A BentoML-based service that emulates OpenAI's Chat Completion and Models APIs with customizable timing parameters.
-
Chat Completions API (
/v1/chat/completions)- Non-streaming responses (
stream: false) - Streaming responses (
stream: true) with Server-Sent Events - Compatible with OpenAI API format
- Non-streaming responses (
-
Models API (
/v1/models)- Returns list of available model names
- Compatible with OpenAI API format
-
Multimodal Support (GPT-4 Vision)
- Support for text + image inputs (base64 and URL formats)
- Compatible with OpenAI GPT-4 Vision API format
- Images are accepted but not actually processed (mock responses)
-
Precise Token Counting with TikToken
- Uses OpenAI's official
tiktokenlibrary for accurate output token counting - Exact token-level control for response lengths
- True token-by-token streaming (not word-based)
- Input tokens use simple estimation, output tokens are precise
- Uses OpenAI's official
-
Customizable Timing Parameters
X-TTFT-MS: Time To First Token in millisecondsX-ITL-MS: Inter-Token Latency in milliseconds- Streaming: Delay between each actual token
- Non-streaming: Per-token processing delay (total = ITL × output_length)
X-OUTPUT-LENGTH: Output length in exact tokens (not approximate)
-
Health Check (
/health)- Service health monitoring endpoint
- Install dependencies:
pip install -r requirements.txtbentoml serve service.py:OpenAIEmulatorThe server will start on http://localhost:3000 by default.
curl -X POST http://localhost:3000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "X-TTFT-MS: 200" \
-H "X-ITL-MS: 50" \
-H "X-OUTPUT-LENGTH: 25" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "Hello, how are you?"}
],
"stream": false
}'curl -X POST http://localhost:3000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "X-TTFT-MS: 150" \
-H "X-ITL-MS: 75" \
-H "X-OUTPUT-LENGTH: 30" \
-d '{
"model": "gpt-4",
"messages": [
{"role": "user", "content": "Tell me a story"}
],
"stream": true
}'curl http://localhost:3000/v1/models# Base64 image
curl -X POST http://localhost:3000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "X-OUTPUT-LENGTH: 30" \
-d '{
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "请描述这张图片"},
{
"type": "image_url",
"image_url": {
"url": ""
}
}
]
}
],
"stream": false
}'
# URL image
curl -X POST http://localhost:3000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "X-OUTPUT-LENGTH: 25" \
-d '{
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "请描述这张图片"},
{
"type": "image_url",
"image_url": {
"url": "https://example.com/cat.png",
"detail": "high"
}
}
]
}
],
"stream": false
}'curl http://localhost:3000/health| Header | Description | Default | Example |
|---|---|---|---|
X-TTFT-MS |
Time to first token (ms) | 100 | 200 |
X-ITL-MS |
Streaming: delay between tokens Non-streaming: per-token processing delay |
50 | 75 |
X-OUTPUT-LENGTH |
Output length in exact tokens using tiktoken | 20 | 30 |
Timing Calculation Examples:
- Streaming (30 tokens, TTFT=200ms, ITL=75ms): 200ms + (29 × 75ms) = ~2.4s total
- Non-streaming (30 tokens, TTFT=200ms, ITL=75ms): 200ms + (30 × 75ms) = ~2.5s total
Any model name works.
Run the test scripts to verify endpoints:
# Test multimodal (image) requests
python test_multimodal.py
# Test all endpoints (if available)
python test_api.pyStart the load test:
locust -f locustfile.py --host=http://localhost:3000Then open http://localhost:8089 to configure and run load tests.
- OpenAIEmulatorUser: Comprehensive testing with various scenarios
- HighThroughputUser: High-frequency requests for performance testing
import openai
# Configure client to use the emulator
client = openai.OpenAI(
api_key="dummy-key", # Any key works
base_url="http://localhost:3000/v1"
)
# Non-streaming chat
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello!"}],
extra_headers={
"X-TTFT-MS": "200",
"X-OUTPUT-LENGTH": "25"
}
)
print(response.choices[0].message.content)
# Streaming chat
stream = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Tell me a joke"}],
stream=True,
extra_headers={
"X-TTFT-MS": "150",
"X-ITL-MS": "75",
"X-OUTPUT-LENGTH": "30"
}
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
# Multimodal (Vision) example
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "请描述这张图片"},
{
"type": "image_url",
"image_url": {
"url": ""
}
}
]
}
],
extra_headers={
"X-OUTPUT-LENGTH": "30"
}
)
print(response.choices[0].message.content){
"id": "chatcmpl-abc123",
"object": "chat.completion",
"created": 1699999999,
"model": "gpt-3.5-turbo",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 10,
"completion_tokens": 25,
"total_tokens": 35
}
}data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1699999999,"model":"gpt-3.5-turbo","choices":[{"index":0,"delta":{"role":"assistant","content":""},"finish_reason":null}]}
data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1699999999,"model":"gpt-3.5-turbo","choices":[{"index":0,"delta":{"content":"Hello "},"finish_reason":null}]}
data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1699999999,"model":"gpt-3.5-turbo","choices":[{"index":0,"delta":{"content":"there! "},"finish_reason":null}]}
data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1699999999,"model":"gpt-3.5-turbo","choices":[{"index":0,"delta":{},"finish_reason":"stop"}]}
data: [DONE]
openai_api_emulator/
├── service.py # Main BentoML service
├── locustfile.py # Load testing scenarios
├── test_api.py # Manual test script
├── requirements.txt # Dependencies
├── bentofile.yaml # BentoML configuration
└── README.md # This file
- Modify
service.pyto add new endpoints or functionality - Update
locustfile.pyto test new features - Update
test_api.pyfor manual verification - Update this README with usage examples
- Port already in use: Change the port with
bentoml serve service.py:OpenAIEmulator --port 3001 - Import errors: Ensure all dependencies are installed with
pip install -r requirements.txt - Streaming not working: Check that your client properly handles Server-Sent Events
BentoML logs are available in the console when running the service. For debugging timing issues, look for the actual sleep durations in the logs.