
In Estimating Mutual Information, Kraskov, Stögbauer, and Grassberger (KSG) extended the classical
nearest-neighbors Kozachenko-Leonenko (KL) entropy estimator by proposing make the number of nearest
neighbors k dependent on each observation in a sequence xi, i = 1, . . . , N . To do this, KSG utilized the
max-norm distance from xi to its kth point instead of the euclidean distance. This results in the formation
of a hyper-square with radius ε

2 . Then, the resulting volume V of the hyper-square can be simply found by
taking the product of each side-length; that is, V = εd, where d is the dimension of the hyper-square.

KSG propose a second algorithm based on hyper-rectangles based on the product of d hyper-squares.
The d-dimensional hyper-rectangle is constructed by constraining the sides lengths of the hyper-cube until
one of the k nearest-neighbors lies on the border or a corner between two borders of each side-length. This
is equivalent to taking the maximum norm for each dimension of the k nearest-neighbors. Here, the volume
becomes V =

∏d
i=1 εi, where εi is the ith side-length of the hyper-rectangle.
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Figure 1: Nearest-neighboring distance strategies in 2-dimensional joint space S(X,Y ). The star indicates the
current reference point;Blue points indicate points present in the SX sub-space, while red points indicate
points present in the SY sub-space. Yellow points are points present in both the SX and SY sub-spaces;
that is, the joint space S(X,Y ). (a) demonstrates the hyper-cube nearest-neighboring strategy. Note that
border points are excluded. (b) demonstrates the hyper-rectangle nearest-neighboring strategy achieved by
constraining the εX

2 radius until 1 point lies on a corner or 2 points lie on a border. Here, border points
are included. While it is possible to have more than 2 points present on the border, the probability of this
happening in continuous space is 0.

We obtain 4 equations: 2 KL entropies H(X)
(1)
KL and H(X)

(2)
KL used to estimate the entropy in the full

joint space S(X1,...,XN ) for the hyper-square and hyper-rectangle neighboring strategies, respectively; and

2 KSG entropies H(X)
(1)
KSG and H(X)

(2)
KSG used to estimate marginal entropies from sub-spaces within the

joint space for the respective neighboring strategy. They are as follows:

H(X)
(1)
KL = ψ(N)− ψ(k) + 〈log(VX,i)〉 (1)

H(X)
(2)
KL = ψ(N)− ψ(k) + 〈log(VX,i)〉+

dX − 1

k
(2)

H(X)
(1)
KSG = ψ(N) + 〈log(VX,i)− ψ(nX,i + 1)〉 (3)

H(X)
(2)
KSG = ψ(N) +

〈
log(VX,i)− ψ(nX,i) +

dX − 1

nX,i

〉
, (4)

where ψ(·) is the digamma function, ψ(x) = 1
Γ(x)

dΓ(x)
dx , k is the number of nearest neighbors in the joint

space, nX,i is the ith number of nearest neighbors contained within the marginal space SX , and VX,i is the
ith volume of the dX -dimensional hyper-cube (1) or hyper-rectangle (2).

Using the chain rule, we can clearly see that the transfer entropy is a sum of 4 joint entropies:

TEY→X = I(Xp;X− | Y −)

= H(Xp | X−)−H(Xp | X−, Y −)

= H(Xp, X−) +H(X−, Y −)−H(Xp, X−, Y −)−H(X−),

(5)
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where Xp is the present sequence of the destination variable X, X− is the delayed sequence of the
destination, and Y − is the delayed sequence of the source variable Y . Thus, working from the joint space
S(Xp,X−,Y −), we can estimate the transfer entropy in terms of one KN entropy (for the joint space) and three
KSG entropies (for the marginal spaces S(Xp,X−), S(X−,Y −), and SX−). The construction for the transfer

entropy of the first KSG algorithm utilizing hyper-squares TE
(1)
Y→X proceeds as follows:

TE
(1)
Y→X = H(X−, Y −)

(1)
KSG +H(Xp, X−)

(1)
KSG −H(Xp, X−, Y −)

(1)
KL −H(X−)

(1)
KSG

= ψ(N) +
〈
log(V(X−,Y −),i)− ψ(n(X−,Y −),i + 1)

〉
+ ψ(N) +

〈
log(V(Xp,X−),i)− ψ(n(Xp,X−),i + 1)

〉
− ψ(N)−

〈
log(V(Xp,X−,Y −),i)− ψ(k)

〉
− ψ(N)−

〈
log(VX−,i)− ψ(nX−,i + 1)

〉
=

〈
log

(
V(X−,Y −),iV(Xp,X−),i

V(Xp,X−,Y −),iVX−,i

)〉
+
〈
ψ(k) + ψ(nX−,i + 1)− ψ(n(X−,Y −),i + 1)− ψ(n(Xp,X−),i + 1)

〉
=
〈
ψ(k) + ψ(nX−,i + 1)− ψ(n(X−,Y −),i + 1)− ψ(n(Xp,X−),i + 1)

〉
.

(6)

In the same manner, we create a definition of the transfer entropy for the second KSG algorithm TE
(2)
Y→X :

TE
(2)
Y→X = H(X−, Y −)

(2)
KSG +H(Xp, X−)

(2)
KSG −H(Xp, X−, Y −)

(2)
KL −H(X−)

(2)
KSG

= ψ(N) +

〈
log(V(X−,Y −),i)− ψ(n(X−,Y −),i) +

d(X−,Y −) − 1

n(X−,Y −),i

〉
+ ψ(N) +

〈
log(V(Xp,X−),i)− ψ(n(Xp,X−),i) +

d(XP ,X−) − 1

n(Xp,X−), i

〉
− ψ(N)−

〈
log(V(Xp,X−,Y −),i)− ψ(k) +

d(Xp,X−,Y −) − 1

k

〉
− ψ(N)−

〈
log(VX−,i)− ψ(nX−,i) +

dX− − 1

nX−,i

〉
=

〈
ψ(k)−

d(Xp,X−,Y −) − 1

k
+ ψ(nX−,i)−

dX− − 1

nX−,i

− ψ(n(X−,Y −),i) +
d(X−,Y −) − 1

n(X−,Y −),i
− ψ(n(Xp,X−),i) +

d(Xp,X−) − 1

n(Xp,X−),i

〉

=

〈
ψ(k)− 2

k
+ ψ(nX−,i)− ψ(n(X−,Y −),i) +

1

n(X−,Y −),i
− ψ(n(Xp,X−),i) +

1

n(Xp,X−),i

〉
.

(7)

To meaningfully compare information flows for different proteins or between residues of the same protein,
it is important to account for the differing dynamics of each time series. We account for that here, by
normalizing the KSG transfer entropy between 0 and 1 in a manner similar to min-max feature scaling:

x′i =
xi − xmin

xmax − xmin
∈ [0, 1], (8)

where xmin and xmax represent the minimum and maximum values of the sequence xi, i = 1, . . . , N , and x′i
is the normalized mapping of the value xi.

Theoretical minimum and maximum values for the transfer entropy can be solved for by erroneously
optimizing the number of nearest neighbors in the joint space and the respective subspaces. For KSG
transfer entropy algorithm 1, the number of nearest neighbors are bounded between k − 1 and N − 2 since
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border points are excluded. Thus, solving for the theoretical minimum transfer entropy TE
(1),min
Y→X , we obtain

TE
(1),min
Y→X = ψ(k) + ψ(N − 1)− ψ(N − 1)− ψ(N − 1)

= ψ(k)− ψ(N − 1).
(9)

It is important to note, we plug in N − 1 for the subspace SX− , since it must contain at-least as many

points as found in the subspaces S(Xp,X−) and S(X−,Y −). The maximum transfer entropy TE
(1),max
Y→X is found

by maximizing the subspace SX− and minimizing the subspaces S(Xp,X−) and S(X−,Y −).

TE
(1),max
Y→X = ψ(k) + ψ(N − 1)− ψ(k)− ψ(k)

= ψ(N − 1)− ψ(k)
(10)

Finally, we solve for the normalized transfer entropy for KSG algorithm 1 NTE
(1)
Y→X :

NTE
(1)
Y→X =

TE
(1)
Y→X + ψ(N − 1)− ψ(k)

2(ψ(N − 1)− ψ(k))
∈ [0, 1]. (11)

The normalized transfer entropy for KSG algorithm 2 is obtained in a similar manner by first solving for
the maximum and minimum theoretical transfer entropies

TE
(2),min
Y→X = ψ(k)− 2

k
+ ψ(N − 1)− ψ(N − 1) +

1

N − 1
− ψ(N − 1) +

1

N − 1

= ψ(k)− 2

k
− ψ(N − 1) +

2

N − 1

(12)

and

TE
(2),max
Y→X = ψ(k)− 2

k
+ ψ(N − 1)− ψ(k) +

1

k
− ψ(k) +

1

k
= ψ(N − 1)− ψ(k).

(13)

By plugging the respective values into the min-max feature scaling formula, we obtain the normalized

transfer entropy for KSG algorithm 2 NTE
(2)
Y→X :

NTE
(2)
Y→X =

TEY→X + ψ(N − 1)− 2
N−1 − ψ(k) + 2

k

ψ(N − 1)− ψ(k) + ψ(N − 1)− 2
N−1 − ψ(k) + 2

k

=
TEY→X + ψ(N − 1)− 2

N−1 − ψ(k) + 2
k

2(ψ(N − 1)− ψ(k)) + 2
k −

2
N−1

∈ [0, 1].

(14)

Since entropy scales logarithmically, we propose to alter the normalization to a non-linear variant for
each algorithm such that the values obtained are proportional to the percentage of uncertainty reduced.

NTE
(1)
Y→X =

eTE
(1)
Y→X − eψ(k)−ψ(N−1)

eψ(N−1)−ψ(k) − eψ(k)−ψ(N−1)
∈ [0, 1] (15)

NTE
(2)
Y→X =

eTE
(2)
Y→X − eψ(k)− 2

k−ψ(N−1)+ 2
N−1

eψ(N−1)−ψ(k) − eψ(k)− 2
k−ψ(N−1)+ 2

N−1

∈ [0, 1] (16)

The NTE is dependent upon the choice for k and the sample size N . Specifically, as k approaches N or
N approaches k, the difference between TEmin

Y→X and TEmax
Y→X approaches 0.
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Figure 2: Normalized transfer entropy (NTE) displaying the linear and non-linear formulations. (a, c, e)
utilize the first KSG algorithm; (b, d, f) utilize the second KSG algorithm. The figure shows the effect
of the number of samples and number of nearest neighbors on the NTE: (a, b) N = 200, k = 4; (c, d)
N = 5000, k = 4; (e, f) N = 5000, k = 500.

We also note the increased variance found in KSG algorithm 2. While TE
(1),min
Y→X and TE

(1),max
Y→X are

equidistant from a TE
(1)
Y→X of 0, TE

(2),min
Y→X is further from a TE

(2)
Y→X of 0 than TE

(2),max
Y→X . Thus, KSG

algorithm 1 is best used when testing against a null hypothesis H0 : TEY→X = 0, while KSG algorithm 2,
which displays decreased bias, is preferable when interpreting raw transfer entropy or normalized transfer
entropy values. For this reason, we chose to use KSG algorithm 2 in the remaining calculations.
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