuite. You can put the
environment definitions from section “Step 2: Setting up the environment”
on page 9into that page, so that you do not have to repeat them for
individual tests. Instead of defining any test tables in that page, just enter !
contents -R as the page content. This automatically builds and shows a table
of contents for the subwiki. As the subwiki is probably empty now, the page
will be empty, but as you add subpages to it, they will automatically appear
in the table of contents. Click Properties on the left, and mark the page as
a Suite —not as a Test.

14

Writing tests in Excel/Word

Next, create individual test pages under that subwiki, and mark them as tests
in page properties. You will be able to run individual tests by clicking on the
Test button. You can also run all tests in the suite together by clicking on the
Suite button when viewing the main suite page.

There are two special pages for a test suite: SetUp and TearDown. If they
exist, those two pages are executed before and after every test. You can use
these pages to extract common preparation and clean-up steps for all related
tests and manage them together. When using DDbFit, it is a good practice to
include the database connection in the SetUp page:

'|dbfit.MySqlTest|

!'|Connect|Tocalhost|dbfit _user|password|dbfit|

In Chapter 4you will learn how to insert data and execute procedures, and
you can include those steps as well in the SetUp if they are common for a
group of tests.

A subwiki hierarchy is considered a namespace for links. So, for exam-
ple, link BasicCase from the PurchaseTicketSuite.SetUp page leads directly to
PurchaseTicketSuite. BasicCase. However, the main suite page PurchaseTicket-
Suite is not in the same namespace, but one level above. If you put a link
named BasicCase in the main suite page, it will lead to a top-level Basic-
Case page. To reach a subpage, prefix the name with a caret (“BasicCase). In
FitNesse release 20070619, symbols < and > are also used to point one level
up or down in the hierarchy. To go to the top level, prefix a page name with
a dot. So the link to .FrontPage always leads to the home page of the site.

Writing tests in Excel/Word

Although FitNesse Wiki syntax is really simple, you do not have to use it
to write scripts. You can write your tables in Excel (or almost any other
spreadsheet program), and then just copy them into the FitNesse page editor.
Clipboard automatically picks up data from most spreadsheet programs in
tab-separated format, which can be directly converted to FitNesse with the
Spreadsheet to FitNesse button that is available when editing a page. If your
spreadsheet program behaves differently, it should be able to export tab-
separated files.

You can also convert a FitNesse table to tab-separated data with the FitNesse
to Spreadsheet button in the page editor, and then copy that into Excel for
editing.

15

Database unit tests

Formatting text

FitNesse is a Wiki — a relatively free-form content management system
which allows users to build pages and link them together. Instead of using
HTML directly, Wikis use a special markup syntax. You have already seen
pipes (]) used to create tables. Here are a few more interesting markup
symbols:

+ 11 Apply Heading 1 style to the rest of the line.

+ 12 Apply Heading 2 style to the rest of the line.

+ 13 Apply Heading 3 style to the rest of the line.

+ Ic Align to centre.

+ ---- Horizontal line (4 or more dashes).

+ limg url Display image from url.

+ '"'"text''' Bold — three single quotes enclosing text on each side.
« '"text'' Italics — two single quotes enclosing text on each side.

- # Comment —ignore the rest of the line.

FitNesse automatically recognises most links and builds proper HTML code
for them — external links should just begin with http:// and internal links
are built from CamelCase words (beginning with a single capital letter and
containing at least one more capital letter). If the url ends with .gif or .jpg,
FitNesse will automatically replace the url with the image. You can create
additional links yourself by putting [[1abel][ur1]] anywhere on the page.
This can be used to create links which FitNesse does not recognise (if the
word is not in CamelCase), or to change the default label for the link.

See http://FitNesse.org/FitNesse.MarkupLanguageReference for a detailed
reference of the Wiki markup language used in FitNesse.

Preventing unwanted formatting

FitNesse does a lot of formatting on its own, most of the times guessing the
right thing to do. However, in some cases you explicitly want to prevent
“smart” formatting. For example, formatting should not be applied to code
examples, class names, and generally to test tables.

You already know that you can use an exclamation mark (!) to prevent any
smart formatting of table contents. However, some basic formatting (such
as variable replacement) will still be done. If you want to prevent all format-
ting, enclose the text into !- and -!. To prevent FitNesse from parsing and

16

http://FitNesse.org/FitNesse.MarkupLanguageReference

A note on flow and standalone modes before we continue

formatting large blocks of text, enclose those blocks into three curly braces
({{{ and }}}) —-you should typically do this with code examples, but you can
use that trick to enclose any pre-formatted block of text.

A note on flow and standalone modes before we continue

If you just want to use DbFit for database tests, and not integrate them
with .NET/Java tests, then you can skip the next chapter. However, you
will see references to flow and standalone mode in Chapter 4which might
confuse you, so here is a short explanation.

If you connect to the database as suggested in this chapter, using
SqlServerTest, MySQLTest or a similar table, then you are using flow mode. In
that case, the test type you choose is controlling the whole test page. The
standalone mode is used if you need to mix DDbFit tables with other .NET
and Java tables, and transaction and database environment control should
come from outside of DbFit. In that case, a DatabaseEnvironment table is used
to connect to the database.

17

18

Chapter 3.

DbkFit for Integration tests

This chapter introduces DbFit to Java and .NET developers, and explains
how to utilise DbFit to set up, modify and verify the data layer in .NET
or Java FIT/FitNesse tests. I will not explain how to use or set-up and use
FitNesse here, as I would expect you to already know that. If not, see htt}{:/ /
www.fitnesse.org or my book Test Driven .NET Development with FitNesse .

Why use DbFit for integration tests?

Even for projects where the database is used just as a simple persistence layer,
it has an impact on automated tests. Integration and acceptance tests should
run in an environment as close to the production environment as possible,
which today often involves a database. This means that data needs to be set
up before the test, cleaned up after, and that changes to data may need to
be verified in the database. Writing code to do this in Java and .NET is not
rocket science, but it is dull and error-prone, and I'd rather avoid it.

DbFit is an extension library to FIT that enables tests to be executed directly
against a database. DDbFit fixtures take care of all the database integration
plumbing, including automated transaction management, parameter decla-
rations and selecting the right column or parameter type. Because of this, it
is easier to write database tests with DbFit than it is to implement manual
validations.

Installing DbFit

To use DbFit fixtures in your tests, download the dbfit-dotnet-binaries pack-
age or dbfit-java-binaries package from http://sourceforge.net/projects/dbfit,
depending on which platform you are using for development. The features
and fixtures are more or less the same, but they support different databases.
DB2, Oracle and Microsoft SQL Server are supported in both .NET and Java
versions. Derby (JavaDB) and MySQL are supported only in the Java version.
Microsoft JDBC driver is not redistributable, so you'll have to download it
from their web site* and deploy in the same folder as the dbfit JAR archive.

1http://gojko.net/fitnesse/book
2http: //www.microsoft.com/downloads/details.aspx?
Familyld=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en

19

http://www.fitnesse.org
http://www.fitnesse.org
http://sourceforge.net/projects/dbfit
http://gojko.net/fitnesse/book
http://www.microsoft.com/downloads/details.aspx?FamilyId=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en

DbFit for Integration tests

Figure 3.1. Databases supported in DbFit

DbFitlava DbFit .NET
i

QOracle

MySaL

Microsoft SQL Server
Derby (JavaDB)

IEM DEZ2

¥i|

SIS

¥i|

To install DbFit, just unpack the ZIP and copy dbfit.dI1 or dbfit-XXX.jar
into your fixture path. All the test fixtures that manipulate database objects
(which will be explained in the following chapter) are in the dbfit.fixture
package/namespace. Flow-style fixtures that provide automated transaction
control are in the dbfit package/namespace. There are also some utility
classes and fixtures in the dbfit.util namespace/package.

All FitNesse features, such as symbols and markup variables, work with DbFit
fixtures as well. In addition to that, .NET symbol syntax (using >> and <<
to access symbols directly in cells) and the fail keyword work in the Java
version with DbFit fixtures.

DDbFit aims to use the same fixture classes and table structure/syntax for all
supported databases, but still provide full access to vendor-specific database
features. That is why all database-flavour specific information is abstracted
into a DBEnvironment instance (IDBEnvironment in .NET). This class is used
to connect to the database, fetch meta-data like procedure parameters or
column types, prepare and parse native queries and serve as a factory for
related object types. A database environment instance is used as configura-
tion for all DbFit fixtures. That is why all test fixtures have two construc-
tors — one default, which will use the default environment, and one which
allows the caller to specify the environment.

This is important if you want to integrate your own fixtures into the same
transaction as DbFit fixtures — you can either use the active environment
object from DbFit to retrieve the JDBC/ADO.NET connection object or
implement your own DbEnvironment instance and pass that to DbFit fixtures.
If the flow mode is used (modes will be explained shortly), the environment
is stored in a protected field of the DatabaseTest class, so you can easily access
it by extending that class (or the appropriate subclass like OracleTest). In

20

Why not use generic ADO.NET/IDBC interfaces?

standalone mode, the active environment can be set or retrieved by using
DbEnvironmentFactory class.

If you want to extend DDbFit to support a new type of database, then you
just need to implement the DbEnvironment interface. AbstractDbEnvironment has
some stubs that are re-used in all current implementations, so it may be a
good idea to start looking at that first.

Why not use generic ADO.NET/IDBC interfaces?

Although database interfaces in .NET and Java are in theory database-inde-
pendent, several key differences in SQL syntax and in driver implementation
make it virtually impossible to support effective testing with a completely
generic approach. The main differences are:

1. Reading table columns and mapping their datatypes to host types

2. Reading stored procedure/function parameters and mapping datatypes to
host types

3. Extracting parameter names from ad-hoc SQL queries
4. Building plumbing SQL commands like insert/returning primary key
5. Instantiating objects such as DB connection, commands, or parameters

To be useful, DbFit needs to provide access to vendor-specific features as well
as to generic features, so the database-connectivity layer had to be abstracted
one level more.

Connecting to the database
DDbFit fixtures can work in two modes:

+ Flow mode: a DatabaseTest fixture controls the whole page and coordinates
testing. You can use other fixtures as well, but no other fixture can take
over flow mode processing. In flow mode, DbFit automatically rolls back
the current transaction at the end to make tests repeatable, and provides
some additional features such as inspections of stored procedure error
results.

+ Standalone: you can use individual fixtures without a DatabaseTest coor-
dinating the whole page. In this case, you are responsible for transaction
management. This enables you to have more control over the database
testing process, and even supply your own database connection to make
sure that Java/.NET integration tests are running in the same transaction.

21

DbFit for Integration tests

The mode in which you are using DbFit fixtures affects how you connect to
the database and how the connection is shared between fixtures. Note that
in flow mode, the methods of the DatabaseTest class have the same names
as the fixtures they relate to. If you import the namespace/package for stan-
dalone fixtures, the table syntax in both modes is the same in most cases.
The flow mode is there to provide you with better isolation and automated
transaction management. Standalone mode is there to allow you to have
greater control over the database calls and to allow you to embed DbFit
fixtures in your flow-style tests.

@ Which mode should | use?

If you can, use flow mode. It gives you automatic transaction
management and some other shortcuts. If your test relies on
some other fixture controlling the page in flow mode, use stan-
dalone fixtures. The syntax is, in most cases, the same.

Connecting in flow mode

In flow mode, the current database connection is kept in a protected field
of the DatabaseTest instance. SqlServerTest is a subclass of DatabaseTest that
just initialises it to work with SqlServer 2005. Similarly, Sq1Server2000Test
initialises DatabaseTest such that it will work with SqlServer 2000. OracleTest
works with Oracle databases, DB2Test with IBM DB2, DerbyTest with Derby
(JavaDB) and MySQLTest connects to MySQL. All of these fixture classes are in
the dbfit namespace/package.

Use the Connect method to initialise the database connection. Pass the server
(optionally followed by the instance name), username, password, and the
database name as arguments. This is how I connect to a SqlServer 2005
Express3 instance on my laptop:

!'|dbfit.SqlServerTest|
!'|Connect |LAPTOP\SQLEXPRESS | FitNesseUser|Password|TestDB|

If you are connecting to a default database, you can omit the fourth param-
eter. For the .NET version, you can do this for Oracle, because the second
argument is the TNS Name. The Java version of DbFit uses the Thin driver
for Oracle, and expects the second argument to be the host name (with an
optional port) and the fourth argument to be the service identifier.

3 free version of SqlServer 2005 for developers. See http://www.microsoft.com/sql/editions/express/.

22

http://www.microsoft.com/sql/editions/express/

Connecting in standalone mode

If you want to use non-standard connection properties, or initialise your
connection differently, call Connect with a single argument — the full
ADO.NET or JDBC connection string. Here is an example:

|Connect|data source=Instance;user id=User;password=Pwd;database=TestDB; |

You can use this feature, for example, to utilise Windows integrated authen-
tication or to use the OCI driver for Oracle under Java.

For flow mode to work correctly, the SqlServerTest fixture must be the first
one on the page —not even import can be before it. This is why we explicitly
specify the namespace.

DbFit does not require any special database privileges other than what is
required to execute the commands that you specify directly. DbFit will
attempt to read the schema meta-data, but select access to those tables
should be allowed in most cases by default. For a detailed list of meta-data
tables accessed, see section “Does DbFit require any special database privileges?”
on page 50.

2 Fixture class is more important than connection string

Connection strings in both .NET and Java may allow you to
specify the type of database provider — effectively the kind of
database you are connecting to. Theoretically you could instan-
tiate a SQL Server test fixture and pass an Oracle connection
string, but this will not work in practice. Test fixture already
contains database-specific logic, so it will not work with an
incompatible connection string.

Connecting in standalone mode

In standalone mode, the connection properties are stored in the public
DefaultEnvironment singleton field inside dbfit.DbEnvironmentFactory. You can
initialise it from your own fixtures if you want to pass an existing database
connection (to make sure that your .NET tests are using the same transac-
tion as DDbFit fixtures). From FitNesse pages, you can use the DatabaseEnvi-
ronment fixture from the dbfit.fixture package to define the connection. To
change the default environment (or initialise it for the first time), pass the
new environment type as the first argument to the fixture. Environment
type values are as follows:

« SQLServer 2005 — SQLSERVER

23

DbFit for Integration tests

« Earlier versions of SQL Server — SQLSERVER2000
+ Oracle — ORACLE

+ MySQL —MysQL

DB2 —DB2

+ Derby (JavaDB) — DERBY

.

DatabaseEnvironment is a SequenceFixture that wraps the DefaultEnvironment
singleton as a system under test, so that you can then call all of its public
methods directly — including the Connect method explained earlier.

| import|
|dbfit.fixture|

!'|DatabaseEnvironment|SQLSERVER|
| Connect | LAPTOP\SQLEXPRESS | FitNesseUser|Password|TestDB|

Notice that there is no space between DatabaseEnvironment and Connect — they
have to be in the same table. Because we are not using flow mode, we can
use the import fixture as well. Most DbFit fixtures are in the dbfit.fixture
namespace, so it is a good practice to include this namespace.

Storing connection properties in a file

You can also store connection properties in a file, then initialise the connec-
tion using the ConnectUsingFile method. This allows you to hide actual
database usernames and passwords from FitNesse users, should you need to
do so.

ConnectUsingFile has only one argument — the path of the file on the server,
either absolute or relative to the folder from which you started FitNesse (the
one containing run.bat. The connection properties file is a plain text file,
containing key/value pairs separarted by the equals symbol (=). Lines starting
with a hash (#) are ignored. Use the following keys (they care case-sensitive):

1. service —service name. In the previous example, it was LAPTOP\SQLEXPRESS.

2. username —username to connect to the database. In the previous example,
it was FitNesseUser.

3. password — password to connect to the database. In the previous example,
it was Password.

4. database — optional fourth argument, allowing you to choose the active
database. In the previous example, it was TestDB.

24

Transaction management

5. connection-string —alternative to the four previous parameters, this allows
you to specify the full connection string. This parameter should not be
mixed with any of the four other keys. Use either the full string or specify
individual properties.

Here is an example:

DBFit connection properties file
#
#1) Either specify full connection string
#connection-string=

#
#2) OR specify service, username and password as separate properties
service=localhost

username=root

password=

#foptionally specify a database name

database=dbfit

Transaction management

In flow mode, the current transaction is automatically rolled back at the end
of the page. If you want to commit it to make changes permanent, put the
Commit table on the page. There are no arguments or additional parameters
—the table contents contain just this one word. Likewise, you can roll back
manually in your test using the Rol1back table.

In standalone mode, use the DatabaseEnvironment fixture again, but do not
specify a fixture argument. This tells the DatabaseEnvironment to use the
current default database connection, without attempting to initialise it. Call
Commit or Rollback in the second row.

!'|DatabaseEnvironment|
|rol1back|

It is a very good idea to put this table in a TearDown page for your test suite
when you use standalone DbFit fixtures. This will make sure that your tests
are repeatable.

25

DbFit for Integration tests

@

Can I use both modes in the same test suite?

Yes, in different tests. Note that the imported namespace may
give you some problems in flow mode. If you want to mix and
match, then either do not import the dbfit.fixture namespace
for standalone tests, or use the utility Export fixture to cancel the
namespace import after the standalone test.

|dbfit.util.Export|
|dbfit.fixture|

26

Chapter 4.

Command reference

This chapter will introduce and explain all available DbFit commands
(tables, fixture types). To see more examples, get the dbfit-complete pack-
age and run the FitNesse wiki from that package. All commands, for all
supported database, are shown in the AcceptanceTests subwiki. Examples in
this chapter are, unless stated otherwise, written for MySQL. The Accep-
tanceTests subwiki contains equivalent examples for all other supported
databases.

Set-up Script

Here is a simple script to create the objects required for examples in this
chapter (you'll also find it in the scripts directory of the dbfit-complete pack-

age):

create database dbfit;
grant all privileges on dbfit.* to dftest@localhost identified by 'dftest';
grant all privileges on dbfit.* to dftest@127.0.0.1 identified by 'dftest';

grant all privileges on dbfit.* to dbfit user@localhost identified by
"password "’ ;

grant all privileges on dbfit.* to dbfit user@l27.0.0.1 identified by
"password" ;

grant select on mysql.* to dbfit user;
flush privileges;
use dbfit;

create table users(name varchar(50) unique, username varchar(50), userid int
auto_increment primary key) type=InnoDB;

CREATE PROCEDURE ConcatenateStrings (IN firststring varchar(100), IN
secondstring varchar(100), OUT concatenated varchar(200)) set concatenated =
concat(firststring , concat(' ' , secondstring)):

create procedure CalcLength(IN name varchar(100), OUT strlength int) set
strlength =length(name);

27

Command reference

CREATE FUNCTION ConcatenateF (firststring VARCHAR(100), secondstring
varchar(100)) RETURNS VARCHAR(200) RETURN CONCAT(firststring,' ', secondstring):

create procedure makeuser() insert into users (name,username) values
('userl','fromproc');

create procedure createuser(IN newname varchar(100), IN newusername
varchar(100)) insert into users (name,username) values (newname, newusername);

create procedure Multiply(IN factor int, INOUT val int) set val =val*factor;

Working with parameters

DbFit enables you to use Fixture symbols as global variables during
test execution, to store or read intermediate results. The .NET syntax
to access symbols (>>parameter to store a value and <<parameter to read
the value) is supported in both .NET and Java versions. In addition,
you can use the Set Parameter command to explicitly set a parameter
value to a string.

|Set parameter|username|arthur|

DbFit is type sensitive, which means that comparing strings to
numbers, even if both have the value 11, will fail the test. Most
databases will allow you to pass strings into numeric arguments, but if
you get an error that a value is different than expected and it looks the
same, it is most likely due to a wrong type conversion. Keep that in
mind when using Set parameter. A good practice to avoid type problems
is to read out parameter values from a query. This will be explained
in detail soon.

You can also use the keyword NULL to set a parameter value to NULL.

Query

Query is similar to traditional FIT RowFixture, but uses SQL Query results. You
should specify query as the first fixture parameter, after the Query command.
The second table row contains column names, and all subsequent rows
contain data for the expected results. You do not have to list all columns in
the result set — just the ones that you are interested in testing.

28

Ordering and row matching

'|Query| select 'test' as x
||
| test|

Ordering and row matching

Query ignores row order by default. In flow mode, the Ordered Query command
provides order checking.

Partial key matching is supported, like in RowFixture: columns with a ques-
tion mark in their name are not used to match rows, just for value compar-
isons. You can use this to get better error reports in case of failed tests. It is
a good practice to put a question mark after all column names that are not
part of the primary key.

Rows in the actual result set and FitNesse table are matched from top to
bottom, looking for equal values in all cells that are not marked with a ques-
tion mark. If there are no key columns, then the first row will be taken as
a match (which effectively acts as the Ordered Query). All non-key columns
are used for value comparisons, not for deciding whether or not a row exists
in the result set.

Query will report any rows that exist in the actual result set and not in
the FitNesse table (those will be marked as surplus), rows that exist in
the FitNesse table but not in the actual result set (marked as missing). All
matched rows are then checked for values in columns, and any differences
will be reported in individual cells. You can use a special fail[expected value]
syntax to invert the test, making it fail if a certain value appears in the row:

This will fail because the order is wrong

|Ordered Query|SELECT n FROM (SELECT 1 as n union select 2 union select 3) x |
In|

|faill2]|

| failll]]

131

This will pass because the order is correct

|Ordered Query|SELECT n FROM (SELECT 1 as n union select 2 union select 3) x|
In|
1]
2]
Kl

29

Command reference

Using parameters

You can use query parameters (DB-specific syntax is supported, eg. @paramname
for SQLServer and MySQL, and :paramname for Oracle). Corresponding fixture
symbol values are automatically used for named query parameters.

|Set Parameter|depth|3]|

|Query |SELECT n FROM (SELECT 1 as n union select 2 union select 3 union select
4) X where n<@depth |

In|

2]

Ll

You can store elements of the result set into parameters — to re-use them
later in other queries and stored procedures. Use >>parameter to store a cell
value into a parameter. You can also use <<parameter to read a cell value from
a parameter (for comparisons, for example).

If you use the query just to read out stuff into parameters, then make sure
to mark the columns with the question mark to avoid row matching. There
will be nothing to match the rows with in this case, so a proper comparison
would fail.

!'|query|select now() as currd|
|currd?|
|>>tsevt|

To test for an empty query, you still need to specify the second row (result
set structure), but don't supply any data rows.

Avoiding parameter mapping
If you want to prevent DbFit from mapping parameters to bind variables (eg

to execute a stored procedure definition that contains the @ symbol in Sql
Server), disable bind symbols option before running the query.

|set option|bind symbols|false|
|execute| insert into users (name, username) values ('Ghey', 'uuu')|

|query|select * from users|
|name |username |

30

Multi-line queries and special characters

‘ |@hey |uuu|

Remember to re-enable the option after the query is executed. You can use
the same trick with the Execute command.

Multi-line queries and special characters

You can use multi-line queries by enclosing them into !- and -!. This will
also prevent any special character formatting. This trick can also be used
with Oracle to prevent the concatenation operator || from being treated as
a FitNesse cell boundary.

|Ordered Query|!-
select n from (
select 1 as n union
select 2 union
select 3)

Working with padded chars

Some databases treat CHAR type as fixed length and fill content up to the
specified length with spaces. FitNesse strips trailing spaces by default from
cell contents, which makes it hard to compare CHAR types. DbFit provides a
workaround for this, that must be enabled manually since it modifies stan-
dard string parsing. To enable this option, include the following table in
your tests:

|set option|fixed Tength string parsing|true|

After that, you can enclose strings into single-quotes ('my string') and put
trailing spaces before the closing quote. This allows you to ensure that the
correct length of the string is used for comparisons. Here is an example (this
example is for SQL Server, since MySql strips trailing spaces):

13 use fixed string length parsing to test blank-padded chars
|Execute|Create table datatypetest (sl char(10), s2 nchar(10))|

|set option|fixed Tength string parsing|true|

31

Command reference

|insert|datatypetest|
|s1]s2|
| testch|testnch|

direct comparison will fail

|query|select * from datatypetest|

[s17]s2?]

| fail[testch]|failltestnch]|

use single quotes to pad to appropriate Tength
|query|select * from datatypetest|

[s17]s2?]
| 'testch "|"testnch |

Insert

Insert is the database equivalent of FitLibrary SetupFixture — it builds an
insert command from the parameters in a data table (and executes the insert
once for each row of the table). The view or table name is given as the first
fixture parameter. The second row contains column names, and all subse-
quent rows contain data to be inserted.

|Execute|Create table Test DBFit(name varchar(50), luckyNumber int)|

| Insert|Test DBFit|
|name | TuckyNumber |
|pera|1]
|nujal2|
|nnn| 3|

|Query|Select * from Test DBFit|
|name | Tucky Number |

|peral1]

[nujal2|

|nnn| 3|

|Execute|Drop table Test DBFit|

Storing auto-generated values

Columns with a question mark are used as outputs. When an output column
is used, it will contain the value of the column in the new record. This is

32

Storing auto-generated values

especially handy for retrieving an auto-generated primary key. For Oracle,
this works regardless of whether the column was actually the ID or some-
thing else populated with a trigger. For MySQL and SQL Server, only single-
column actual primary keys can be returned. The only thing that makes
sense to do at this point is to store values of the output cells into variables.

13 Use ? to mark columns that should return values

'|Insert|users|
|username | name |userid? |
|pera|Petar Detlic|>>pera|
[Mika|Mitar Miric|>>mika|

| Zeka|Dusko Dugousko|>>zeka|
|DevNuTT |nulT|>>nTT|

13 Confirm that IDs are the same as in the database

!'|Ordered Query|Select * from users|
|username | name |userid|

|pera|Petar Detlic|<<pera|
[Mika|Mitar Miric|<<mika|

| Zeka|Dusko Dugousko|<<zeka|
[DevNul T [nulT|<<nlT|

13 Stored values can be used in queries directly
|Query|Select * from users where userid=0zeka|

|username|name |userid|
|Zeka|Dusko Dugousko|<<zeka|

When the test runs, you will see actual values being stored into variables
Figure 4.1).

33

Command reference

Figure 4.1. Insert can return auto-generated keys

Update

Update allows you to quickly script data updates. It builds the update
command from the parameters in a data table and executes the update once
for each row of the table. Columns ending with = are used to update records
(cell specifies new data value). Columns without = on the end are used to
select rows (cell specifies expected column value for the select part of update
command). The view or table name is given as the first fixture parameter.
The second row contains column names, and all subsequent rows contain
data to be updated or queried. This example updates the username column

€-H-C0@

5]

MEL

] TestResult

alz

USE ? TO MARK COLUMNS THAT SHOULD RETURN VALUES

Insert users

username name userid?
pera Petar Detlic >>pera = 47
Mika Mitar Miric >>mika = 48
Zeka Dusko Dugousko >>zeka = 49
DevNull null >>nll = 50

CONFIRM THAT IDS ARE THE SAME AS IN THE DATABASE

username name userid

pera Petar Detlic <<pera = 4/
Mika Mitar Miric <<mika = 48
Zeka Dusko Dugousko <<zeka = 49
DevhNull null <<nll = 50

STORED VALUES CAN BE USED IN QUERIES DIRECTLY

Query Select * from users where userid=@zeka
username name userid
Zeka Dusko Dugousko <<zeka = 49

where the name matches arthur dent.

[Ca

|insert|users|

| name | username |

|arthur dent|adent|

| ford prefect|fpref]|

| zaphod beeblebrox|zaphod |

update	users
username=	name
adent2	arthur dent

|query|select * from users
| name | username |
|arthur dent|adent?2|

34

Execute Procedure

| ford prefect|fpref|
| zaphod beeblebrox|zaphod|

You can use multiple columns for both updating and selecting, and even
use the same column for both operations. You can also use parameters —eg.
<<paramname — in any cell.

Execute Procedure

ExecuteProcedure is the equivalent of ColumnFixture. It executes a stored proce-
dure or function for each row of data table, binding input/output parameters
to columns. The procedure name should be given as the first fixture param-
eter. The second row should contain parameter names (output parameters
followed by a question mark). All subsequent rows are data rows, containing
input parameter values and expected values of output parameters. Parameter
order or case is not important, you can even insert blanks and split names
into several words to make the test page more readable.

13 execute procedure allows multiple parameters, with blanks in names

!'|Execute Procedure|ConcatenateStrings|
first string	second string	concatenated?
Hello	World	Hello World]
Ford	Prefect	Ford Prefect

You can store any output value into a parameter with the >> syntax or send
current parameter values to procedure using << syntax.

To use IN/OUT parameters, you'll need to specify the parameter twice. Once
without the question mark, when it is used as the input; and one with the
question mark when it is used as output.

13 IN/QUT params need to be specified twice

|execute procedure |[Multiply|
| factor|val|val?|
|5]10]50]

If the procedure has no output parameters, then the Execute Procedure
command has no effect on the outcome of the test — unless an error occurs
during processing. If the procedure has output parameters, then those values
are compared to expectations specified in the FitNesse table, and are used
to determine the outcome of the test.

35

Command reference

For the case where no parameters are passed to function/procedure, Execute
Procedure can be specified with just one row (without a row for column
header names).

13 If there are no parameters, Execute Procedure needs just one row
I'|Execute Procedure|MakeUser |

|query|select * from users|
|name |username |

|userl|fromproc|

Calling Functions

If a function is getting called, then a column containing just the question
mark is used for function results.

13 Stored functions are treated Tike procs - just put ? in the result column
header

!'|Execute Procedure|ConcatenateF |
first string	second string	?
Hello	World	Hello World
Ford	Prefect	Ford Prefect

13 7 does not have to appear on the end (although it is a good practice to put
it there)

!'|Execute Procedure|ConcatenateF |
second string	?	first string
World	Hello World	Hello
Prefect	Ford Prefect	Ford

Expecting exceptions

In flow mode, this command can also be used to check for exceptions during
processing. Normally, the test would fail if a database exception occurs.
However, if you want to test a boundary condition that should cause an
exception, then use Execute procedure expect exception variant of the Execute
procedure command. You can even specify an optional exception code as the
third argument. If no exception code is specified, then the test will pass if
any error occurs for each data row. If the third argument is specified, then
the actual error code is also taken into consideration for failing the test.

‘ I3 create a user so that subsequent inserts would fail

36

Execute

!'|execute procedure|createuser|
|new name|new username|
|arthur dent|adent|

13 check for any error

! |execute procedure expect exception|createuser|

|new name|new username|

|arthur dent|adent|

13 check for a specific error code

! |execute procedure expect exception|createuser|1062|

|new name|new username|
|arthur dent|adent|

For detailed exception code verifications to work with SQL Server, user
message must be registered for that particular error code, or SQL Server
throws a generic error code outside the database. Here is how you can declare
your error code:

sp_addmessage @msgnum = 53120, @severity=1, @msgtext = 'test user defined error
msg'

Execute procedure expect exception variant is not directly available as a sepa-
rate table in standalone mode. If you need this functionality in standalone
mode, then extend the ExecuteProcedure fixture and call the appropriate
constructor. That class has several constructors for exceptions and error
codes.

Execute

Execute executes any SQL statement. The statement is specified as the first
fixture parameter. There are no additional rows required for this command.

You can use query parameters in the DB-specific syntax (eg. @paramname for
SQLServer and MySQL, and :paramname for Oracle). Currently, all parameters
are used as inputs, and there is no option to persist any statement outputs.

13 to execute statements, use the 'execute' command
|Execute|Create table Test DBFit(name varchar(50), TuckyNumber int) |

|Execute|Insert into Test DBFit values ('0bi Wan',80)|

37

Command reference

|Set parameter|name|Darth Maul |

|Execute|Insert into Test DBFit values (@name,10) |
|Query|Select * from Test DBFit|

|Name | Lucky Number |

|Darth Maul|10]|

|Obi Wan|80|

|Execute|Drop table Test DBFit|

Inspect

Inspect is a utility fixture class used to quickly extract meta-data information
from the database, and print it out in a form which can be easily converted
into a test. It can work in three modes: Query, Table or Procedure. In the Query
mode, it expects a full query as argument (bound variables are supported),
and prints out both the result structure and result data. In the Table mode, it
expects a table or view name as an argument and prints out the table or view
column names (without actual data, just the structure). In Procedure mode,
it expects a procedure name as an argument and prints out the procedure
parameter names. These tables can be easily converted into Query, Execute
Procedure, Insert or Update tables.

In flow mode, these three inspections are available as individual commands
Inspect query, Inspect table and Inspect procedure. In standalone mode, you
can extend the Inspect fixture and set the appropriate mode manually while
calling the constructor.

13 Inspect Procedure prints procedure arguments to be used for Execute procedure
!'|Inspect Procedure|ConcatenateStrings|

13 Inspect Table prints table/view columns to be used for Insert/Update/Query
procedure

!'|Inspect Table|users|

13 Inspect query prints columns and data
| Insert|users|

|name|username |

|david haselhoff|dhoff|
|arthur dent|adent|

38

Store Query

‘ !'|Inspect query|select * from users|

Figure 4.2. Inspect makes regression tests easier to write

[) Test Resuts: AcceptanceTests JavaTests. My SqlTests.FlowMode.InspectTests - Mozilla Firefox

Histlory Bookmarks Tools Help
@ [C -[») @]

] Test Results: FE -FitNesse.nfo -, MySQL : MySQL 5.0 Reference

INSPECT PROCEDURE PRINTS PROCEDURE ARGUMENTS TO BE USED FOR EXECUTE PROCEDURE

& e Inspect Procedure ConcatenateStrings
) firststring secondstring concatenated?

_ INSPECT TABLE PRINTS TABLE/VIEW COLUMNS TO BE USED FOR INSERT/UPDATE/QUERY PROCEDURE

Inspect Table users
name username userid

INSPECT QUERY PRINTS COLUMNS AND DATA

insert
EZE e usemame

david haselhoff dhoff
arthur dent adent

Inspect query select * from users

name username userid
david haselhoff|dhoff 9

arthur dent adent 10 ’7

5|
o

When the test is executed, FitNesse will append meta-data and results to the
test tables in gray color (Figure 4.2). To convert the results into a new test,
select the entire table in the browser, directly from the rendered results page
(not from the HTML source or wiki source), and copy it. Internet Explorer
allows you to get just a few rows at a time, while in some versions of Firefox
you have to select the entire table in order to copy it properly. Edit the test
page, delete the old table and paste the contents of the clipboard into the
page editor. You should see the results table with column values separated by
tabs. Click the Spreadsheet to FitNesse button below the editor text box. This
turns the tab-separated results table into a FitNesse test table, converting
the tabs into pipes to separate cells and even putting the exclamation mark
before the first row automatically.

Store Query

Store Query reads out query results and stores them into a Fixture symbol for
later use. Specify the full query as the first argument and the symbol name
as the second argument (without >>). You can then use this stored result set
as a parameter of the Query command later:

|Store Query|select n from (select 1 as n union select 2 union select 3) x|
firsttable|

39

Command reference

|query|<<firsttable|
In|
|1]
2]
3]

You can also directly compare two stored queries and check for differences.

Compare Stored Queries

Compare Stored Queries compares two previously stored query results. Spec-
ify symbol names as the first and second argument (without <<). The query
structure must be listed in the second row. (Use Inspect Query to build it
quickly if you do not want to type it.) Column structure is specified so
that some columns can be ignored during comparison (just don’t list them),
and for the partial row-key mapping to work. Put a question mark after the
column names that do not belong to the primary key to make the compar-
isons better. The comparison will print out all matching rows in green
(Figure 4.3), and list rows that are in just one query with red (and fail the test
if such rows exist). If some rows are matched partially, just by primary key,
differences in individual value cells will also be shown and the test will fail.

|execute|create table testtbl (n int, name varchar(100))

Ilinsert|testtbl|
[n|name|
1	NAMEL
3	NAMES
2	NAME2

|Store Query|select * from testtbl|fromtable|

|Store Query|select n, concat('NAME'.n) as name from (select 1 as n union
select 3 union select 2) x|fromdual |

|compare stored queries|fromtable|fromdual|
[name|n?|

|execute|drop table testtbl|

40

Compare Stored Queries

Figure 4.3. Comparing stored queries

®*

- €

>3

5] ~[»] [G-] < -8

Test Result oz N, MySQL :: MySQL 5.0 Reference.

execute create table testtbl (n int, name varchar(100))

@ insert testtbl
L n name
1 NAME1
Test 3 NAME3
. 2 e
Store Query select * from testtbl fromtable
Store select n, concat('NAME',n) as name from (select 1 as n union select 3 union
fromdual
Query select 2) x
compare stored queries fromtable fromdual
name n?
NAME1 1
NAME3 B
NAME2 2

execute drop table testtbl

PREt Drniart an Canrrafarna | NREit dnrimantatinn and rafaranca | Cammante and faadharl

Transaction control

By default, each individual test (FitNesse page) in flow mode is
executed in a transaction that is automatically rolled back after the
test. In standalone mode, you are responsible for overall transaction
control.

If in flow mode, you can use the Commit and Rollback commands to
control the transactions manually, but remember that a final rollback
will be added at the end of the test. These commands have no addi-
tional arguments.

In standalone mode, you will probably control transactions from
outside DbFit. Utility commands to commit and rollback are still
provided, if you need them, as part of the DatabaseEnvironment fixture.
For example, use this table to rollback:

!'|DatabaseEnvironment|
|RoTTback|

41

42

Chapter 5.

Best practices

Once you are ready to start creating database unit tests or integrating DbFit
fixtures into your acceptance tests, you can ensure that your tests will be
more easily maintained in the future by taking just a few moments to organ-
ise them now.

Initialising tests

We've already mentioned that it is a good practice to initialise the database
connection on a suite's SetUp page. Another thing to consider is whether
you need to clear values stored in symbols. FitNesse persists symbol values
from one test to the next in a Suite run. If you are using symbols in DbFit
tables to store primary keys or other values, you may need to clear the values
from your symbols before each test run. The flow-mode of DbFit provides
the ClearParameters method which is just called within its own table:

!'|ClearParameters |

Calling this method on your Suite's SetUp page will help prevent "false fails"
due to symbol values being persisted between tests in a Suite run.

Markup variables can help you keep your data straight

Say you are testing a feature in a contact management system that allows
users to update a contact's details. Assume for now that only a contact's
first, middle, and last name are editable. An outline for a test might be:

+ Set-up a contact record in the database with values in the firstname,
middlename, and lastname columns

- Update the contact's details in the application under test

« Verify that the contact record was updated correctly in the database

Assuming a developer has created an ActionFixture for the contact update
feature, your test may look something like this:

!'|Insert|Contacts|
|FirstName|MiddleName [LastName|ContactID? |

43

Best practices

|Joan|Of |Arc|>>contactID|

!'|ActionFixture|
start	ContactManager.ContactUpdateFixture	
enter	ContactID	<<contactID
enter	FirstName	Johnny
enter	MiddTeName	Apple
enter	LastName	Seed

|press |Submit|

!'|Query |SELECT FirstName, MiddleName, LastName FROM Contacts WHERE ContactID =
@contactID|

|FirstName|MiddleName|LastName|

| Johnny |Apple|Seed|

Creating similar tests seems pretty straightforward — you can just copy the
contents of your test page into a new test page. You'll just need to remember
to change the original and updated data values in your set-up, ActionFixture,
and verification tables to suit the needs of each new test. This approach
seems manageable until you have to deal with 30 fields instead of 3, or with
10 related records instead of 1. FitNesse markup variables can help prevent
copy/paste mistakes and can make creating similar tests a bit faster. Using
the previous example, here is what the contents of the test page would look
like with markup variables, and as a rendered page in FitNesse:

!define originalFirstName {Joan}
!define originalMiddleName {Of}
!define originallLastName {Arc}
!define updatedFirstName {Johnny}
!define updatedMiddleName {Apple}
!define updatedLastName {Seed}

!'|Insert|Contacts|
|FirstName|MiddleName|LastName |ContactID? |
|${originalFirstName}|${originalMiddleName}|${originallastName}|>>contactID|

!'|ActionFixture|
start	ContactManager.ContactUpdateFixture	
enter	ContactID	<<contactID
enter	FirstName	${updatedFirstName}
enter	MiddleName	${updatedMiddleName}
enter	LastName	${updatedLastName}

|press |Submit|

!'|Query |SELECT FirstName, MiddleName, LastName FROM Contacts WHERE ContactID =
@contactID|
|FirstName|MiddleName |LastName |

44

Reusing DbFit tables

‘ | ${updatedFirstName} | ${updatedMiddieName} | ${updatedLastName} |

Figure 5.1. A rendered Test page with markup variables

Test

Edit

Insert Contacts

FirstName MiddleName LastName ContactiD?
Joan of Arc »>contactlD

Versions
Properties

Refactor

Where ActionFixture

start ContactManager.ContactUpdateFixture

enter Contact|D <<contactlD
RecentCha enter FirstName Johnny

enter MiddleName Apple

enter|LastName Seed

UGN E0B0RE. >

press Submit

Query SELECT FirstName, MiddleName, LastName FROM Contacts WHERE ContactID = @contact|D
FirstName MiddleName LastName
Johnny Apple Seed

Now to create a new test, you'll only need to update the values for the 6
markup variables, instead of updating 9 cells. This type of test template will
come in handy when your application under test grows in functionality and
complexity.

Reusing DbFit tables

Unless you have a script that populates your test database with the data
required for all tests, you will probably need to use some of your DbFit tables
in more than one test for the purpose of setting up test data. (Even if you
have a data set-up script, you may need to perform similar data verifications
in multiple tests). Sure, you could copy your DbFit tables into multiple test
pages...but what happens when a database column name is changed? Using
the previous example, if you've got 100 tests that insert a record into the
Contacts table, you've got 100 test pages to update if the LastName column
is renamed to Surname.

The !include widget in FitNesse allows you to include all of the content
from an existing page into another page. So, just as a database developer
may create a stored procedure to perform a common action, we can create
reusable DbFit tables that may be included on multiple test pages.

45

Best practices

Included pages are displayed in a collapsible region, so that users can hide
that part of the page. Use !include -c PageName to make it hidden by default
(this is handy if the included part is just preparing data for the test). Use !
include -seamless PageName to include pages directly, without displaying the
border around the included region or allowing people to hide it.

First, it is a good idea to create a main wiki in which to store your reusable
pages. Create a new top-level page in FitNesse and name it UtilityPages or
something similar. Continuing with the previous example, we could create
a new page in the UtilityPages wiki named InsertContact. It would contain
the DDbFit Insert table from your test:

!'|Insert|Contacts|
|FirstName|MiddleName|LastName|ContactID? |
|${originalFirstName}|${originalMiddleName}|${originallastName}|>>contactID|

You can do the same for the Query table, naming the reusable page VerifyUp-
datedContact or something similar. The last step would be to update your
test page to include the DDbFit tables from your UtilityPages wiki.

!define originalFirstName {Joan}
!define originalMiddleName {Of}
!define originallLastName {Arc}
!define updatedFirstName {Johnny}
!define updatedMiddleName {Apple}
!define updatedLastName {Seed}

linclude .UtilityPages.InsertContact

!'|ActionFixture|
start	ContactManager.ContactUpdateFixture	
enter	ContactID	<<contactID
enter	FirstName	${updatedFirstName}
enter	MiddleName	${updatedMiddieName}
enter	LastName	${updatedLastName}
press	Submit	

linclude .UtilityPages.VerifyUpdatedContact

Save the test page, and it will be rendered with the contents of the Insert-
Contact and VerifyUpdatedContact pages (Figure 5.2).

Now, if the Contacts table changes, you'd only have to update your 2 pages
that reference the Contacts table directly instead of potentially dozens or
hundreds of tests pages.

46

Reusing DbFit tables

Figure 5.2. A rendered Test page with included DbFit tables

Test

Versions

Refactor

Where

Used

RecentCha

Files

3
3
o
D
&

Y included page: UtilityPages.insertContact

Insert Contacts
FirstName MiddleName LastName ContactID?
Joan of Arc »>contactiD

ActionFixture
start ContactManager.ContactUpdateFixture

enter Contact|D <<contactlD
enter FirstName Johnny
enter MiddleName Apple
enter|LastName Seed

press Submit

¥ Inciuded page: UtilityPages.VerifylipdatedContact

Query SELECT FirstName, MiddleName, LastName FROM Contacts WHERE ContactID = @contact|D

FirstName MiddleName LastName
Johnny Apple Seed

47

48

Fretluently asked questions

I'd like to use DbFit with Sybase/PostGRE. Is that possible?

Implementing support for a new database takes less than one working day,
if you know your way around the database internals. Just implement a new
DbEnvironment variant and fire away. Sybase, PostGRE and similar databases
are not supported simply because I do not have a test database at hand and
do not know enough about those systems to extract all relevant meta-data.
If you need can provide a test database and one person who can help with
database meta-data extraction, please contact me and I'll help with imple-
menting support for your database.

NULLs and blank cells

I need to insert null values to several columns, but I get an error message if a
column is empty ‘Cannot use input parameters as output values. Please remove
the question mark after .

In FitNesse, empty cell generally means “print the current value, don't test”.
That is why you get the message that the input parameter (insert value)
cannot be used for output. Use the keyword NULL to insert nulls.

DbFit complains that it cannot read columns or parameters. What's
wrong?

When [try to insert (or execute a procedure), DbFit complains that it “Cannot
read columns/parameters for object”. What's wrong?

There are two possible causes of this problem:

The first is that you misspelled the procedure or table name (it is obvious,
but people keep reporting problems caused by this, so I'd like to suggest
double-checking that first). Keep in mind that DbFit is executing under the
privileges of the user that you supplied in the Connect command, so it may
need a schema prefix to see your objects.

The second possible cause is that the current user does not have access
to table or procedure metadata. See section “Does DbFit require any special
database privileges?” on page S50for detailed information on required
privileges.

49

Frequently asked questions

Does DbFit require any special database privileges?

DDbFit generally goes not require any special privileges for the database. The
only important thing is that the user whose credentials you are using to
run the test pages has at least read-only access to the schema meta-data. For
MySq]l, that means select grants on mysql.proc and information_schema.columns
tables. For Oracle, that means access to all_arguments, all tab columns
and all synonyms. For SqlServer, that means access to sys.columns and
sys.parameters tables.

Does DbFit support VARBINARY columns?

Yes, and it treats them as arrays of bytes. You can use the standard FitNesse
syntax for byte arrays (comma-separated list of values), or you can use the
OxHEXDIGITS syntax if you activate the byte array handler. |CellHandler-
Loader| |Load|dbfit.util.ByteArrayHandler|

My stored procedure returns a result set. How do | use it?

In Oracle, you can store the REF CURSOR output parameter into a variable
(using >>varname) and then execute a query with that variable:

|Query |<<varname|

With SQL Server, there are no typically output arguments, but a stored proce-
dure just opens a cursor. You can use the Query table directly against it. If you
would like to use a parameter, put exec before the procedure name:

|set parameter|hm|3|

|query|exec Tistusers p @hm|
|name |username |

userl	user name 1
user2	user name 2
user3	user name 3

DbFit says that my VARBINARY is System.Byte][]

You see System.Byte[] because that is how .NET prints a byte array. The object
should have been stored correctly as a byte array, and you should be able to
use OxHEXDIGITS syntax for comparisons. See BinaryTests acceptance test
for examples.

50

Does DbFit support GUID columns?

Does DbFit support GUID columns?

Yes, but you may need to activate that support manually. DbFit has a non-
standard extension for FITNET which allows it to “understand” GUID fields.
That is being implemented now in the standard FIT.NET test runner, so you
may not need to load it manually in the future. In any case, put this table
in your test to load the GUID handler:

|CelTHandlerLoader |
|Load|dbfit.util.GuidHandler|

This table should come below the test type definition (below SQLServerTest).

DbFit complains about an unsupported type. What's wrong?

To handle types properly, DbFit requires a bit of additional information that
does not come from typical database driver meta-data. That is why there
is some small amount of work involved in supporting each column type.
You can see a list of supported data types for each database server in the
AcceptanceTests suite. If you are using a column/parameter type that is not
there, then no one asked for that yet. Please contact me and I'll be happy
to extend DbFit to support that type.

Can you extend DbFit to support Oracle collection types?

A short answer is “Not easily”. The .NET version uses Microsoft's
Oracle .NET driver because Oracle ODP requires binary client compatibility
(if DbFit is compiled for ODP 9, it will not work with Oracle 10 or 11, and
vice-versa). If you really desperately need this, I can create a version-specific
variant of ODP driver support for you, with support for Oracle collection
types. I started implementing this in the Java version, but it turned out that
proper use of Oracle collections in JDBC requires Oracle-specific extensions
and meta-data which currently does not get loaded in DbFit. This would
require restructuring in the way that DbFit handles types, so it is on my
roadmap for some future release, but not a priority. If you need it sooner,
contact me.

How can we use Windows-integrated authentication?

Instead of calling connect with three or four separate arguments, call it with
just one argument and specify the full .NET or J]DBC connection string. If
you are a database develeoper and don't know about those things, ask a .NET
or Java developer in your organisation to help you out.

51

Frequently asked questions

DBFit complains about invalid fixtures/methods

If you want to use DbFit in flow mode, then DbFit test name should be the
first table on the page — not even imports, cell handler loaders or any set-
up can come before it. If you want to use some other fixture to control the
flow, then use DDbFit in standalone mode.

Why does DbFit not see the time portion of my Date fields?

This issue affects Oracle users on the Java version of DbFit. Oracle's JDBC
driver strips the time from Date columns since version 9, so no amount of
magic on the client side can fix that. see Oracle JDBC FAQ' for more infor-
mation.

In the JDBC FAQ, Oracle suggests setting -Doracle.jdbc.V8Compatible="true"
to map dates to timestamps. That should instantly solve your problem, but
[don't know what else is triggered by that flag. If you want to experiment,
change the batch file that starts FitNesse and add that before the FitNesse
class name.

DbFit complains about registering a SQL Server driver

This issue affects SQL Server users in the Java version of DbFit, and the
message displayed on the screen after the Connect command is Cannot regis-
ter SQL driver com.microsoft.sqlserver.jdbc.SQLServerDriver. You need to
download Microsoft SQL Server JDBC driver from their sitez, it is not open-
source and I cannot distribute it with DbFit. Deploy the JAR in the same
folder as dbfit-XXX.jar. If you specify the full JDBC connection string explic-
itly, use Microsoft’s driver in JDBC URL. DbFit does not support 3rd party
SQL Server drivers at the moment.

1http: //www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#08_01
2http: //www.microsoft.com/downloads/details.aspx?
Familyld=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en

52

http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#08_01
http://www.microsoft.com/downloads/details.aspx?FamilyId=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=C47053EB-3B64-4794-950D-81E1EC91C1BA&displaylang=en

	Test Driven Database Development With DbFit
	Table of Contents
	Chapter 1. Introduction
	Project goals
	Features
	What's wrong with xUnit
	How this document is organised

	Chapter 2. Database unit tests
	Installing DbFit
	Hello World from the database
	Step 1: Creating a new test page
	Step 2: Setting up the environment
	Step 3: Connect to the database
	Step 4: Testing a simple query
	Step 5: Running the test
	Traffic lights

	Managing Wiki content
	Organising pages
	Writing tests in Excel/Word
	Formatting text
	Preventing unwanted formatting

	A note on flow and standalone modes before we continue

	Chapter 3. DbFit for Integration tests
	Why use DbFit for integration tests?
	Installing DbFit
	Why not use generic ADO.NET/JDBC interfaces?
	Connecting to the database
	Connecting in flow mode
	Connecting in standalone mode
	Storing connection properties in a file
	Transaction management

	Chapter 4. Command reference
	Set-up Script
	Query
	Ordering and row matching
	Using parameters
	Avoiding parameter mapping
	Multi-line queries and special characters
	Working with padded chars

	Insert
	Storing auto-generated values

	Update
	Execute Procedure
	Calling Functions
	Expecting exceptions

	Execute
	Inspect
	Store Query
	Compare Stored Queries

	Chapter 5. Best practices
	Initialising tests
	Markup variables can help you keep your data straight
	Reusing DbFit tables

	Chapter 6. Frequently asked questions
	I'd like to use DbFit with Sybase/PostGRE. Is that possible?
	NULLs and blank cells
	DbFit complains that it cannot read columns or parameters. What's wrong?
	Does DbFit require any special database privileges?
	Does DbFit support VARBINARY columns?
	My stored procedure returns a result set. How do I use it?
	DbFit says that my VARBINARY is System.Byte[]
	Does DbFit support GUID columns?
	DbFit complains about an unsupported type. What's wrong?
	Can you extend DbFit to support Oracle collection types?
	How can we use Windows-integrated authentication?
	DBFit complains about invalid fixtures/methods
	Why does DbFit not see the time portion of my Date fields?
	DbFit complains about registering a SQL Server driver

