Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
#################### ANNOTATED ASSEMBLY ####################
set b 65 # b = 65
set c b # c = 65
jnz a 2 # if a {
jnz 1 5 #
A: mul b 100 # mul_count += 1
sub b -100000 # b = 106500
set c b #
sub c -17000 # c = 123500
# }
# while true {
B: set f 1 # f = 1
set d 2 # d = 2
# do {
E: set e 2 # e = 2
D: set g d # do {
mul g e # mul_count += 1
sub g b #
jnz g 2 # if d * e == b {
set f 0 # f = 0
# }
C: sub e -1 # e++
set g e #
sub g b #
jnz g -8 # } while e != b
sub d -1 # d++
set g d #
sub g b #
jnz g -13 # } while d != b
jnz f 2 # if f == 0 {
sub h -1 # h++
# }
F: set g b #
sub g c #
jnz g 2 # if b == c {
jnz 1 3 # return
# }
G: sub b -17 # b += 17
jnz 1 -23 # }
#################### ANNOTATED C(ISH) ####################
b = 65 # if A:
c = 65 # b = 106500
if a { # c = b + 17000
mul_count += 1 # mul_count += 1
b = 106500 # else:
c = 123500 # b = c = 65
} #
while true { # for b in xrange(b, c + 1, 17):
f = 1 # f = 1
d = 2 # mul_count += (b - 2) ** 2
do { # for d in xrange(2, b):
e = 2 #
do { # for e in xrange(2, b):
mul_count += 1 #
if d * e == b { # if d * e == b:
f = 0 # f = 0
} #
e++ #
} while e != b #
d++ #
} while d != b #
if f == 0 { # if f == 0:
h++ # h += 1
} #
if b == c { #
return #
} #
b += 17 #
} #
#################### ANNOTATED PYTHON(ISH) ####################
if A:
b = 106500
c = b + 17000
mul_count += 1
else:
b = c = 65
for b in xrange(b, c + 1, 17): # h = len(filter(is_not_prime,
f = 1 # xrange(b, c + 1, 17)))
mul_count += (b - 2) ** 2 #
for d in xrange(2, b): #
for e in xrange(2, b): # mul_count = sum([
if d * e == b: # (i - 2) ** 2 for i in xrange(...)])
f = 0 #
if f == 0: #
h += 1 #
#################### ANSWERS ####################
Part 1: we just have one iteration, and are looking for mul_count, which is
(65 - 2) ** 2 = 63 ** 2 = 3969
Part 2: we are looking for the number of primes in the given range,
106500 to 123500 inclusive, going in steps of 17. 106500 is 17 * 6264 + 12, so
we are looking for any i from 6264 to 7264 inclusive such that 17i + 12 is
prime. The following mathematica command gives the answer:
In[1]:= Length[Select[17 * Range[6264, 7264] + 12, Not@*PrimeQ]]
Out[1]:= 917