******************************************************************************** ampsci git:9e8c6a0 (dev) 2022-01-16 23:00:23 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 40; order = 9; r0_eps = 1.0e-6; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** HF core: it: 38 eps=5.2e-13 for 5p_3/2 [1.5e-15 for 2p_3/2] core: T = 863.35 ms HF valence: 23 eps=2.1e-11 for 6p_1/2 [5.2e-13 for 5d_3/2 w/ 28] val: T = 247.49 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 1e-27 -1330.118817247 -291927337.084 1) 2s_1/2 -1 1.7 2 7e-25 -212.564480266 -46652510.947 2) 2p_1/2 1 1.7 2 3e-25 -199.429485447 -43769712.801 3) 2p_3/2 -2 1.8 2 4e-25 -186.436595588 -40918103.089 4) 3s_1/2 -1 3.6 2 3e-23 -45.969744628 -10089192.756 5) 3p_1/2 1 3.8 2 2e-23 -40.448304013 -8877376.612 6) 3p_3/2 -2 3.9 2 3e-23 -37.894309797 -8316839.673 7) 3d_3/2 2 4.5 2 2e-23 -28.309506572 -6213218.519 8) 3d_5/2 -3 4.6 2 2e-23 -27.775163094 -6095943.681 9) 4s_1/2 -1 7.9 2 4e-22 -9.512820322 -2087822.733 10) 4p_1/2 1 8.9 2 3e-22 -7.446284079 -1634270.453 11) 4p_3/2 -2 9.2 2 3e-22 -6.921000315 -1518983.993 12) 4d_3/2 2 13.1 2 2e-22 -3.485618814 -765004.904 13) 4d_5/2 -3 13.2 2 2e-22 -3.396901446 -745533.693 14) 5s_1/2 -1 20.2 2 2e-22 -1.489804661 -326974.329 15) 5p_1/2 1 26.1 2 1e-22 -0.907897553 -199260.481 16) 5p_3/2 -2 27.2 2 1e-22 -0.840339103 -184433.115 E_core = -7786.6452 au; = -1.7089711e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 3e-25 -0.127368059 -27954.058 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055187355 -12112.224 15841.83 2) 6p_1/2 1 86.9 2 7e-26 -0.085615870 -18790.512 9163.55 3) 7p_1/2 1 127.6 2 2e-27 -0.042021382 -9222.627 18731.43 4) 6p_3/2 -2 87.9 2 7e-26 -0.083785466 -18388.784 9565.27 5) 7p_3/2 -2 128.8 2 4e-27 -0.041368038 -9079.235 18874.82 6) 5d_3/2 2 101.1 2 2e-26 -0.064419642 -14138.477 13815.58 7) 5d_5/2 -3 101.1 2 2e-26 -0.064529774 -14162.648 13791.41 Constructing B-spline basis with N=40, k=9. Storing: 35spdfghi Using Derevinko (Duel Kinetic Balance) type splines. Spline cavity l=0 s: (4.3e-06, 40.0)aB. Spline cavity l=1 p: (6.8e-05, 40.0)aB. Spline cavity l=2 d: (5.1e-03, 40.0)aB. Spline cavity l=3 f: (5.1e-03, 40.0)aB. Spline cavity l=4 g: (5.1e-03, 40.0)aB. Spline cavity l=5 h: (5.1e-03, 40.0)aB. Spline cavity l=6 i: (5.1e-03, 40.0)aB. Basis/core: |<4s+|4s+>-1| = 2.5e-04 dE/E(4s+) = 1.9e-03 ** OK? <4s+|20s+> = 1.1e-02 ** OK? Basis/valence: |<7p+|7p+>-1| = 5.4e-04 dE/E(7p+) = 8.7e-04 <7p+|8p+> = 1.1e-02 ** OK? Basis: T = 1.92 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.4)aB with 154 points. [i0=1436, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12737.. de= -4190.5 + 336.7 = -3853.8 k=-1 at en=-0.05519.. de= -1005.4 + 92.5 = -912.9 k= 1 at en=-0.08562.. de= -1683.3 + 177.6 = -1505.7 k= 1 at en=-0.04202.. de= -528.9 + 64.8 = -464.2 k=-2 at en=-0.08379.. de= -1513.1 + 163.4 = -1349.7 k=-2 at en=-0.04137.. de= -482.9 + 60.6 = -422.2 k= 2 at en=-0.06442.. de= -2693.4 + 267.1 = -2426.3 k=-3 at en=-0.06453.. de= -2592.4 + 248.4 = -2344.0 Writing to Sigma file: CsI.sig2 ... done. Sigma: T = 2.59 mins Solving for Brueckner orbitals (correlation potential) 6s_1/2: delta=-0.02026; eps=6.6e-13 [its= 53] 7s_1/2: delta=-0.00435; eps=5.9e-13 [its= 46] 6p_1/2: delta=-0.00795; eps=8.0e-13 [its= 52] 7p_1/2: delta=-0.00230; eps=9.8e-13 [its= 50] 6p_3/2: delta=-0.00705; eps=7.0e-13 [its= 51] 7p_3/2: delta=-0.00208; eps=9.6e-13 [its= 46] 5d_3/2: delta=-0.01558; eps=9.9e-13 [its= 73] 5d_5/2: delta=-0.01474; eps=8.2e-13 [its= 72] Br: T = 1.50 s Brueckner orbitals: Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 65.1 2 2e-24 -0.147623963 -32399.715 0.00 1) 7s_1/2 -1 105.6 2 5e-28 -0.059534691 -13066.354 19333.36 2) 6p_1/2 1 82.8 2 1e-26 -0.093562987 -20534.702 11865.01 3) 7p_1/2 1 124.0 2 6e-28 -0.044322697 -9727.708 22672.01 4) 6p_3/2 -2 84.1 2 2e-26 -0.090836599 -19936.329 12463.39 5) 7p_3/2 -2 125.3 2 1e-27 -0.043450594 -9536.303 22863.41 6) 5d_3/2 2 90.0 2 8e-26 -0.079995741 -17557.036 14842.68 7) 5d_5/2 -3 90.5 2 8e-26 -0.079267451 -17397.195 15002.52 Test orthonormality: cc <2s+|5s+> = 2.2e-06 cv <5s+|6s+> = 1.2e-02 cb <4s+|20s+> = 1.1e-02 vv <7s+|6s+> = 4.9e-03 vb <5d-|6d-> = 2.1e-01 bb <17p+|15p+> = 3.2e-13 Module::matrixElements (reduced). Operator: E1 Units: |e|aB Including RPA: TDHF method TDHF E1 (w=0.000): 30 2.6e-09 h(0) h(1) h(RPA) < 6p-, 6s+>: -4.730820e+00 -4.348976e+00 -4.389124e+00 < 7p-, 6s+>: -4.298533e-01 -2.666161e-01 -2.859689e-01 < 6p+, 6s+>: 6.633401e+00 6.121696e+00 6.172224e+00 < 7p+, 6s+>: 7.895524e-01 5.633664e-01 5.882605e-01 < 7p-, 7s+>: -1.023426e+01 -1.013321e+01 -1.014338e+01 < 7p+, 7s+>: 1.419012e+01 1.405801e+01 1.407077e+01 < 7s+, 6p->: 4.229402e+00 4.264821e+00 4.255051e+00 < 7s+, 6p+>: 6.490889e+00 6.524724e+00 6.513903e+00 < 6p-, 5d->: 7.132621e+00 6.719127e+00 6.750551e+00 < 7p-, 5d->: -1.639025e+00 -1.786077e+00 -1.773448e+00 < 6p+, 5d->: 3.201052e+00 3.028828e+00 3.039429e+00 < 7p+, 5d->: -6.278480e-01 -6.908651e-01 -6.868018e-01 < 6p+, 5d+>: 9.740449e+00 9.226545e+00 9.262477e+00 < 7p+, 5d+>: -2.023314e+00 -2.208974e+00 -2.194735e+00 ampsci: T = 2.79 mins ******************************************************************************** ampsci git:a115533 (HEAD) 2022-01-16 23:04:14 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 40; order = 9; r0_eps = 1.0e-6; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** HF core: it: 38 eps=5.2e-13 for 5p_3/2 [1.5e-15 for 2p_3/2] core: T = 840.62 ms HF valence: 23 eps=2.1e-11 for 6p_1/2 [5.2e-13 for 5d_3/2 w/ 28] val: T = 244.27 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 1e-27 -1330.118817247 -291927337.084 1) 2s_1/2 -1 1.7 2 7e-25 -212.564480266 -46652510.947 2) 2p_1/2 1 1.7 2 3e-25 -199.429485447 -43769712.801 3) 2p_3/2 -2 1.8 2 4e-25 -186.436595588 -40918103.089 4) 3s_1/2 -1 3.6 2 3e-23 -45.969744628 -10089192.756 5) 3p_1/2 1 3.8 2 2e-23 -40.448304013 -8877376.612 6) 3p_3/2 -2 3.9 2 3e-23 -37.894309797 -8316839.673 7) 3d_3/2 2 4.5 2 2e-23 -28.309506572 -6213218.519 8) 3d_5/2 -3 4.6 2 2e-23 -27.775163094 -6095943.681 9) 4s_1/2 -1 7.9 2 4e-22 -9.512820322 -2087822.733 10) 4p_1/2 1 8.9 2 3e-22 -7.446284079 -1634270.453 11) 4p_3/2 -2 9.2 2 3e-22 -6.921000315 -1518983.993 12) 4d_3/2 2 13.1 2 2e-22 -3.485618814 -765004.904 13) 4d_5/2 -3 13.2 2 2e-22 -3.396901446 -745533.693 14) 5s_1/2 -1 20.2 2 2e-22 -1.489804661 -326974.329 15) 5p_1/2 1 26.1 2 1e-22 -0.907897553 -199260.481 16) 5p_3/2 -2 27.2 2 1e-22 -0.840339103 -184433.115 E_core = -7786.6452 au; = -1.7089711e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 3e-25 -0.127368059 -27954.058 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055187355 -12112.224 15841.83 2) 6p_1/2 1 86.9 2 7e-26 -0.085615870 -18790.512 9163.55 3) 7p_1/2 1 127.6 2 2e-27 -0.042021382 -9222.627 18731.43 4) 6p_3/2 -2 87.9 2 7e-26 -0.083785466 -18388.784 9565.27 5) 7p_3/2 -2 128.8 2 4e-27 -0.041368038 -9079.235 18874.82 6) 5d_3/2 2 101.1 2 2e-26 -0.064419642 -14138.477 13815.58 7) 5d_5/2 -3 101.1 2 2e-26 -0.064529774 -14162.648 13791.41 Constructing B-spline basis with N=40, k=9. Storing: 35spdfghi Spline cavity l=0 s: (4.3e-06, 40.0)aB. Spline cavity l=1 p: (6.8e-05, 40.0)aB. Spline cavity l=2 d: (5.2e-03, 40.0)aB. Spline cavity l=3 f: (6.2e-03, 40.0)aB. Spline cavity l=4 g: (1.0e-02, 40.0)aB. Spline cavity l=5 h: (1.0e-02, 40.0)aB. Spline cavity l=6 i: (1.0e-02, 40.0)aB. Compare basis to core |<3s+|3s+>-1| = 9.6e-05 dE/E(3s+) = 5.0e-04 <3s+|19s+> = 5.7e-03 Compare basis to valence |<7p+|7p+>-1| = 5.3e-04 dE/E(7p+) = 8.5e-04 <7p+|8p+> = 1.1e-02 Basis: T = 1.11 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.8)aB with 154 points. [i0=80, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12737.. de= -4202.5 + 336.0 = -3866.5 k=-1 at en=-0.05519.. de= -1007.8 + 92.1 = -915.7 k= 1 at en=-0.08562.. de= -1684.3 + 176.8 = -1507.5 k= 1 at en=-0.04202.. de= -529.3 + 64.4 = -464.9 k=-2 at en=-0.08379.. de= -1514.2 + 162.7 = -1351.5 k=-2 at en=-0.04137.. de= -483.2 + 60.3 = -422.9 k= 2 at en=-0.06442.. de= -2694.8 + 265.8 = -2429.0 k=-3 at en=-0.06453.. de= -2593.8 + 247.1 = -2346.7 Writing to Sigma file: CsI.sig2 ... done. Sigma: T = 4.90 mins Solving for Brueckner orbitals (correlation potential) 6s_1/2: delta=-0.02028; eps=6.7e-13 [its= 53] 7s_1/2: delta=-0.00435; eps=6.0e-13 [its= 46] 6p_1/2: delta=-0.00795; eps=8.1e-13 [its= 52] 7p_1/2: delta=-0.00230; eps=8.1e-13 [its= 50] 6p_3/2: delta=-0.00706; eps=7.0e-13 [its= 51] 7p_3/2: delta=-0.00208; eps=9.6e-13 [its= 46] 5d_3/2: delta=-0.01559; eps=1.0e-12 [its= 73] 5d_5/2: delta=-0.01475; eps=8.3e-13 [its= 72] Br: T = 1.53 s Brueckner orbitals: Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 65.1 2 2e-24 -0.147649392 -32405.296 0.00 1) 7s_1/2 -1 105.5 2 5e-28 -0.059540885 -13067.714 19337.58 2) 6p_1/2 1 82.8 2 1e-26 -0.093568171 -20535.840 11869.46 3) 7p_1/2 1 124.0 2 6e-28 -0.044324619 -9728.129 22677.17 4) 6p_3/2 -2 84.1 2 2e-26 -0.090842021 -19937.519 12467.78 5) 7p_3/2 -2 125.3 2 1e-27 -0.043452618 -9536.747 22868.55 6) 5d_3/2 2 90.0 2 8e-26 -0.080008713 -17559.883 14845.41 7) 5d_5/2 -3 90.5 2 8e-26 -0.079279601 -17399.861 15005.43 Test orthonormality: cc <2s+|5s+> = 2.2e-06 cv <5s+|6s+> = 1.2e-02 cb <3s+|19s+> = 5.7e-03 vv <6s+|7s+> = 4.9e-03 vb <5d-|6d-> = 2.1e-01 bb <35p-|33p-> = 1.1e-09 Module::matrixElements (reduced). Operator: E1 Units: |e|aB Including RPA: TDHF method TDHF E1 (w=0.000): 30 2.6e-09 h(0) h(1) h(RPA) < 6p-, 6s+>: -4.730070e+00 -4.348203e+00 -4.388363e+00 < 7p-, 6s+>: -4.301420e-01 -2.668900e-01 -2.862494e-01 < 6p+, 6s+>: 6.632312e+00 6.120576e+00 6.171122e+00 < 7p+, 6s+>: 7.898678e-01 5.636641e-01 5.885673e-01 < 7p-, 7s+>: -1.023283e+01 -1.013179e+01 -1.014197e+01 < 7p+, 7s+>: 1.418809e+01 1.405598e+01 1.406875e+01 < 7s+, 6p->: 4.229755e+00 4.265141e+00 4.255369e+00 < 7s+, 6p+>: 6.491273e+00 6.525061e+00 6.514237e+00 < 6p-, 5d->: 7.131283e+00 6.717782e+00 6.749209e+00 < 7p-, 5d->: -1.637705e+00 -1.784768e+00 -1.772136e+00 < 6p+, 5d->: 3.200423e+00 3.028198e+00 3.038800e+00 < 7p+, 5d->: -6.273071e-01 -6.903273e-01 -6.862631e-01 < 6p+, 5d+>: 9.738664e+00 9.224753e+00 9.260690e+00 < 7p+, 5d+>: -2.021752e+00 -2.207421e+00 -2.193179e+00 ampsci: T = 5.09 mins ******************************************************************************** ampsci git:9e8c6a0 (dev) 2022-01-16 23:13:59 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; Breit = 1.0; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 40; order = 9; r0_eps = 1.0e-6; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** Including Breit (scale = 1) HF core: it: 47 eps=2.2e-11 for 4d_3/2 [5.7e-14 for 2s_1/2] core: T = 4.96 s HF valence: 33 eps=1.5e-10 for 5d_5/2 [3.3e-13 for 7p_3/2 w/ 31] val: T = 826.21 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 6e-28 -1326.968050978 -291235823.819 1) 2s_1/2 -1 1.7 2 6e-25 -212.263833974 -46586526.713 2) 2p_1/2 1 1.7 2 3e-25 -198.916504501 -43657126.497 3) 2p_3/2 -2 1.8 2 4e-25 -186.090178588 -40842073.346 4) 3s_1/2 -1 3.6 2 3e-23 -45.925782089 -10079544.094 5) 3p_1/2 1 3.8 2 2e-23 -40.367418288 -8859624.248 6) 3p_3/2 -2 3.9 2 2e-23 -37.845333645 -8306090.651 7) 3d_3/2 2 4.5 2 2e-23 -28.283803230 -6207577.287 8) 3d_5/2 -3 4.6 2 2e-23 -27.763411318 -6093364.464 9) 4s_1/2 -1 7.9 2 4e-22 -9.506472241 -2086429.491 10) 4p_1/2 1 8.9 2 3e-22 -7.433355546 -1631432.968 11) 4p_3/2 -2 9.2 2 3e-22 -6.914677619 -1517596.321 12) 4d_3/2 2 13.1 2 2e-22 -3.485064089 -764883.156 13) 4d_5/2 -3 13.2 2 2e-22 -3.398736053 -745936.342 14) 5s_1/2 -1 20.2 2 2e-22 -1.489314723 -326866.800 15) 5p_1/2 1 26.1 2 1e-22 -0.906786849 -199016.709 16) 5p_3/2 -2 27.2 2 1e-22 -0.840057574 -184371.326 E_core = -7774.3533 au; = -1.7062733e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 1e-24 -0.127353488 -27950.860 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055182447 -12111.147 15839.71 2) 6p_1/2 1 86.9 2 4e-26 -0.085581721 -18783.017 9167.84 3) 7p_1/2 1 127.6 2 2e-27 -0.042009148 -9219.942 18730.92 4) 6p_3/2 -2 87.9 2 6e-26 -0.083772384 -18385.913 9564.95 5) 7p_3/2 -2 128.8 2 4e-27 -0.041363265 -9078.187 18872.67 6) 5d_3/2 2 101.1 2 2e-26 -0.064465902 -14148.630 13802.23 7) 5d_5/2 -3 101.0 2 2e-26 -0.064583037 -14174.338 13776.52 Constructing B-spline basis with N=40, k=9. Storing: 35spdfghi Using Derevinko (Duel Kinetic Balance) type splines. Spline cavity l=0 s: (4.3e-06, 40.0)aB. Spline cavity l=1 p: (6.8e-05, 40.0)aB. Spline cavity l=2 d: (5.2e-03, 40.0)aB. Spline cavity l=3 f: (5.2e-03, 40.0)aB. Spline cavity l=4 g: (5.2e-03, 40.0)aB. Spline cavity l=5 h: (5.2e-03, 40.0)aB. Spline cavity l=6 i: (5.2e-03, 40.0)aB. Basis/core: |<4s+|4s+>-1| = 2.5e-04 dE/E(4s+) = 1.9e-03 ** OK? <4s+|20s+> = 1.1e-02 ** OK? Basis/valence: |<7p+|7p+>-1| = 5.4e-04 dE/E(7p+) = 8.7e-04 <7p+|8p+> = 1.1e-02 ** OK? Basis: T = 4.46 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.4)aB with 154 points. [i0=1436, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12735.. de= -4110.5 + 300.8 = -3809.7 k=-1 at en=-0.05518.. de= -986.8 + 84.0 = -902.9 k= 1 at en=-0.08558.. de= -1661.6 + 171.7 = -1489.9 k= 1 at en=-0.04201.. de= -522.0 + 62.8 = -459.2 k=-2 at en=-0.08377.. de= -1481.9 + 153.0 = -1328.9 k=-2 at en=-0.04136.. de= -472.7 + 57.0 = -415.7 k= 2 at en=-0.06447.. de= -2648.2 + 252.4 = -2395.8 k=-3 at en=-0.06458.. de= -2315.3 + 173.6 = -2141.7 Writing to Sigma file: CsI.sig2 ... done. Sigma: T = 2.57 mins Solving for Brueckner orbitals (correlation potential) 6s_1/2: delta=-0.01998; eps=9.7e-13 [its= 52] 7s_1/2: delta=-0.00430; eps=9.8e-13 [its= 45] 6p_1/2: delta=-0.00785; eps=6.8e-13 [its= 52] 7p_1/2: delta=-0.00227; eps=4.2e-13 [its= 47] 6p_3/2: delta=-0.00692; eps=2.3e-13 [its= 51] 7p_3/2: delta=-0.00205; eps=5.9e-13 [its= 46] 5d_3/2: delta=-0.01529; eps=2.3e-13 [its= 68] 5d_5/2: delta=-0.01308; eps=2.4e-11 [its= 62] Br: T = 6.41 s Brueckner orbitals: Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 65.2 2 2e-24 -0.147337308 -32336.801 0.00 1) 7s_1/2 -1 105.6 2 5e-28 -0.059480560 -13054.474 19282.33 2) 6p_1/2 1 83.0 2 1e-26 -0.093430702 -20505.669 11831.13 3) 7p_1/2 1 124.0 2 6e-28 -0.044283745 -9719.159 22617.64 4) 6p_3/2 -2 84.2 2 2e-26 -0.090695597 -19905.383 12431.42 5) 7p_3/2 -2 125.4 2 1e-27 -0.043410760 -9527.561 22809.24 6) 5d_3/2 2 90.2 2 8e-26 -0.079752575 -17503.667 14833.13 7) 5d_5/2 -3 91.5 2 6e-26 -0.077664291 -17045.342 15291.46 Test orthonormality: cc <2s+|5s+> = 2.2e-06 cv <5s+|6s+> = 1.2e-02 cb <4s+|20s+> = 1.1e-02 vv <7s+|6s+> = 4.9e-03 vb <5d-|6d-> = 2.1e-01 bb <19h-|16h-> = 1.4e-13 Module::matrixElements (reduced). Operator: E1 Units: |e|aB Including RPA: TDHF method TDHF E1 (w=0.000): 29 7.4e-09 h(0) h(1) h(RPA) < 6p-, 6s+>: -4.737425e+00 -4.355699e+00 -4.395884e+00 < 7p-, 6s+>: -4.306326e-01 -2.673116e-01 -2.866924e-01 < 6p+, 6s+>: 6.642866e+00 6.131391e+00 6.182009e+00 < 7p+, 6s+>: 7.918861e-01 5.655450e-01 5.905057e-01 < 7p-, 7s+>: -1.024114e+01 -1.014002e+01 -1.015022e+01 < 7p+, 7s+>: 1.419843e+01 1.406622e+01 1.407903e+01 < 7s+, 6p->: 4.236093e+00 4.271543e+00 4.261774e+00 < 7s+, 6p+>: 6.502511e+00 6.536352e+00 6.525522e+00 < 6p-, 5d->: 7.154672e+00 6.741294e+00 6.772765e+00 < 7p-, 5d->: -1.659651e+00 -1.806554e+00 -1.793921e+00 < 6p+, 5d->: 3.211723e+00 3.039465e+00 3.050134e+00 < 7p+, 5d->: -6.360006e-01 -6.990221e-01 -6.949307e-01 < 6p+, 5d+>: 9.938647e+00 9.424053e+00 9.460141e+00 < 7p+, 5d+>: -2.302452e+00 -2.485599e+00 -2.471469e+00 ampsci: T = 3.32 mins ******************************************************************************** ampsci git:a115533 (HEAD) 2022-01-16 23:31:55 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; Breit = 1.0; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 40; order = 9; r0_eps = 1.0e-6; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** Including Breit (scale = 1) HF core: it: 47 eps=2.2e-11 for 4d_3/2 [5.7e-14 for 2s_1/2] core: T = 4.85 s HF valence: 33 eps=1.5e-10 for 5d_5/2 [3.3e-13 for 7p_3/2 w/ 31] val: T = 798.60 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 6e-28 -1326.968050978 -291235823.819 1) 2s_1/2 -1 1.7 2 6e-25 -212.263833974 -46586526.713 2) 2p_1/2 1 1.7 2 3e-25 -198.916504501 -43657126.497 3) 2p_3/2 -2 1.8 2 4e-25 -186.090178588 -40842073.346 4) 3s_1/2 -1 3.6 2 3e-23 -45.925782089 -10079544.094 5) 3p_1/2 1 3.8 2 2e-23 -40.367418288 -8859624.248 6) 3p_3/2 -2 3.9 2 2e-23 -37.845333645 -8306090.651 7) 3d_3/2 2 4.5 2 2e-23 -28.283803230 -6207577.287 8) 3d_5/2 -3 4.6 2 2e-23 -27.763411318 -6093364.464 9) 4s_1/2 -1 7.9 2 4e-22 -9.506472241 -2086429.491 10) 4p_1/2 1 8.9 2 3e-22 -7.433355546 -1631432.968 11) 4p_3/2 -2 9.2 2 3e-22 -6.914677619 -1517596.321 12) 4d_3/2 2 13.1 2 2e-22 -3.485064089 -764883.156 13) 4d_5/2 -3 13.2 2 2e-22 -3.398736053 -745936.342 14) 5s_1/2 -1 20.2 2 2e-22 -1.489314723 -326866.800 15) 5p_1/2 1 26.1 2 1e-22 -0.906786849 -199016.709 16) 5p_3/2 -2 27.2 2 1e-22 -0.840057574 -184371.326 E_core = -7774.3533 au; = -1.7062733e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 1e-24 -0.127353488 -27950.860 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055182447 -12111.147 15839.71 2) 6p_1/2 1 86.9 2 4e-26 -0.085581721 -18783.017 9167.84 3) 7p_1/2 1 127.6 2 2e-27 -0.042009148 -9219.942 18730.92 4) 6p_3/2 -2 87.9 2 6e-26 -0.083772384 -18385.913 9564.95 5) 7p_3/2 -2 128.8 2 4e-27 -0.041363265 -9078.187 18872.67 6) 5d_3/2 2 101.1 2 2e-26 -0.064465902 -14148.630 13802.23 7) 5d_5/2 -3 101.0 2 2e-26 -0.064583037 -14174.338 13776.52 Constructing B-spline basis with N=40, k=9. Storing: 35spdfghi Spline cavity l=0 s: (4.3e-06, 40.0)aB. Spline cavity l=1 p: (6.9e-05, 40.0)aB. Spline cavity l=2 d: (5.2e-03, 40.0)aB. Spline cavity l=3 f: (6.2e-03, 40.0)aB. Spline cavity l=4 g: (1.0e-02, 40.0)aB. Spline cavity l=5 h: (1.0e-02, 40.0)aB. Spline cavity l=6 i: (1.0e-02, 40.0)aB. Compare basis to core |<3s+|3s+>-1| = 9.6e-05 dE/E(3s+) = 5.0e-04 <3s+|19s+> = 5.7e-03 Compare basis to valence |<7p+|7p+>-1| = 5.3e-04 dE/E(7p+) = 8.5e-04 <7p+|8p+> = 1.1e-02 Basis: T = 3.09 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.8)aB with 154 points. [i0=80, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12735.. de= -4207.9 + 336.4 = -3871.5 k=-1 at en=-0.05518.. de= -1009.0 + 92.2 = -916.8 k= 1 at en=-0.08558.. de= -1684.4 + 176.8 = -1507.6 k= 1 at en=-0.04201.. de= -529.4 + 64.4 = -465.0 k=-2 at en=-0.08377.. de= -1516.2 + 162.9 = -1353.3 k=-2 at en=-0.04136.. de= -483.9 + 60.4 = -423.5 k= 2 at en=-0.06447.. de= -2708.5 + 267.6 = -2441.0 k=-3 at en=-0.06458.. de= -2610.0 + 249.3 = -2360.7 Writing to Sigma file: CsI.sig2 ... done. Sigma: T = 4.90 mins Solving for Brueckner orbitals (correlation potential) 6s_1/2: delta=-0.02031; eps=6.6e-13 [its= 53] 7s_1/2: delta=-0.00436; eps=5.9e-13 [its= 46] 6p_1/2: delta=-0.00795; eps=5.7e-13 [its= 51] 7p_1/2: delta=-0.00230; eps=2.2e-14 [its= 49] 6p_3/2: delta=-0.00707; eps=9.5e-13 [its= 50] 7p_3/2: delta=-0.00209; eps=8.4e-13 [its= 47] 5d_3/2: delta=-0.01566; eps=1.7e-11 [its= 74] 5d_5/2: delta=-0.01484; eps=5.9e-11 [its= 66] Br: T = 6.42 s Brueckner orbitals: Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 65.1 2 5e-24 -0.147662568 -32408.188 0.00 1) 7s_1/2 -1 105.5 2 5e-28 -0.059540855 -13067.707 19340.48 2) 6p_1/2 1 82.8 2 1e-26 -0.093534855 -20528.528 11879.66 3) 7p_1/2 1 124.0 2 6e-28 -0.044312974 -9725.574 22682.61 4) 6p_3/2 -2 84.1 2 2e-26 -0.090839430 -19936.950 12471.24 5) 7p_3/2 -2 125.3 2 1e-27 -0.043450810 -9536.350 22871.84 6) 5d_3/2 2 90.0 2 8e-26 -0.080126703 -17585.779 14822.41 7) 5d_5/2 -3 90.5 2 8e-26 -0.079420361 -17430.755 14977.43 Test orthonormality: cc <2s+|5s+> = 2.2e-06 cv <5s+|6s+> = 1.2e-02 cb <3s+|19s+> = 5.7e-03 vv <6s+|7s+> = 4.9e-03 vb <5d-|6d-> = 2.1e-01 bb <35p-|33p-> = 1.1e-09 Module::matrixElements (reduced). Operator: E1 Units: |e|aB Including RPA: TDHF method TDHF E1 (w=0.000): 29 7.4e-09 h(0) h(1) h(RPA) < 6p-, 6s+>: -4.729646e+00 -4.347235e+00 -4.387544e+00 < 7p-, 6s+>: -4.320079e-01 -2.684689e-01 -2.878992e-01 < 6p+, 6s+>: 6.632166e+00 6.119411e+00 6.170214e+00 < 7p+, 6s+>: 7.903681e-01 5.637245e-01 5.887476e-01 < 7p-, 7s+>: -1.023063e+01 -1.012948e+01 -1.013969e+01 < 7p+, 7s+>: 1.418778e+01 1.405543e+01 1.406825e+01 < 7s+, 6p->: 4.234473e+00 4.269737e+00 4.259958e+00 < 7s+, 6p+>: 6.492406e+00 6.526171e+00 6.515315e+00 < 6p-, 5d->: 7.120700e+00 6.706901e+00 6.738433e+00 < 7p-, 5d->: -1.618943e+00 -1.766301e+00 -1.753625e+00 < 6p+, 5d->: 3.195164e+00 3.022709e+00 3.033378e+00 < 7p+, 5d->: -6.204159e-01 -6.835782e-01 -6.794842e-01 < 6p+, 5d+>: 9.718891e+00 9.204324e+00 9.240429e+00 < 7p+, 5d+>: -1.995738e+00 -2.181874e+00 -2.167559e+00 ampsci: T = 5.62 mins ******************************************************************************** ampsci git:9e8c6a0 (dev) 2022-01-16 23:44:14 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 45; order = 9; r0_eps = 1.0e-8; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** HF core: it: 38 eps=5.2e-13 for 5p_3/2 [1.5e-15 for 2p_3/2] core: T = 881.69 ms HF valence: 23 eps=2.1e-11 for 6p_1/2 [5.2e-13 for 5d_3/2 w/ 28] val: T = 242.01 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 1e-27 -1330.118817247 -291927337.084 1) 2s_1/2 -1 1.7 2 7e-25 -212.564480266 -46652510.947 2) 2p_1/2 1 1.7 2 3e-25 -199.429485447 -43769712.801 3) 2p_3/2 -2 1.8 2 4e-25 -186.436595588 -40918103.089 4) 3s_1/2 -1 3.6 2 3e-23 -45.969744628 -10089192.756 5) 3p_1/2 1 3.8 2 2e-23 -40.448304013 -8877376.612 6) 3p_3/2 -2 3.9 2 3e-23 -37.894309797 -8316839.673 7) 3d_3/2 2 4.5 2 2e-23 -28.309506572 -6213218.519 8) 3d_5/2 -3 4.6 2 2e-23 -27.775163094 -6095943.681 9) 4s_1/2 -1 7.9 2 4e-22 -9.512820322 -2087822.733 10) 4p_1/2 1 8.9 2 3e-22 -7.446284079 -1634270.453 11) 4p_3/2 -2 9.2 2 3e-22 -6.921000315 -1518983.993 12) 4d_3/2 2 13.1 2 2e-22 -3.485618814 -765004.904 13) 4d_5/2 -3 13.2 2 2e-22 -3.396901446 -745533.693 14) 5s_1/2 -1 20.2 2 2e-22 -1.489804661 -326974.329 15) 5p_1/2 1 26.1 2 1e-22 -0.907897553 -199260.481 16) 5p_3/2 -2 27.2 2 1e-22 -0.840339103 -184433.115 E_core = -7786.6452 au; = -1.7089711e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 3e-25 -0.127368059 -27954.058 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055187355 -12112.224 15841.83 2) 6p_1/2 1 86.9 2 7e-26 -0.085615870 -18790.512 9163.55 3) 7p_1/2 1 127.6 2 2e-27 -0.042021382 -9222.627 18731.43 4) 6p_3/2 -2 87.9 2 7e-26 -0.083785466 -18388.784 9565.27 5) 7p_3/2 -2 128.8 2 4e-27 -0.041368038 -9079.235 18874.82 6) 5d_3/2 2 101.1 2 2e-26 -0.064419642 -14138.477 13815.58 7) 5d_5/2 -3 101.1 2 2e-26 -0.064529774 -14162.648 13791.41 Constructing B-spline basis with N=45, k=9. Storing: 35spdfghi Using Derevinko (Duel Kinetic Balance) type splines. Spline cavity l=0 s: (4.3e-07, 40.0)aB. Spline cavity l=1 p: (6.7e-06, 40.0)aB. Spline cavity l=2 d: (1.6e-03, 40.0)aB. Spline cavity l=3 f: (1.6e-03, 40.0)aB. Spline cavity l=4 g: (1.6e-03, 40.0)aB. Spline cavity l=5 h: (1.6e-03, 40.0)aB. Spline cavity l=6 i: (1.6e-03, 40.0)aB. Basis/core: |<4s+|4s+>-1| = 1.6e-04 dE/E(4s+) = 9.9e-04 <4s+|20s+> = 7.3e-03 ** OK? Basis/valence: |<7p+|7p+>-1| = 5.4e-04 dE/E(7p+) = 8.7e-04 <7p+|8p+> = 1.1e-02 ** OK? Basis: T = 2.19 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.4)aB with 154 points. [i0=1436, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12737.. de= -4196.3 + 337.4 = -3858.9 k=-1 at en=-0.05519.. de= -1006.4 + 92.6 = -913.8 k= 1 at en=-0.08562.. de= -1683.6 + 177.7 = -1505.9 k= 1 at en=-0.04202.. de= -529.1 + 64.8 = -464.2 k=-2 at en=-0.08379.. de= -1513.5 + 163.6 = -1349.9 k=-2 at en=-0.04137.. de= -483.0 + 60.7 = -422.3 k= 2 at en=-0.06442.. de= -2693.9 + 267.2 = -2426.7 k=-3 at en=-0.06453.. de= -2592.8 + 248.5 = -2344.3 Writing to Sigma file: CsI.sig2 ... done. Sigma: T = 2.60 mins Solving for Brueckner orbitals (correlation potential) 6s_1/2: delta=-0.02026; eps=6.6e-13 [its= 53] 7s_1/2: delta=-0.00435; eps=6.0e-13 [its= 46] 6p_1/2: delta=-0.00795; eps=8.0e-13 [its= 52] 7p_1/2: delta=-0.00230; eps=8.7e-13 [its= 50] 6p_3/2: delta=-0.00705; eps=7.0e-13 [its= 51] 7p_3/2: delta=-0.00208; eps=9.6e-13 [its= 46] 5d_3/2: delta=-0.01558; eps=9.9e-13 [its= 73] 5d_5/2: delta=-0.01474; eps=8.2e-13 [its= 72] Br: T = 1.50 s Brueckner orbitals: Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 65.1 2 2e-24 -0.147632997 -32401.698 0.00 1) 7s_1/2 -1 105.6 2 5e-28 -0.059536686 -13066.792 19334.91 2) 6p_1/2 1 82.8 2 1e-26 -0.093564355 -20535.002 11866.70 3) 7p_1/2 1 124.0 2 6e-28 -0.044323085 -9727.793 22673.91 4) 6p_3/2 -2 84.1 2 2e-26 -0.090837894 -19936.613 12465.08 5) 7p_3/2 -2 125.3 2 1e-27 -0.043450968 -9536.385 22865.31 6) 5d_3/2 2 90.0 2 8e-26 -0.079998719 -17557.689 14844.01 7) 5d_5/2 -3 90.5 2 8e-26 -0.079270062 -17397.768 15003.93 Test orthonormality: cc <2s+|5s+> = 2.2e-06 cv <5s+|6s+> = 1.2e-02 cb <4s+|20s+> = 7.3e-03 vv <6s+|7s+> = 4.9e-03 vb <5d-|6d-> = 2.1e-01 bb <16s+|14s+> = 3.6e-13 Module::matrixElements (reduced). Operator: E1 Units: |e|aB Including RPA: TDHF method TDHF E1 (w=0.000): 30 2.6e-09 h(0) h(1) h(RPA) < 6p-, 6s+>: -4.730558e+00 -4.348708e+00 -4.388859e+00 < 7p-, 6s+>: -4.299674e-01 -2.667248e-01 -2.860795e-01 < 6p+, 6s+>: 6.633016e+00 6.121303e+00 6.171836e+00 < 7p+, 6s+>: 7.896911e-01 5.634990e-01 5.883954e-01 < 7p-, 7s+>: -1.023377e+01 -1.013273e+01 -1.014290e+01 < 7p+, 7s+>: 1.418940e+01 1.405730e+01 1.407006e+01 < 7s+, 6p->: 4.229577e+00 4.264984e+00 4.255213e+00 < 7s+, 6p+>: 6.491130e+00 6.524946e+00 6.514125e+00 < 6p-, 5d->: 7.132321e+00 6.718823e+00 6.750248e+00 < 7p-, 5d->: -1.638740e+00 -1.785795e+00 -1.773165e+00 < 6p+, 5d->: 3.200912e+00 3.028687e+00 3.039288e+00 < 7p+, 5d->: -6.277269e-01 -6.907449e-01 -6.866814e-01 < 6p+, 5d+>: 9.740078e+00 9.226170e+00 9.262104e+00 < 7p+, 5d+>: -2.022997e+00 -2.208660e+00 -2.194421e+00 ampsci: T = 2.81 mins ******************************************************************************** ampsci git:9e8c6a0 (dev) 2022-01-16 23:47:19 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; Breit = 1.0; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 45; order = 9; r0_eps = 1.0e-7; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** Including Breit (scale = 1) HF core: it: 47 eps=2.2e-11 for 4d_3/2 [5.7e-14 for 2s_1/2] core: T = 5.01 s HF valence: 33 eps=1.5e-10 for 5d_5/2 [3.3e-13 for 7p_3/2 w/ 31] val: T = 804.29 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 6e-28 -1326.968050978 -291235823.819 1) 2s_1/2 -1 1.7 2 6e-25 -212.263833974 -46586526.713 2) 2p_1/2 1 1.7 2 3e-25 -198.916504501 -43657126.497 3) 2p_3/2 -2 1.8 2 4e-25 -186.090178588 -40842073.346 4) 3s_1/2 -1 3.6 2 3e-23 -45.925782089 -10079544.094 5) 3p_1/2 1 3.8 2 2e-23 -40.367418288 -8859624.248 6) 3p_3/2 -2 3.9 2 2e-23 -37.845333645 -8306090.651 7) 3d_3/2 2 4.5 2 2e-23 -28.283803230 -6207577.287 8) 3d_5/2 -3 4.6 2 2e-23 -27.763411318 -6093364.464 9) 4s_1/2 -1 7.9 2 4e-22 -9.506472241 -2086429.491 10) 4p_1/2 1 8.9 2 3e-22 -7.433355546 -1631432.968 11) 4p_3/2 -2 9.2 2 3e-22 -6.914677619 -1517596.321 12) 4d_3/2 2 13.1 2 2e-22 -3.485064089 -764883.156 13) 4d_5/2 -3 13.2 2 2e-22 -3.398736053 -745936.342 14) 5s_1/2 -1 20.2 2 2e-22 -1.489314723 -326866.800 15) 5p_1/2 1 26.1 2 1e-22 -0.906786849 -199016.709 16) 5p_3/2 -2 27.2 2 1e-22 -0.840057574 -184371.326 E_core = -7774.3533 au; = -1.7062733e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 1e-24 -0.127353488 -27950.860 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055182447 -12111.147 15839.71 2) 6p_1/2 1 86.9 2 4e-26 -0.085581721 -18783.017 9167.84 3) 7p_1/2 1 127.6 2 2e-27 -0.042009148 -9219.942 18730.92 4) 6p_3/2 -2 87.9 2 6e-26 -0.083772384 -18385.913 9564.95 5) 7p_3/2 -2 128.8 2 4e-27 -0.041363265 -9078.187 18872.67 6) 5d_3/2 2 101.1 2 2e-26 -0.064465902 -14148.630 13802.23 7) 5d_5/2 -3 101.0 2 2e-26 -0.064583037 -14174.338 13776.52 Constructing B-spline basis with N=45, k=9. Storing: 35spdfghi Using Derevinko (Duel Kinetic Balance) type splines. Spline cavity l=0 s: (1.4e-06, 40.0)aB. Spline cavity l=1 p: (2.1e-05, 40.0)aB. Spline cavity l=2 d: (2.9e-03, 40.0)aB. Spline cavity l=3 f: (2.9e-03, 40.0)aB. Spline cavity l=4 g: (2.9e-03, 40.0)aB. Spline cavity l=5 h: (2.9e-03, 40.0)aB. Spline cavity l=6 i: (2.9e-03, 40.0)aB. Basis/core: |<3s+|3s+>-1| = 4.1e-05 dE/E(4s+) = 4.1e-04 <4s+|21s+> = 4.0e-03 ** OK? Basis/valence: |<7p+|7p+>-1| = 5.4e-04 dE/E(7p+) = 8.7e-04 <7p+|8p+> = 1.1e-02 ** OK? Basis: T = 5.05 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.4)aB with 154 points. [i0=1436, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12735.. de= -4059.0 + 278.1 = -3780.9 k=-1 at en=-0.05518.. de= -980.0 + 80.7 = -899.2 k= 1 at en=-0.08558.. de= -1647.3 + 166.5 = -1480.8 k= 1 at en=-0.04201.. de= -518.2 + 61.2 = -457.0 k=-2 at en=-0.08377.. de= -1423.9 + 142.5 = -1281.4 k=-2 at en=-0.04136.. de= -456.4 + 54.0 = -402.5 k= 2 at en=-0.06447.. de= -2637.4 + 248.6 = -2388.8 k=-3 at en=-0.06458.. de= -1731.8 + 144.8 = -1587.0 Writing to Sigma file: CsI.sig2 ... done. Sigma: T = 2.58 mins Solving for Brueckner orbitals (correlation potential) 6s_1/2: delta=-0.01981; eps=9.9e-13 [its= 52] 7s_1/2: delta=-0.00429; eps=6.0e-13 [its= 46] 6p_1/2: delta=-0.00780; eps=8.0e-13 [its= 50] 7p_1/2: delta=-0.00226; eps=7.6e-13 [its= 46] 6p_3/2: delta=-0.00665; eps=4.3e-13 [its= 49] 7p_3/2: delta=-0.00198; eps=4.8e-13 [its= 46] 5d_3/2: delta=-0.01528; eps=3.6e-13 [its= 72] 5d_5/2: delta=-0.00993; eps=5.0e-11 [its= 64] Br: T = 6.50 s Brueckner orbitals: Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 65.2 2 3e-24 -0.147167464 -32299.525 0.00 1) 7s_1/2 -1 105.6 2 5e-28 -0.059468663 -13051.863 19247.66 2) 6p_1/2 1 83.0 2 1e-26 -0.093381743 -20494.924 11804.60 3) 7p_1/2 1 124.0 2 6e-28 -0.044273920 -9717.002 22582.52 4) 6p_3/2 -2 84.4 2 2e-26 -0.090422595 -19845.466 12454.06 5) 7p_3/2 -2 125.4 2 1e-27 -0.043346819 -9513.527 22786.00 6) 5d_3/2 2 90.2 2 8e-26 -0.079745407 -17502.094 14797.43 7) 5d_5/2 -3 93.5 2 5e-26 -0.074513421 -16353.806 15945.72 Test orthonormality: cc <2s+|5s+> = 2.2e-06 cv <5s+|6s+> = 1.2e-02 cb <4s+|21s+> = 4.0e-03 vv <7s+|6s+> = 4.9e-03 vb <5d-|6d-> = 2.1e-01 bb <17i-|20i-> = 2.0e-13 Module::matrixElements (reduced). Operator: E1 Units: |e|aB Including RPA: TDHF method TDHF E1 (w=0.000): 29 7.4e-09 h(0) h(1) h(RPA) < 6p-, 6s+>: -4.739375e+00 -4.357820e+00 -4.397993e+00 < 7p-, 6s+>: -4.297582e-01 -2.664280e-01 -2.858145e-01 < 6p+, 6s+>: 6.642685e+00 6.133024e+00 6.183457e+00 < 7p+, 6s+>: 8.051431e-01 5.785934e-01 6.035652e-01 < 7p-, 7s+>: -1.024137e+01 -1.014022e+01 -1.015043e+01 < 7p+, 7s+>: 1.417770e+01 1.404593e+01 1.405871e+01 < 7s+, 6p->: 4.238025e+00 4.273566e+00 4.263782e+00 < 7s+, 6p+>: 6.541944e+00 6.575033e+00 6.564272e+00 < 6p-, 5d->: 7.150771e+00 6.737703e+00 6.769154e+00 < 7p-, 5d->: -1.654585e+00 -1.801552e+00 -1.788913e+00 < 6p+, 5d->: 3.211795e+00 3.040086e+00 3.050728e+00 < 7p+, 5d->: -6.255509e-01 -6.887391e-01 -6.846356e-01 < 6p+, 5d+>: 1.014229e+01 9.633930e+00 9.669421e+00 < 7p+, 5d+>: -2.804232e+00 -2.981370e+00 -2.967715e+00 ampsci: T = 3.35 mins ******************************************************************************** ampsci git:9e8c6a0 (dev) 2022-01-17 00:10:18 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 45; order = 9; r0 = 1.0e-4; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** HF core: it: 38 eps=5.2e-13 for 5p_3/2 [1.5e-15 for 2p_3/2] core: T = 878.67 ms HF valence: 23 eps=2.1e-11 for 6p_1/2 [5.2e-13 for 5d_3/2 w/ 28] val: T = 250.91 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 1e-27 -1330.118817247 -291927337.084 1) 2s_1/2 -1 1.7 2 7e-25 -212.564480266 -46652510.947 2) 2p_1/2 1 1.7 2 3e-25 -199.429485447 -43769712.801 3) 2p_3/2 -2 1.8 2 4e-25 -186.436595588 -40918103.089 4) 3s_1/2 -1 3.6 2 3e-23 -45.969744628 -10089192.756 5) 3p_1/2 1 3.8 2 2e-23 -40.448304013 -8877376.612 6) 3p_3/2 -2 3.9 2 3e-23 -37.894309797 -8316839.673 7) 3d_3/2 2 4.5 2 2e-23 -28.309506572 -6213218.519 8) 3d_5/2 -3 4.6 2 2e-23 -27.775163094 -6095943.681 9) 4s_1/2 -1 7.9 2 4e-22 -9.512820322 -2087822.733 10) 4p_1/2 1 8.9 2 3e-22 -7.446284079 -1634270.453 11) 4p_3/2 -2 9.2 2 3e-22 -6.921000315 -1518983.993 12) 4d_3/2 2 13.1 2 2e-22 -3.485618814 -765004.904 13) 4d_5/2 -3 13.2 2 2e-22 -3.396901446 -745533.693 14) 5s_1/2 -1 20.2 2 2e-22 -1.489804661 -326974.329 15) 5p_1/2 1 26.1 2 1e-22 -0.907897553 -199260.481 16) 5p_3/2 -2 27.2 2 1e-22 -0.840339103 -184433.115 E_core = -7786.6452 au; = -1.7089711e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 3e-25 -0.127368059 -27954.058 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055187355 -12112.224 15841.83 2) 6p_1/2 1 86.9 2 7e-26 -0.085615870 -18790.512 9163.55 3) 7p_1/2 1 127.6 2 2e-27 -0.042021382 -9222.627 18731.43 4) 6p_3/2 -2 87.9 2 7e-26 -0.083785466 -18388.784 9565.27 5) 7p_3/2 -2 128.8 2 4e-27 -0.041368038 -9079.235 18874.82 6) 5d_3/2 2 101.1 2 2e-26 -0.064419642 -14138.477 13815.58 7) 5d_5/2 -3 101.1 2 2e-26 -0.064529774 -14162.648 13791.41 Constructing B-spline basis with N=45, k=9. Storing: 35spdfghi Using Derevinko (Duel Kinetic Balance) type splines. Spline cavity l=0 s: (1.0e-04, 40.0)aB. Spline cavity l=1 p: (1.0e-04, 40.0)aB. Spline cavity l=2 d: (1.0e-04, 40.0)aB. Spline cavity l=3 f: (1.0e-04, 40.0)aB. Spline cavity l=4 g: (1.0e-04, 40.0)aB. Spline cavity l=5 h: (1.0e-04, 40.0)aB. Spline cavity l=6 i: (1.0e-04, 40.0)aB. Basis/core: |<4s+|4s+>-1| = 3.8e-07 dE/E(5s+) = 7.7e-06 <4s+|25s+> = 2.8e-04 Basis/valence: |<7p+|7p+>-1| = 5.4e-04 dE/E(7p+) = 8.7e-04 <7p+|8p+> = 1.1e-02 ** OK? Basis: T = 2.23 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.4)aB with 154 points. [i0=1436, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12737.. de= -4203.4 + 336.9 = -3866.5 k=-1 at en=-0.05519.. de= -1007.8 + 92.4 = -915.4 k= 1 at en=-0.08562.. de= -1683.8 + 177.6 = -1506.2 k= 1 at en=-0.04202.. de= -529.1 + 64.8 = -464.3 k=-2 at en=-0.08379.. de= -1513.7 + 163.5 = -1350.2 k=-2 at en=-0.04137.. de= -483.1 + 60.7 = -422.4 k= 2 at en=-0.06442.. de= -2694.0 + 267.1 = -2426.8 k=-3 at en=-0.06453.. de= -2593.0 + 248.5 = -2344.5 Writing to Sigma file: CsI.sig2 ... done. Sigma: T = 2.59 mins Solving for Brueckner orbitals (correlation potential) 6s_1/2: delta=-0.02028; eps=6.7e-13 [its= 53] 7s_1/2: delta=-0.00435; eps=6.1e-13 [its= 46] 6p_1/2: delta=-0.00795; eps=8.1e-13 [its= 52] 7p_1/2: delta=-0.00230; eps=7.4e-13 [its= 50] 6p_3/2: delta=-0.00705; eps=7.0e-13 [its= 51] 7p_3/2: delta=-0.00208; eps=9.6e-13 [its= 46] 5d_3/2: delta=-0.01558; eps=9.9e-13 [its= 73] 5d_5/2: delta=-0.01474; eps=8.2e-13 [its= 72] Br: T = 1.50 s Brueckner orbitals: Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 65.1 2 2e-24 -0.147652662 -32406.014 0.00 1) 7s_1/2 -1 105.5 2 5e-28 -0.059541249 -13067.794 19338.22 2) 6p_1/2 1 82.8 2 1e-26 -0.093565934 -20535.349 11870.66 3) 7p_1/2 1 124.0 2 6e-28 -0.044323614 -9727.909 22678.10 4) 6p_3/2 -2 84.1 2 2e-26 -0.090839516 -19936.969 12469.04 5) 7p_3/2 -2 125.3 2 1e-27 -0.043451513 -9536.505 22869.51 6) 5d_3/2 2 90.0 2 8e-26 -0.080000419 -17558.062 14847.95 7) 5d_5/2 -3 90.5 2 8e-26 -0.079271986 -17398.190 15007.82 Test orthonormality: cc <2s+|5s+> = 2.2e-06 cv <5s+|6s+> = 1.2e-02 cb <4s+|25s+> = 2.8e-04 vv <6s+|7s+> = 4.9e-03 vb <5d-|6d-> = 2.1e-01 bb <16h-|15h-> = 1.6e-13 Module::matrixElements (reduced). Operator: E1 Units: |e|aB Including RPA: TDHF method TDHF E1 (w=0.000): 30 2.6e-09 h(0) h(1) h(RPA) < 6p-, 6s+>: -4.729938e+00 -4.348076e+00 -4.388235e+00 < 7p-, 6s+>: -4.302766e-01 -2.670202e-01 -2.863796e-01 < 6p+, 6s+>: 6.632100e+00 6.120376e+00 6.170918e+00 < 7p+, 6s+>: 7.900629e-01 5.638550e-01 5.887573e-01 < 7p-, 7s+>: -1.023256e+01 -1.013153e+01 -1.014170e+01 < 7p+, 7s+>: 1.418762e+01 1.405553e+01 1.406829e+01 < 7s+, 6p->: 4.230129e+00 4.265504e+00 4.255733e+00 < 7s+, 6p+>: 6.491876e+00 6.525647e+00 6.514825e+00 < 6p-, 5d->: 7.132119e+00 6.718611e+00 6.750038e+00 < 7p-, 5d->: -1.638648e+00 -1.785706e+00 -1.773075e+00 < 6p+, 5d->: 3.200820e+00 3.028591e+00 3.039192e+00 < 7p+, 5d->: -6.276928e-01 -6.907122e-01 -6.866483e-01 < 6p+, 5d+>: 9.739754e+00 9.225835e+00 9.261771e+00 < 7p+, 5d+>: -2.022842e+00 -2.208508e+00 -2.194267e+00 ampsci: T = 2.81 mins ******************************************************************************** ampsci git:9e8c6a0 (dev) 2022-01-17 00:18:15 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; Breit = 1.0; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 45; order = 9; r0 = 1.0e-4; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** Including Breit (scale = 1) HF core: it: 47 eps=2.2e-11 for 4d_3/2 [5.7e-14 for 2s_1/2] core: T = 4.98 s HF valence: 33 eps=1.5e-10 for 5d_5/2 [3.3e-13 for 7p_3/2 w/ 31] val: T = 817.35 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 6e-28 -1326.968050978 -291235823.819 1) 2s_1/2 -1 1.7 2 6e-25 -212.263833974 -46586526.713 2) 2p_1/2 1 1.7 2 3e-25 -198.916504501 -43657126.497 3) 2p_3/2 -2 1.8 2 4e-25 -186.090178588 -40842073.346 4) 3s_1/2 -1 3.6 2 3e-23 -45.925782089 -10079544.094 5) 3p_1/2 1 3.8 2 2e-23 -40.367418288 -8859624.248 6) 3p_3/2 -2 3.9 2 2e-23 -37.845333645 -8306090.651 7) 3d_3/2 2 4.5 2 2e-23 -28.283803230 -6207577.287 8) 3d_5/2 -3 4.6 2 2e-23 -27.763411318 -6093364.464 9) 4s_1/2 -1 7.9 2 4e-22 -9.506472241 -2086429.491 10) 4p_1/2 1 8.9 2 3e-22 -7.433355546 -1631432.968 11) 4p_3/2 -2 9.2 2 3e-22 -6.914677619 -1517596.321 12) 4d_3/2 2 13.1 2 2e-22 -3.485064089 -764883.156 13) 4d_5/2 -3 13.2 2 2e-22 -3.398736053 -745936.342 14) 5s_1/2 -1 20.2 2 2e-22 -1.489314723 -326866.800 15) 5p_1/2 1 26.1 2 1e-22 -0.906786849 -199016.709 16) 5p_3/2 -2 27.2 2 1e-22 -0.840057574 -184371.326 E_core = -7774.3533 au; = -1.7062733e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 1e-24 -0.127353488 -27950.860 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055182447 -12111.147 15839.71 2) 6p_1/2 1 86.9 2 4e-26 -0.085581721 -18783.017 9167.84 3) 7p_1/2 1 127.6 2 2e-27 -0.042009148 -9219.942 18730.92 4) 6p_3/2 -2 87.9 2 6e-26 -0.083772384 -18385.913 9564.95 5) 7p_3/2 -2 128.8 2 4e-27 -0.041363265 -9078.187 18872.67 6) 5d_3/2 2 101.1 2 2e-26 -0.064465902 -14148.630 13802.23 7) 5d_5/2 -3 101.0 2 2e-26 -0.064583037 -14174.338 13776.52 Constructing B-spline basis with N=45, k=9. Storing: 35spdfghi Using Derevinko (Duel Kinetic Balance) type splines. Spline cavity l=0 s: (1.0e-04, 40.0)aB. Spline cavity l=1 p: (1.0e-04, 40.0)aB. Spline cavity l=2 d: (1.0e-04, 40.0)aB. Spline cavity l=3 f: (1.0e-04, 40.0)aB. Spline cavity l=4 g: (1.0e-04, 40.0)aB. Spline cavity l=5 h: (1.0e-04, 40.0)aB. Spline cavity l=6 i: (1.0e-04, 40.0)aB. WARNING: Spurious state?? 4f_7/2 -9237.9 WARNING: Spurious state?? 5g_7/2 -9374.36 WARNING: Spurious state?? 6g_7/2 -3.59575 WARNING: Spurious state?? 5g_9/2 -1343.92 WARNING: Spurious state?? 7i_11/2 -11633.2 Basis/core: |<4d+|4d+>-1| = 4.8e-06 dE/E(4d+) = 4.8e-04 <4d+|5d+> = 1.5e-03 ** OK? Basis/valence: |<5d+|5d+>-1| = 2.0e+00 ** OK? dE/E(5d+) = 1.6e-01 ** OK? <5d+|6d+> = 2.2e-01 ** OK? Basis: T = 5.05 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.4)aB with 154 points. [i0=1436, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12735.. de= -3732.9 + 164.6 = -3568.4 k=-1 at en=-0.05518.. de= -904.3 + 53.7 = -850.6 k= 1 at en=-0.08558.. ******************************************************************************** ampsci git:9e8c6a0 (dev) 2022-01-17 00:19:39 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; Breit = 1.0; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 45; order = 9; r0_eps = 1.0e-4; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** Including Breit (scale = 1) HF core: it: 47 eps=2.2e-11 for 4d_3/2 [5.7e-14 for 2s_1/2] core: T = 4.99 s HF valence: 33 eps=1.5e-10 for 5d_5/2 [3.3e-13 for 7p_3/2 w/ 31] val: T = 825.28 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 6e-28 -1326.968050978 -291235823.819 1) 2s_1/2 -1 1.7 2 6e-25 -212.263833974 -46586526.713 2) 2p_1/2 1 1.7 2 3e-25 -198.916504501 -43657126.497 3) 2p_3/2 -2 1.8 2 4e-25 -186.090178588 -40842073.346 4) 3s_1/2 -1 3.6 2 3e-23 -45.925782089 -10079544.094 5) 3p_1/2 1 3.8 2 2e-23 -40.367418288 -8859624.248 6) 3p_3/2 -2 3.9 2 2e-23 -37.845333645 -8306090.651 7) 3d_3/2 2 4.5 2 2e-23 -28.283803230 -6207577.287 8) 3d_5/2 -3 4.6 2 2e-23 -27.763411318 -6093364.464 9) 4s_1/2 -1 7.9 2 4e-22 -9.506472241 -2086429.491 10) 4p_1/2 1 8.9 2 3e-22 -7.433355546 -1631432.968 11) 4p_3/2 -2 9.2 2 3e-22 -6.914677619 -1517596.321 12) 4d_3/2 2 13.1 2 2e-22 -3.485064089 -764883.156 13) 4d_5/2 -3 13.2 2 2e-22 -3.398736053 -745936.342 14) 5s_1/2 -1 20.2 2 2e-22 -1.489314723 -326866.800 15) 5p_1/2 1 26.1 2 1e-22 -0.906786849 -199016.709 16) 5p_3/2 -2 27.2 2 1e-22 -0.840057574 -184371.326 E_core = -7774.3533 au; = -1.7062733e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 1e-24 -0.127353488 -27950.860 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055182447 -12111.147 15839.71 2) 6p_1/2 1 86.9 2 4e-26 -0.085581721 -18783.017 9167.84 3) 7p_1/2 1 127.6 2 2e-27 -0.042009148 -9219.942 18730.92 4) 6p_3/2 -2 87.9 2 6e-26 -0.083772384 -18385.913 9564.95 5) 7p_3/2 -2 128.8 2 4e-27 -0.041363265 -9078.187 18872.67 6) 5d_3/2 2 101.1 2 2e-26 -0.064465902 -14148.630 13802.23 7) 5d_5/2 -3 101.0 2 2e-26 -0.064583037 -14174.338 13776.52 Constructing B-spline basis with N=45, k=9. Storing: 35spdfghi Using Derevinko (Duel Kinetic Balance) type splines. Spline cavity l=0 s: (4.3e-05, 40.0)aB. Spline cavity l=1 p: (8.1e-04, 40.0)aB. Spline cavity l=2 d: (1.5e-02, 40.0)aB. Spline cavity l=3 f: (1.5e-02, 40.0)aB. Spline cavity l=4 g: (1.5e-02, 40.0)aB. Spline cavity l=5 h: (1.5e-02, 40.0)aB. Spline cavity l=6 i: (1.5e-02, 40.0)aB. Basis/core: |<4s+|4s+>-1| = 8.5e-07 dE/E(4s+) = 7.6e-06 <4s+|23s+> = 4.1e-04 Basis/valence: |<7p+|7p+>-1| = 5.4e-04 dE/E(7p+) = 8.6e-04 <7p+|8p+> = 1.1e-02 ** OK? Basis: T = 5.02 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.4)aB with 154 points. [i0=1436, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12735.. de= -4185.0 + 327.7 = -3857.3 k=-1 at en=-0.05518.. de= -1004.2 + 90.5 = -913.7 k= 1 at en=-0.08558.. de= -1677.7 + 175.7 = -1502.1 k= 1 at en=-0.04201.. de= -527.3 + 64.2 = -463.2 k=-2 at en=-0.08377.. de= -1499.3 + 159.7 = -1339.6 k=-2 at en=-0.04136.. de= -478.9 + 59.5 = -419.5 k= 2 at en=-0.06447.. de= -2694.4 + 265.4 = -2429.0 k=-3 at en=-0.06458.. de= -2531.0 + 235.1 = -2295.9 Writing to Sigma file: CsI.sig2 ... done. Sigma: T = 2.57 mins Solving for Brueckner orbitals (correlation potential) 6s_1/2: delta=-0.02023; eps=6.7e-13 [its= 53] 7s_1/2: delta=-0.00435; eps=6.0e-13 [its= 46] 6p_1/2: delta=-0.00792; eps=7.1e-13 [its= 52] 7p_1/2: delta=-0.00230; eps=6.9e-13 [its= 48] 6p_3/2: delta=-0.00699; eps=2.3e-13 [its= 50] 7p_3/2: delta=-0.00207; eps=4.8e-13 [its= 46] 5d_3/2: delta=-0.01557; eps=7.6e-12 [its= 77] 5d_5/2: delta=-0.01439; eps=5.4e-11 [its= 67] Br: T = 6.69 s Brueckner orbitals: Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 65.1 2 4e-24 -0.147583665 -32390.871 0.00 1) 7s_1/2 -1 105.6 2 5e-28 -0.059528877 -13065.078 19325.79 2) 6p_1/2 1 82.8 2 1e-26 -0.093506114 -20522.220 11868.65 3) 7p_1/2 1 124.0 2 6e-28 -0.044305016 -9723.827 22667.04 4) 6p_3/2 -2 84.2 2 2e-26 -0.090764907 -19920.595 12470.28 5) 7p_3/2 -2 125.4 2 1e-27 -0.043432398 -9532.310 22858.56 6) 5d_3/2 2 90.0 2 8e-26 -0.080033456 -17565.313 14825.56 7) 5d_5/2 -3 90.6 2 8e-26 -0.078977283 -17333.510 15057.36 Test orthonormality: cc <2s+|5s+> = 2.2e-06 cv <5s+|6s+> = 1.2e-02 cb <4s+|23s+> = 4.1e-04 vv <6s+|7s+> = 4.9e-03 vb <5d-|6d-> = 2.1e-01 bb <20i-|19i-> = 2.3e-13 Module::matrixElements (reduced). Operator: E1 Units: |e|aB Including RPA: TDHF method TDHF E1 (w=0.000): 29 7.4e-09 h(0) h(1) h(RPA) < 6p-, 6s+>: -4.731182e+00 -4.348934e+00 -4.389212e+00 < 7p-, 6s+>: -4.318462e-01 -2.683428e-01 -2.877617e-01 < 6p+, 6s+>: 6.633751e+00 6.121507e+00 6.172235e+00 < 7p+, 6s+>: 7.931013e-01 5.664528e-01 5.914616e-01 < 7p-, 7s+>: -1.023220e+01 -1.013106e+01 -1.014127e+01 < 7p+, 7s+>: 1.418580e+01 1.405355e+01 1.406637e+01 < 7s+, 6p->: 4.235615e+00 4.270905e+00 4.261131e+00 < 7s+, 6p+>: 6.501410e+00 6.535052e+00 6.524218e+00 < 6p-, 5d->: 7.129328e+00 6.715594e+00 6.747114e+00 < 7p-, 5d->: -1.628828e+00 -1.776103e+00 -1.763435e+00 < 6p+, 5d->: 3.199614e+00 3.027245e+00 3.037910e+00 < 7p+, 5d->: -6.229672e-01 -6.861350e-01 -6.820399e-01 < 6p+, 5d+>: 9.762033e+00 9.247863e+00 9.283924e+00 < 7p+, 5d+>: -2.058878e+00 -2.244422e+00 -2.230151e+00 ampsci: T = 3.35 mins ******************************************************************************** ampsci git:9e8c6a0 (dev) 2022-01-17 00:23:14 ******************************************************************************** Atom { Z = Cs; } HartreeFock { core = [Xe]; valence = 7sp5d; } Grid { r0 = 1e-7; rmax = 135.0; num_points = 5000; } Basis { number = 45; order = 9; r0_eps = 1.0e-4; rmax = 40.0; print = false; states = 35spdfghi; } Correlations { energyShifts = false; Brueckner = true; n_min_core = 3; each_valence = true; read = false; write = CsI; } Module::Tests { } Module::matrixElements { operator = E1; omega = 0.0; } Running for Cs, Z=55 A=133 Fermi nucleus; r_rms = 4.8041, c_hdr = 5.67073, t = 2.3 Log-linear (b=44.55) grid: 1e-07->135, N=5000, du=0.214361 ******************************************************** HF core: it: 38 eps=5.2e-13 for 5p_3/2 [1.5e-15 for 2p_3/2] core: T = 876.46 ms HF valence: 23 eps=2.1e-11 for 6p_1/2 [5.2e-13 for 5d_3/2 w/ 28] val: T = 231.69 ms Hartree Fock: CsI-133 Core: [Xe] (V^N-1) state k Rinf its eps En (au) En (/cm) 0) 1s_1/2 -1 0.7 2 1e-27 -1330.118817247 -291927337.084 1) 2s_1/2 -1 1.7 2 7e-25 -212.564480266 -46652510.947 2) 2p_1/2 1 1.7 2 3e-25 -199.429485447 -43769712.801 3) 2p_3/2 -2 1.8 2 4e-25 -186.436595588 -40918103.089 4) 3s_1/2 -1 3.6 2 3e-23 -45.969744628 -10089192.756 5) 3p_1/2 1 3.8 2 2e-23 -40.448304013 -8877376.612 6) 3p_3/2 -2 3.9 2 3e-23 -37.894309797 -8316839.673 7) 3d_3/2 2 4.5 2 2e-23 -28.309506572 -6213218.519 8) 3d_5/2 -3 4.6 2 2e-23 -27.775163094 -6095943.681 9) 4s_1/2 -1 7.9 2 4e-22 -9.512820322 -2087822.733 10) 4p_1/2 1 8.9 2 3e-22 -7.446284079 -1634270.453 11) 4p_3/2 -2 9.2 2 3e-22 -6.921000315 -1518983.993 12) 4d_3/2 2 13.1 2 2e-22 -3.485618814 -765004.904 13) 4d_5/2 -3 13.2 2 2e-22 -3.396901446 -745533.693 14) 5s_1/2 -1 20.2 2 2e-22 -1.489804661 -326974.329 15) 5p_1/2 1 26.1 2 1e-22 -0.907897553 -199260.481 16) 5p_3/2 -2 27.2 2 1e-22 -0.840339103 -184433.115 E_core = -7786.6452 au; = -1.7089711e+09 /cm Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 70.4 2 3e-25 -0.127368059 -27954.058 0.00 1) 7s_1/2 -1 110.0 2 1e-27 -0.055187355 -12112.224 15841.83 2) 6p_1/2 1 86.9 2 7e-26 -0.085615870 -18790.512 9163.55 3) 7p_1/2 1 127.6 2 2e-27 -0.042021382 -9222.627 18731.43 4) 6p_3/2 -2 87.9 2 7e-26 -0.083785466 -18388.784 9565.27 5) 7p_3/2 -2 128.8 2 4e-27 -0.041368038 -9079.235 18874.82 6) 5d_3/2 2 101.1 2 2e-26 -0.064419642 -14138.477 13815.58 7) 5d_5/2 -3 101.1 2 2e-26 -0.064529774 -14162.648 13791.41 Constructing B-spline basis with N=45, k=9. Storing: 35spdfghi Using Derevinko (Duel Kinetic Balance) type splines. Spline cavity l=0 s: (4.3e-05, 40.0)aB. Spline cavity l=1 p: (8.0e-04, 40.0)aB. Spline cavity l=2 d: (1.5e-02, 40.0)aB. Spline cavity l=3 f: (1.5e-02, 40.0)aB. Spline cavity l=4 g: (1.5e-02, 40.0)aB. Spline cavity l=5 h: (1.5e-02, 40.0)aB. Spline cavity l=6 i: (1.5e-02, 40.0)aB. Basis/core: |<4s+|4s+>-1| = 8.7e-07 dE/E(4s+) = 7.7e-06 <4s+|23s+> = 4.2e-04 Basis/valence: |<7p+|7p+>-1| = 5.4e-04 dE/E(7p+) = 8.6e-04 <7p+|8p+> = 1.1e-02 ** OK? Basis: T = 2.29 s Correlation potential (Sigma^2): Goldstone Sigma sub-grid: r=(1.0e-04, 29.4)aB with 154 points. [i0=1436, stride=18] Form correlation potential: Goldstone method Basis: 5sp4d/35spdfghi k=-1 at en=-0.12737.. de= -4202.0 + 336.3 = -3865.7 k=-1 at en=-0.05519.. de= -1007.4 + 92.3 = -915.1 k= 1 at en=-0.08562.. de= -1682.8 + 177.3 = -1505.5 k= 1 at en=-0.04202.. de= -528.7 + 64.7 = -464.1 k=-2 at en=-0.08379.. de= -1512.3 + 163.0 = -1349.3 k=-2 at en=-0.04137.. de= -482.6 + 60.5 = -422.1 k= 2 at en=-0.06442.. de= -2692.5 + 267.2 = -2425.3 k=-3 at en=-0.06453.. de= -2590.4 + 248.1 = -2342.3 Writing to Sigma file: CsI.sig2 ... done. Sigma: T = 2.60 mins Solving for Brueckner orbitals (correlation potential) 6s_1/2: delta=-0.02028; eps=6.7e-13 [its= 53] 7s_1/2: delta=-0.00435; eps=6.0e-13 [its= 46] 6p_1/2: delta=-0.00794; eps=8.0e-13 [its= 52] 7p_1/2: delta=-0.00230; eps=6.3e-13 [its= 50] 6p_3/2: delta=-0.00705; eps=7.0e-13 [its= 51] 7p_3/2: delta=-0.00208; eps=9.5e-13 [its= 46] 5d_3/2: delta=-0.01556; eps=9.7e-13 [its= 73] 5d_5/2: delta=-0.01472; eps=8.0e-13 [its= 72] Br: T = 1.50 s Brueckner orbitals: Val: state k Rinf its eps En (au) En (/cm) En (/cm) 0) 6s_1/2 -1 65.1 2 2e-24 -0.147646672 -32404.699 0.00 1) 7s_1/2 -1 105.5 2 5e-28 -0.059539950 -13067.508 19337.19 2) 6p_1/2 1 82.8 2 1e-26 -0.093560458 -20534.147 11870.55 3) 7p_1/2 1 124.0 2 6e-28 -0.044321898 -9727.532 22677.17 4) 6p_3/2 -2 84.2 2 2e-26 -0.090833123 -19935.566 12469.13 5) 7p_3/2 -2 125.3 2 1e-27 -0.043449454 -9536.053 22868.65 6) 5d_3/2 2 90.0 2 8e-26 -0.079981292 -17553.865 14850.83 7) 5d_5/2 -3 90.5 2 8e-26 -0.079246200 -17392.530 15012.17 Test orthonormality: cc <2s+|5s+> = 2.2e-06 cv <5s+|6s+> = 1.2e-02 cb <4s+|23s+> = 4.2e-04 vv <6s+|7s+> = 4.9e-03 vb <5d-|6d-> = 2.1e-01 bb <20i-|21i-> = 2.3e-13 Module::matrixElements (reduced). Operator: E1 Units: |e|aB Including RPA: TDHF method TDHF E1 (w=0.000): 30 2.6e-09 h(0) h(1) h(RPA) < 6p-, 6s+>: -4.730068e+00 -4.348236e+00 -4.388382e+00 < 7p-, 6s+>: -4.304213e-01 -2.671687e-01 -2.865224e-01 < 6p+, 6s+>: 6.632235e+00 6.120564e+00 6.171085e+00 < 7p+, 6s+>: 7.903366e-01 5.641375e-01 5.890299e-01 < 7p-, 7s+>: -1.023258e+01 -1.013155e+01 -1.014172e+01 < 7p+, 7s+>: 1.418745e+01 1.405538e+01 1.406813e+01 < 7s+, 6p->: 4.230607e+00 4.265975e+00 4.256208e+00 < 7s+, 6p+>: 6.492802e+00 6.526555e+00 6.515742e+00 < 6p-, 5d->: 7.134394e+00 6.720866e+00 6.752292e+00 < 7p-, 5d->: -1.640897e+00 -1.787948e+00 -1.775319e+00 < 6p+, 5d->: 3.201893e+00 3.029654e+00 3.040255e+00 < 7p+, 5d->: -6.285957e-01 -6.916141e-01 -6.875507e-01 < 6p+, 5d+>: 9.744063e+00 9.230090e+00 9.266026e+00 < 7p+, 5d+>: -2.026958e+00 -2.212619e+00 -2.198380e+00 ampsci: T = 2.82 mins