Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update Documentation site #349

Merged
merged 10 commits into from Oct 17, 2019
Merged
Changes from all commits
Commits
File filter...
Filter file types
Jump to…
Jump to file or symbol
Failed to load files and symbols.

Always

Just for now

@@ -50,8 +50,9 @@ class IrisClassifier(bentoml.BentoService):
return self.artifacts.model.predict(df)
```

Train a classifier model and pack it with the prediction service
`IrisClassifier` defined above:
Train a classifier model with default Iris dataset and pack the trained model
with the BentoService `IrisClassifier` defined above:

```python
from sklearn import svm
from sklearn import datasets
@@ -65,7 +66,7 @@ clf.fit(X, y)
iris_classifier_service = IrisClassifier.pack(model=clf)
# Save the entire prediction service to file bundle
saved_path = = iris_classifier_service.save()
saved_path = iris_classifier_service.save()
```

A BentoML bundle is a versioned file archive, containing the BentoService you
@@ -170,19 +171,15 @@ To learn more, try out the Getting Started with Bentoml notebook: [![Google Cola

## Project Overview

BentoML has three main components:

* BentoService: High-level API for defining a prediction service by packaging
trained model, preprocessing source code, dependencies, and configurations
into a BentoML bundle file, which can be deployed as containerize REST API
server, PyPI package, CLI tool, or batch/streaming serving job
BentoML provides two set of high-level APIs:

* DeploymentOperator: The enssential module for deploying and managing your
prediction service workloads on Kubernetes cluster and cloud platforms such
as AWS Lambda, SageMaker, Azure ML, and GCP Function etc
* BentoService: Turn your trained ML model into versioned file bundle that can be
deployed as containerize REST API server, PyPI package, CLI tool, or
batch/streaming job

* YataiServer: Web UI and APIs for model management and model serving
deployment process management for teams
* YataiService: Manage and deploy your saved BentoML bundles into prediction
services on Kubernetes cluster or cloud platforms such as AWS Lambda, SageMaker,
Azure ML, and GCP Function etc


## Feature Highlights
@@ -139,14 +139,14 @@ class BentoServiceBase(object):
@abstractmethod
def name(self):
"""
return bento service name
return BentoService name
"""

@property
@abstractmethod
def version(self):
"""
return bento service version str
return BentoService version str
"""

def _config_service_apis(self):
@@ -449,6 +449,8 @@ def name(cls): # pylint:disable=method-hidden
return cls.__name__

def set_version(self, version_str=None):
"""Manually override the version of this BentoService instance
"""
if version_str is None:
version_str = self.versioneer()

Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -1,31 +1,36 @@
Artifacts
=========

PickleArtifact
++++++++++++++
.. autoclass:: bentoml.artifact.PickleArtifact

TextFileArtifact
++++++++++++++++
.. autoclass:: bentoml.artifact.TextFileArtifact
SklearnModelArtifact
++++++++++++++++++++
.. autoclass:: bentoml.artifact.SklearnModelArtifact

PytorchModelArtifact
++++++++++++++++++++
.. autoclass:: bentoml.artifact.PytorchModelArtifact

XgboostModelArtifact
KerasModelArtifact
++++++++++++++++++++
.. autoclass:: bentoml.artifact.XgboostModelArtifact
.. autoclass:: bentoml.artifact.KerasModelArtifact

FastaiModelArtifact
+++++++++++++++++++
.. autoclass:: bentoml.artifact.FastaiModelArtifact

XgboostModelArtifact
++++++++++++++++++++
.. autoclass:: bentoml.artifact.XgboostModelArtifact

H2oModelArtifact
++++++++++++++++
.. autoclass:: bentoml.artifact.H2oModelArtifact

KerasModelArtifact
++++++++++++++++++++
.. autoclass:: bentoml.artifact.KerasModelArtifact
PickleArtifact
++++++++++++++
.. autoclass:: bentoml.artifact.PickleArtifact

TextFileArtifact
++++++++++++++++
.. autoclass:: bentoml.artifact.TextFileArtifact


@@ -3,16 +3,16 @@ BentoML

BentoService
++++++++++++
.. autoclass:: bentoml.service.BentoService
.. autoclass:: bentoml.BentoService

.. automethod:: bentoml.service.BentoService.name
.. automethod:: bentoml.BentoService.name

.. automethod:: bentoml.service.BentoService.version
.. automethod:: bentoml.BentoService.versioneer

.. automethod:: bentoml.service.BentoService.get_service_apis
.. automethod:: bentoml.BentoService.set_version

.. automethod:: bentoml.BentoService.get_service_apis

.. autoclass:: bentoml.service.BentoServiceAPI

api
+++
@@ -34,12 +34,10 @@ save
++++
.. autofunction:: bentoml.save

.. _api-load-ref:
save_to_dir
+++++++++++
.. autofunction:: bentoml.save_to_dir

load
++++
.. autofunction:: bentoml.load

config
++++++
.. autofunction:: bentoml.config

This file was deleted.

This file was deleted.

@@ -7,6 +7,4 @@ API Reference
bentoml
artifacts
handlers
deployments
exceptions

This file was deleted.

@@ -23,6 +23,7 @@
project = "BentoML"
copyright = "2019, Atalaya"
author = "Atalaya"
version = bentoml.__version__


# -- General configuration ---------------------------------------------------
@@ -50,7 +51,13 @@
#
html_theme_path = ["_themes"]
html_theme = "sphinx_rtd_theme"
html_theme_options = {"navigation_depth": 4}
html_theme_options = {
"collapse_navigation": True,
"navigation_depth": 4,
"display_version": True,
"includehidden": False,
"titles_only": False,
}

# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
ProTip! Use n and p to navigate between commits in a pull request.
You can’t perform that action at this time.