Skip to content

bentoml/openai_emulator

Repository files navigation

OpenAI API Emulator

A BentoML-based service that emulates OpenAI's Chat Completion and Models APIs with customizable timing parameters.

Features

  • Chat Completions API (/v1/chat/completions)

    • Non-streaming responses (stream: false)
    • Streaming responses (stream: true) with Server-Sent Events
    • Compatible with OpenAI API format
  • Models API (/v1/models)

    • Returns list of available model names
    • Compatible with OpenAI API format
  • Multimodal Support (GPT-4 Vision)

    • Support for text + image inputs (base64 and URL formats)
    • Compatible with OpenAI GPT-4 Vision API format
    • Images are accepted but not actually processed (mock responses)
  • Precise Token Counting with TikToken

    • Uses OpenAI's official tiktoken library for accurate output token counting
    • Exact token-level control for response lengths
    • True token-by-token streaming (not word-based)
    • Input tokens use simple estimation, output tokens are precise
  • Customizable Timing Parameters

    • X-TTFT-MS: Time To First Token in milliseconds
    • X-ITL-MS: Inter-Token Latency in milliseconds
      • Streaming: Delay between each actual token
      • Non-streaming: Per-token processing delay (total = ITL × output_length)
    • X-OUTPUT-LENGTH: Output length in exact tokens (not approximate)
  • Health Check (/health)

    • Service health monitoring endpoint

Installation

  1. Install dependencies:
pip install -r requirements.txt

Usage

Start the Server

bentoml serve service.py:OpenAIEmulator

The server will start on http://localhost:3000 by default.

API Endpoints

1. Chat Completions (Non-streaming)

curl -X POST http://localhost:3000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "X-TTFT-MS: 200" \
  -H "X-ITL-MS: 50" \
  -H "X-OUTPUT-LENGTH: 25" \
  -d '{
    "model": "gpt-3.5-turbo",
    "messages": [
      {"role": "user", "content": "Hello, how are you?"}
    ],
    "stream": false
  }'

2. Chat Completions (Streaming)

curl -X POST http://localhost:3000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "X-TTFT-MS: 150" \
  -H "X-ITL-MS: 75" \
  -H "X-OUTPUT-LENGTH: 30" \
  -d '{
    "model": "gpt-4",
    "messages": [
      {"role": "user", "content": "Tell me a story"}
    ],
    "stream": true
  }'

3. Models API

curl http://localhost:3000/v1/models

4. Multimodal Requests (Images)

# Base64 image
curl -X POST http://localhost:3000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "X-OUTPUT-LENGTH: 30" \
  -d '{
    "model": "gpt-4-vision-preview",
    "messages": [
      {
        "role": "user",
        "content": [
          {"type": "text", "text": "请描述这张图片"},
          {
            "type": "image_url",
            "image_url": {
              "url": ""
            }
          }
        ]
      }
    ],
    "stream": false
  }'

# URL image
curl -X POST http://localhost:3000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "X-OUTPUT-LENGTH: 25" \
  -d '{
    "model": "gpt-4-vision-preview",
    "messages": [
      {
        "role": "user",
        "content": [
          {"type": "text", "text": "请描述这张图片"},
          {
            "type": "image_url",
            "image_url": {
              "url": "https://example.com/cat.png",
              "detail": "high"
            }
          }
        ]
      }
    ],
    "stream": false
  }'

5. Health Check

curl http://localhost:3000/health

Timing Parameters

Header Description Default Example
X-TTFT-MS Time to first token (ms) 100 200
X-ITL-MS Streaming: delay between tokens
Non-streaming: per-token processing delay
50 75
X-OUTPUT-LENGTH Output length in exact tokens using tiktoken 20 30

Timing Calculation Examples:

  • Streaming (30 tokens, TTFT=200ms, ITL=75ms): 200ms + (29 × 75ms) = ~2.4s total
  • Non-streaming (30 tokens, TTFT=200ms, ITL=75ms): 200ms + (30 × 75ms) = ~2.5s total

Available Models

Any model name works.

Testing

Manual Testing

Run the test scripts to verify endpoints:

# Test multimodal (image) requests
python test_multimodal.py

# Test all endpoints (if available)
python test_api.py

Load Testing with Locust

Start the load test:

locust -f locustfile.py --host=http://localhost:3000

Then open http://localhost:8089 to configure and run load tests.

Available User Classes

  1. OpenAIEmulatorUser: Comprehensive testing with various scenarios
  2. HighThroughputUser: High-frequency requests for performance testing

Example Usage with OpenAI Python Client

import openai

# Configure client to use the emulator
client = openai.OpenAI(
    api_key="dummy-key",  # Any key works
    base_url="http://localhost:3000/v1"
)

# Non-streaming chat
response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": "Hello!"}],
    extra_headers={
        "X-TTFT-MS": "200",
        "X-OUTPUT-LENGTH": "25"
    }
)
print(response.choices[0].message.content)

# Streaming chat
stream = client.chat.completions.create(
    model="gpt-4",
    messages=[{"role": "user", "content": "Tell me a joke"}],
    stream=True,
    extra_headers={
        "X-TTFT-MS": "150",
        "X-ITL-MS": "75",
        "X-OUTPUT-LENGTH": "30"
    }
)

for chunk in stream:
    if chunk.choices[0].delta.content is not None:
        print(chunk.choices[0].delta.content, end="")

# Multimodal (Vision) example
response = client.chat.completions.create(
    model="gpt-4-vision-preview",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "请描述这张图片"},
                {
                    "type": "image_url",
                    "image_url": {
                        "url": ""
                    }
                }
            ]
        }
    ],
    extra_headers={
        "X-OUTPUT-LENGTH": "30"
    }
)
print(response.choices[0].message.content)

Response Format

Non-streaming Response

{
  "id": "chatcmpl-abc123",
  "object": "chat.completion",
  "created": 1699999999,
  "model": "gpt-3.5-turbo",
  "choices": [
    {
      "index": 0,
      "message": {
        "role": "assistant",
        "content": "Hello! How can I assist you today?"
      },
      "finish_reason": "stop"
    }
  ],
  "usage": {
    "prompt_tokens": 10,
    "completion_tokens": 25,
    "total_tokens": 35
  }
}

Streaming Response

data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1699999999,"model":"gpt-3.5-turbo","choices":[{"index":0,"delta":{"role":"assistant","content":""},"finish_reason":null}]}

data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1699999999,"model":"gpt-3.5-turbo","choices":[{"index":0,"delta":{"content":"Hello "},"finish_reason":null}]}

data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1699999999,"model":"gpt-3.5-turbo","choices":[{"index":0,"delta":{"content":"there! "},"finish_reason":null}]}

data: {"id":"chatcmpl-abc123","object":"chat.completion.chunk","created":1699999999,"model":"gpt-3.5-turbo","choices":[{"index":0,"delta":{},"finish_reason":"stop"}]}

data: [DONE]

Development

Project Structure

openai_api_emulator/
├── service.py          # Main BentoML service
├── locustfile.py      # Load testing scenarios
├── test_api.py        # Manual test script
├── requirements.txt   # Dependencies
├── bentofile.yaml     # BentoML configuration
└── README.md          # This file

Adding New Features

  1. Modify service.py to add new endpoints or functionality
  2. Update locustfile.py to test new features
  3. Update test_api.py for manual verification
  4. Update this README with usage examples

Troubleshooting

Common Issues

  1. Port already in use: Change the port with bentoml serve service.py:OpenAIEmulator --port 3001
  2. Import errors: Ensure all dependencies are installed with pip install -r requirements.txt
  3. Streaming not working: Check that your client properly handles Server-Sent Events

Logs

BentoML logs are available in the console when running the service. For debugging timing issues, look for the actual sleep durations in the logs.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages