Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: master
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

executable file 81 lines (71 sloc) 1.971 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#!/usr/bin/python

import sys
import random
import itertools
from math import sqrt

class Pfactor(object):
def __init__(self):
# bah, not implemented
self.cache = []

def __call__(self, x):
factorlist = []

if x == 1:
factorlist.append(x)
while x % 2 == 0:
factorlist.append(2)
x /= 2
limit = 1 + int(sqrt(x))
for factor in range(3, limit, 2):
while x % factor == 0:
factorlist.append(factor)
x /= factor
if x > 1:
factorlist.append(x)

return factorlist
pfactor = Pfactor()

if len(sys.argv) != 1 + 1:
msg = "What a load of nonsense"
else:
msg = sys.argv[1]
charset_letters = sorted(list(set(msg)))
# optional, output different results
random.shuffle(charset_letters)
modulo = len(charset_letters)
while len(pfactor(modulo)) != 1:
modulo += 1

limit = 9999
# The limit is there for two reasons:
# * it's in original.py
# * I'm not certain that all charset permutations are valid, that would be the
# case if the following conjecture is verified:
# m is prime, n is part of the natural numbers
# there is no i part of the natural numbers and i < m such that
# n * m + i is never prime
# In this case, n is candidate, m is modulo and i is index
for charset in itertools.permutations(charset_letters):
factor = []
n = 0
for letter in msg:
index = charset.index(letter)
candidate = n * modulo + index + 1
# find the smallest n such that:
# factor[i] = n * modulo + index + 1 is prime and
# factor[i] > factor[i - 1]
while candidate < limit and not (
len(pfactor(candidate)) == 1 and (len(factor) == 0 or
candidate > factor[-1])):
n += 1
candidate = n * modulo + index + 1

if candidate >= limit:
continue
else:
print "factor= %d, %d * %d + %d + 1" % (candidate, n, modulo, index,)
factor.append(candidate)

if candidate >= limit:
print "next try"
continue
else:
print modulo
print "".join(charset)
print reduce(lambda o1, o2: o1 * o2, factor)
sys.exit()
Something went wrong with that request. Please try again.