DevCode

Proyecto web PHP mediante el framework Laravel.

Inicio
Descripcion
Descripcion de la web
Descripcién tecnolégica
Laravel
Instalacion
Bootstrap
Ventajas de Laravel
Problemas encontrados
Peticiones POST
Clases no encontradas
Rutas no validas
Columna updated_at
Asociaciones oneToMany
Puesta en marcha
Ejemplos de ejecucién
Posibles mejoras
Iteracion 1
Diagrama UML
Estructura del proyecto
Modelos
Views
Rutas
Estructura de la web
Estructura parte publica/privada
Estructura administracién
Iteracion 2
Base de datos
Instalacion
Uso de la base de datos
Relaciones entre modelos
Muchos a muchos
Uno a muchos
Registro, Login y Logout
Login
Registro
Logout
Peticiones
Iteracion 3
Notificaciones
Tipos de notificaciones
Primer caso: Se ha producido un error.

Segundo caso: Todo ha ido "OK".
Rangos de usuario
Control de errores
Tutorial
Planes
Usuario

Inicio
Proyecto web devCode

e Basado en PHP.
e Uso del framework wnaravel .

Usuarios de prueba:

® user@example.org - secret
e admin@example.org - secret

Descripcion

Este proyecto es la continuacion de la primera parte de las practicas de Ingenieria Web del
curso 2017-2018. Como recordatorio lo que se pretendia conseguir era llevar a cabo un proceso
de ingenieria inversa sobre un sitio web en el que basicamente se pretende conseguir:

e Seleccionar un subconjunto de funcionalidades de la pagina web lo suficientemente
abarcable.

e Describir de manera breve y clara el subconjunto seleccionado en forma de un modelo
conceptual WebML.

e La propuesta presentada debe estar compuesta por al menos:

o Un modelo de datos, que representara las diferentes tablas de datos, los campos de
cada tablay las relaciones entre ellas.

o Un modelo de hipertexto con al menos una vista publica y otra privada. De hecho
este modelo describe una vista del sitio y esta compuesto a su vez, por dos modelos,
modelo de composicion que representa las paginas de un hipertexto y su contenido.
Por otra parte también tenemos un modelo de navegacion que representa los
enlaces entre las paginas y sus elementos de contenido.

Con todo lo anterior y como punto de partida en la segunda parte de la practica se nos pide
que hagamos un disefio del sistema a partir del sitio web escogido, que planifiquemos el
desarrollo del proyecto a partir de los modelos y diagramas disefiados en la practica 1. Todo
esto acompafado de su correspondiente implementacion utilizando las herramientas,
metodologias, patrones y demas tecnologia necesaria para el desarrollo de la pagina web.En

mailto:user@example.org
mailto:admin@example.org

resumidas cuentas lo que se nos pide es:

e Disefo del sistema

o Un Wireframe que nos proporcioné una vision general del sistema por perfiles de
usuario,

o Mockups detallados de las pantallas principales.

o Otros diagramas que nos puedan ayudar.

e Planificaciéon

o Dividir el proyecto en iteraciones o establecer alguna planificacion temporal
adecuada.

o Seleccionar una metodologia de desarrollo.

o Documentar todo el proceso.

e Requisitos minimos de implementacion

Registro de usuarios

Inicio y cierre de sesion, control de seguridad.

Web de back-office

Pagina principal y minimo dos niveles de navegaciéon completa con las operaciones
necesarias implementadas.

O O O O

Descripcion de la web

El sistema escogido se llama DevCode https://devcode.la/ y es una plataforma online que
permitira a cualquier interesado en la programacion y desarrollo web a recibir nociones
fundamentales que le permitiran iniciarse en el mundo de los desarrolladores.

Devcode oferta una gran seleccion de cursos (HTML, Javascript, PHP, bootsrap, etc), blogs,
tutoriales. Cada uno de los cuales cuenta con temario y ejercicos para poner en practica los
conocimientos adquiridos a lo largo del curso.Los temas estan compuesto por videos y
recursos externos para dar soporte al contenido.Los cursos finalizan con un proyecto en donde
poner en practica todo lo aprendido. Ademas los cursos incluyen examenes (Uno por curso).

Para adquirir alguno de los curso solo tenemos que inscribirnos creando una cuenta gratuita,
siendo posible acceder a los videos que componen cada uno de los cursos. El objetivo es
ofrecer una plataforma con videos interactivos que muestre también la posibilidad de realizar
proyectos y permita desarrollar ejercicios, teniendo el codigo disponible para entender mejor el
tema que se esta tratando.

Para acceder a todo el contenido, Devcode ofrece tres tipos de suscripciones, plan anual y plan
mensual. En ambos podemos acceder a contenido premium.

Descripcion tecnologica

Laravel

https://devcode.la/

Laravel es un framework de c6digo abierto para desarrollar aplicaciones y servicios web con
PHP 5y PHP 7. El objetivo de Laravel es el de ser un framework que permita el uso de una
sintaxis refinada y expresiva para crear cédigo de forma sencilla, evitando el “c6digo espagueti”
y permitiendo multitud de funcionalidades. Aprovecha todo lo bueno de otros frameworks y
utiliza las caracteristicas de las ultimas versiones de PHP.La mayor parte de su estructura esta
formada por dependencias, especialmente de Symfony, lo que implica que el desarrollo de
Laravel dependa también del desarrollo de sus dependencias.Alguna de sus caracteristicas:

Sistema de ruteo, también RESTful
Blade, Motor de plantillas
Eloquent ORM

Basado en Composer

Soporte para el caché

Soporte para MVC

Usa componentes de Symfony

Instalacion

Inicialmentes empezamos instalando la herramienta composer para la administraciéon de
dependencias en PHP. Le permite declarar las bibliotecas de las que depende el proyecto y las
administrara.Laravel utiliza Composer para administrar las dependencias. Es por esto que que
debemos asegurarnos tenerlo instalado antes de usar Laravel.

composer global require "laravel/installer"

Una vez instalado laravel podemos empezar a trabajar en nuestro proyecto. Con el siguiente
comando crearemos una nueva instalacién de laravel en el directorio especificado y que
contendra todas las dependencias necesarias.

laravel new DevCode

También podemos crear el proyecto con el siguiente comando.

composer create-project --prefer-dist laravel/laravel DevCode

Para desplegar el proyecto podemos usar el servidor de desarrollo incorporado en PHP con

php artisan serve

Alternativamente podemos instalar otro servidor a través de la herramienta xampp.

XAMPP es un entorno de desarrollo del lenguaje PHP que incluye un servidor web. Ofrece todo
lo que necesitas para crear y publicar una pagina web: un servidor web Apache, la base de
datos MariaDB con soporte MySQL, software de desarrollo PHP, y soporte de Perl.

Bootstrap

Bootstrap es un framework basado en HTML, CSS y JavaScript para crear webs responsive, es
decir, 100% adaptables a todo tipo de dispositivos méviles.Es una herramienta de cédigo
abierto y que gracias a su disefio de 12 columnas conseguimos adaptar nuestro contenido a los
distintos tamafios de pantalla. Ademas soporta las versiones de HTML y CSS, posee un codigo
limpio y optimizado para que tu web cargue lo mas rapido posible. Y es compatible con los
navegadores mas populares como safari, chrome, firefox, explorer y opera.

Ventajas de Laravel

Trabajando con laravel como framework de base en el desarrollo de los proyectos web
obtenemos:

e Reduccién de costosy tiempos en el desarrollo y mantenimiento.

e Curva de aprendizaje relativamente Baja (en comparacion con otros framework Php).

e Flexible y adaptable no solo al MVC Tradicional (Modelo vista controlador) sino que para
reducir codigo propone usar "Routes with clousures"

e Buenay abundante documentacién sobre todo en el sitio oficial y otros foros.

e Es modulary con una amplio sistemas de paquetes y drivers con el que se puede extender
la funcionalidad de forma facil, robustay segura.

e Hace que el manejo de los datos en Laravel no sea complejo; mediante Eloquent (que es
un ORM basado en el patron active record) la interaccion con las bases de datos es
totalmente orientada a objetos, siendo compatible con la gran mayoria de las bases de
datos del mercado actual y facilitando la migracién de nuestros datos de una forma facil y
segura. Otro punto es que permite la creacién de consultas robustas y complejas.

e Facilita el manejo de ruteo de nuestra aplicacion como asi también la generacion de url
amigables y control de enlaces auto-actualizables lo que hace mas facil el mantenimiento
de un sitio web.

e FElsistema de plantillas Blade de Laravel, trae consigo la generacién de mejoras en la
parte de presentacion de la aplicacion como la generacion de plantillas mas simples y
limpias en el codigo y ademas incluye un sistema de cache que las hace mas rapidas, lo
qgue mejora el rendimiento de la aplicacion.

e También cuenta con una herramienta de interfaces de lineas de comando llamada Artisan
gue me permite programar tareas programadas como por ejemplo ejecutar migraciones,
pruebas programadas, etc.

Problemas encontrados

Peticiones POST

Surge un problema a la hora de hacer una peticion POST. Por seguridad, Laravel indica que
debe indicarse como cabecera un token especial lamado CSRF Protection como se indica en
Su wiki

Para ello, debe afiadirse como HEADER de la web:

// File: /resources/views/layout.blade.php

<meta name="csrf-token" content="{{ csrf token() }}" />

Una vez se tiene dicho token se podra utilizar en una peticién AJAX mediante JQUERY:

headers: {
'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')
br

En caso se querer probar la APl desde herramientas externas, como por ejemplo, POSTMan
debe eliminarse el control de dicho token en laravel, para ello, se debe comentar la siguiente
linea:

// File: /app/Http/Kernel.php
\App\Http\Middleware\VerifyCsrfToken: :class,

Permitiendo una llamada POST desde POSTMan si es requerido.
Clases no encontradas

Si se descarga una rama o se utilizan cambios o nuevas clases de otras ramas e indica que
alguna clase no existe, se debe ejecutar:

$ php artisan optimize

Rutas no validas

Dependiendo de la maquina donde se ejecute y su configuracion a veces existen problemas
con las rutas indicando:

Not Found

The requested URL /devCode/public/cursos was not found on this server.

Para arreglarlo, se debera utilizar en la URL el pardametro index.php:

https://laravel.com/docs/5.4/csrf

http://127.0.0.1/devCode/public/index.php/cursos/

Columna updated_at

Por defecto, laravel afiade dicha columna a las tablas, si no ha sido afladida, en el modelo se
debe afadir:

public $timestamps = false;

Asociaciones oneToMany

Para asignar una variable en la clase Many-To-One, en este caso, por ejemplo, tutorial, se debe
asociar un objeto del tipo de la relacion como se indica a continuacion:

Stutorial->author()->associate(Author::£find(9));

Puesta en marcha

El proyecto una vez descargado se deberan seguir los siguientes pasos:

® Ser copiado en la carpeta donde se situe el
localhost

de la maquina que lo ejecute.

o Para este primer paso tan solo es necesario copiar la carpeta /public , por tanto, si
secreaun link adicha carpeta en la carpeta donde se situe el servidor localhost
sera suficiente.

e FEjecutar:

$ composer install

e Siaparecen los siguientes errores:
O Problema al abrir laravel.log :Ejecutar: $ sudo chmod -R 777 ./storage

e Generar la Key utilizada:

$ php artisan key:generate

e Configurar la base de datos como indica en el siguiente enlace.

® Asegurarnos que la herramienta composer esta instalado. Es esencial dado que un
proyecto que depende de ciertas librerias desarrolladas por terceros, y a su vez, éstas
librerias también dependen de otras, o que hace Composer en este caso es averiguar que
librerias deben instalarse; es decir, resuelve todas las dependencias indirectas y descarga
automaticamente la version correcta de cada paquete.

o Normalmente estara ubicada en la carpeta /vendor dentro del directorio del
proyecto.

Y ya esta la web funcionado!

http://127.0.0.1/devCode/public/index.php

Usuarios de prueba:

e user@example.org - secret
® admin@example.org - secret

Ejemplos de ejecucion

Ejemplos de vistas:

https://github.com/bertus193/devCode/wiki/Base-de-Datos
http://127.0.0.1/devCode/public/index.php
mailto:user@example.org
mailto:admin@example.org

DevCode Cursos Tutorisles TV Peri

Usuario Prueba
Email: user@example.org

Registrado el: 01-01-1970

Mis Cursos

Curso de MongoDB Curso de React Router 4 Fundamentos de Laravel
Aprende a trabajar con MongoDB, la base de datos Aprende React Router y facilita la escritura de Aprende a desarrollar en el framework de PHP de
NoSQL més popular del mundo. aplicaciones webs SPA con React. mayor crecimiento en la actualidad.

rar [vaere | oo

© 2017-2018 Todas las imagenes pertenecen a DevCode.

DevCode Cursos Tutorisles TV Admin Perfil

Aprende nuevas tecnologias web
y movil

A través de cursos pricticos, concisos y actualizados, dictados por profesionales con
experiencia.

iBuscar cursos!

Curso de MongoDB Curso de React Router 4 Fundamentos de Laravel
Aprende a trabajar con MongoDB, la base de datos Aprende React Router y facilita la escritura de Aprende a desarrollar en el framework de PHP de
NoSQL més popular del mundo. aplicaciones webs SPA con React. mayor crecimiento en la actualidad.

JavaScript

(Condicional) ? True:false

Caché de lado del servidor - Operador condicional
con Express en NodeJS Vincular eventos a ternario en JavaScript

elementos con jQuery i
Aprende la técnica de almacenar datos en memoria En este tutorial aprgn_deremos ausaruno delos
para mejorar el rendimiento de cualquier Aprende a asociar eventos a tus e]lemen.tos en tus operadores condicionales mas sencillos de
aplicacion, mévil, web o de escritorio. aplicaciones y sitios web a través de jQuery. JavaScript, el operador ternario que te permite
’ ’ evaluar una condicion, y ejecutar una de dos
instrucciones dependiendo de la condicién
evaluada.

¢2

a o
Julio Giampiere Grados Caballero o Julio Giampiere Grados Caballero

Julio Giampiere Grados Caballero

web scraping

127.0.0.1/devCode/public/index.php/tutoriales/1

Admini

r tutoriales

Tutoriales

Nuevo tutorial

Show 10 [entries Search:
ID Nombre Descripcién
1 Caché de lado del servidor Aprende la técnica de almacenar datos en ia para mejorar el imi de cualquier aplicacién, mévil, web o ° o
con Express en NodeJS de escritorio.
2 Vincular eventos a Aprende a asociar eventos a tus elementos en tus aplicaciones y sitios web a través de jQuery. ° o
elementos con jQuery
3 Operador condicional En este tutorial aprenderemos a usar uno de los operadores condicionales méas sencillos de JavaScript, el operador ° o
ternario en JavaScript ternario que te permite evaluar una condicion, y ejecutar una de dos instrucciones dependiendo de la condicién
evaluada.
4 Controles de video con En este tutorial crearemos una aplicacién para reproducir el clip de “El Aro", modificando el comportamiento de un ° o
HTML5 video sin usar los clésicos controles de HTMLS
5 Hacer web scraping con En este tutorial aprenderemos a hacer web scraping solo con PHP y a hacer web scraping con cURL y PHP. ° o
PHP También conoceremos para qué fines lo podemos utiliza
6 Plugins de Sublime Text Sublime Text es uno de los mejores editores de texto y editor de codigo creado en Python. Y en este tutorial les ° o
para Django como los de Python y Django pueden sacarle el maximo provecho a este editor con
sus plugins.

Posibles mejoras

Algunas mejoras a nivel funcional:

Mejorar el catalogo de de cursos afiadiendo una mayor variedad de los mismos
Proporcionar contenido a los cursos y blogs (tutoriales y tv) con su respectivos temas,
recursos, ejercicios y examen final.

Dotar de mayor practicidad y funcionalidad al hecho de que los usuarios sean premium.
Incorporar un sistema de discusiones para que los usuarios puedan compartir opiniones o
plantear dudas a cerca de los cursos.

Proporcionar al administrador de mayor maniobrabilidad para poder gestionar la web
como se haria en un sistema real.

En cuanto a nivel de disefio algunas posibles mejoras podrian ser:

Singleton para poder establecer un usuario global en el controller el cualsea
establecido una sola vez.

Factory para poder agrupar los tutoriales y tv en Comunidad ya que poseen demasiados
atributos en comun.

Iteracion 1

Diagrama UML

(G Intereses

(3 carrito

G; Tipo_Pago

35 oid: integer

(35 oid: integer @ oid: integer

(@ lenguaje: string

] ' " (@ tipo: string (3 Comunidad
@ oid: i
: M (8 meses: integer (35 oid: integer

(8 Tipo: string

z3 Usuarios g
G (3 Cursos 3 precio: float

- 1
(35 oid: integer (@5 oid: integer (8} descuento: integer
23 :
@ userName: string —-——""| @ name: string J7

(@, password: password

(@, descripcion: strin
: ? 2w GE Tutoriales

(@5 email: string (3 Planes
= (35 oid: integer
N 1 N | @ oid: integer Gy
1 - (@ tipo: integer
N [@, nombre: string 35 oid: integer
(3 Comentarios G Temas : : (83 descripcion: string

@5 oid: integer (3, beneficios: string | | (& nombre: string
O] 1

(35 oid: integer

(85 descripcion: string

(8} texto: string (8, nombre: string .
(5 Examen (& video: url (@ array_tags: string [& Autores
—— i N (G Recursos U @ oid: integer
(@ oid: integer Tﬂl(r (3 tiempo: time N Ep T e

(35 pregunta: string (Respuestas

(85 pos_array_resp_correcta: integer M

(@ foto: url

(@, nombre: string

(@5 oid: integer

(@5 Url: url

Estructura del proyecto

El proyecto contendra la siguiente estructura:

Modelos

en la carpeta app/Models :

® (Cada modelo utilizara el namespace app\Models; .

® |os controladores se basaran en los modelos, por tanto, por ejemplo, el método
login() de user serealizard en UserController .

® Para el modelo user extendido de Authenticatable se debera cambiar la siguiente linea:

// File: /config/auth.php

'providers' => [
'users' => |
'driver' => 'eloquent',

'model' => App\Models\User::class,
1,

Views

Las vistas se dividiran en:
e PJaginas en la carpeta resources/views/pages .

o Vistas de acceso publico en: resources/views/pages/public .
o Vistas de acceso de usuario: resources/views/pages/user .
o Vistas de administracidon: resources/views/pages/admin .

https://user-images.githubusercontent.com/22213393/34534863-29fca422-f0c0-11e7-8217-42521c2f6ddc.png

® [tems en subcarpetas resources/views/subcarpeta .

® Vista principal + Vista admin principal en resources/views/ .

Rutas

® Tendran como nombre model.metodo.
® Seguira un esquema APIRest, por tanto, las URL se tratardn como modelos y si se desea un
usuario en concreto se utilizara:

/users/email/email@email.com
/users/id

/users/id/accionAUsuario

Estructura de la web

Estructura parte publica/privada

Las paginas seran imprimidas a través de los controladores mediante el nombre showPage,
siendo Page el nombre de la pagina que se desea mostrar.

Las paginas tendran siempre la siguiente estructura:
@extends('layout')
@section('page')

Cuerpo de la pagina

@stop

Por tanto, todas las paginas heredaran la estructura de layout , el cudl se encargara de
importar las librerias y ficheros globales del website. En caso se querer afiadir un script o estilo
CSS en especial se realizara en el cuerpo de la pagina.

Layout como esqueleto de la web, por tanto, tiene la siguiente estructura:

<!DOCTYPE html>

<html>

<head>
<meta charset="UTF-8">
<title>DevCode</title>
<meta name="csrf-token" content="{{ csrf token() }}" />
scripts

</head>

<body>
<header>

contenido Header
</header>

<main>

@yield('page')
</main>
<footer class="inner-body">
contenido Footer
</footer>
</body>
</html>

Estructura administracion

El panel de administracién contara con una capa mas, la cual mostrara secciones que engloban
todo el panel de administracion.

Para ello, las paginas heredaran de admin yyano lo haran de layout .

@extends('admin')

@section('adminPage')

El encargado de heredar de layout portanto, sera admin , éste como en el punto anterior,
poseera la herencia de layout Yy tendrala seccion page .

Por ultimo, admin llamara a la seccion adminPage para mostrar el cuerpo de la pagina del
panel de administracion que se encuentre el usuario.

Iteracion 2

Base de datos

Instalacion

En este caso se ha optado por una base de datos MySQL.

Se debe renombrar el fichero .env.example a .env .

En windows: $ rename ".env.example" ".env" .

Enlinux: $ mv ".env.example" ".env

Para la conexién de laravel con la base de datos se debe modificar el archivo .env indicando:

DB _CONNECTION = mysqgl
DB_HOST 127.0.0.1
DB_PORT = 3306

DB DATABASE devCode
DB_USERNAME = username
DB_PASSWORD = password

Se puede crear una base de datos mediante la secuencia de comandos:

$ CREATE USER 'devcode'@'localhost' IDENTIFIED BY 'secret';
$ GRANT ALL PRIVILEGES ON *.* TO 'devcode'@'localhost' WITH GRANT OPTION;

Uso de la base de datos

Para crear una tabla en la base de datos se utilizaran las herramientas aportadas por el
Framework, en este caso, se aportan varias herramientas concentradas en la carpeta
database del proyecto.

En este caso, se utilizara una biblioteca de datos ya preparada para poder poner en marcha el
proyecto con datos ficticios en la maxima brevedad posible.

Para afiadir las tablas a la base de datos, que en este caso se ha optado por una base de datos
MySQL se utilizara la herramienta migrate

$ php artisan migrate

Y para afadir datos a las tablas de la base de datos se utilizara la herramienta db:seed :

$ php artisan db:seed

Relaciones entre modelos

Muchos a muchos

Para esta relacion se ha decidido crear una tabla auxiliar, la cual posee 2 claves ajenas que
apuntan a la clave primaria de las cada tabla a la qué se hace referencia.

Por tanto, la migracion tendra la siguiente estructura:

Nombre de tabla: 'tablal tabla2'

$table->integer('tablal id')->unsigned()->nullable();
$table->foreign('tablal id')->references('id')->on('tablal')-

>onDelete('cascade');

$table->integer('tabla2 id')->unsigned()->nullable();
$table->foreign('tabla2 id')->references('id')->on('tabla2')-

>onDelete('cascade');

Al eliminar la fila de la tabla 1 0 2 se borrard automaticamente en cascada las relaciones que
posea.

Al ser una relacion muchos a muchos, hay que afiadir una variable en el modelo que relacione
ambas tablas, para ello, se deberd afiadir en el modelo las siguientes lineas:

// Modelo tablal
public function tabla2(){
return $this->belongsToMany('App\Models\Tabla2', 'tablal tabla2');

Por tanto, a la hora de cargar el usuario en el controlador, al haberlo hecho global (user =
tabla1):

//File: /app/Http/Controllers/Controller.php

$this->user = User::find(Auth::user()->id);

Se podran acceder a sus corriespondientes relaciones con tabla2 (tabla2 = cursos) desde
cualquier vista.

Suser->cursos

Uno a muchos

Para realizar esta relacién, al igual que en la relacion muchos a muchos, se debe implentar en la
migracion:

Nombre de tabla: 'tablal'
$table->integer('tabla2 id')->unsigned();

$table->foreign('tabla2_ id')->references('id')->on('tabla2')-

>onDelete('cascade');

Ademas, se afiade la clave ajena que apunte a la otra tabla indicando que se borre si es borrado
la fila de tabla2 .

Ademas en los modelos se debe afiadir:
Modelo1:

public function datoTabla2(){
return $this->belongsTo('App\Models\ModeloTabla2');

Modelo2:

public function datosTablal(){
return $this->hasMany('App\Models\ModeloTablal');

Registro, Login y Logout

Se ha optado por utilizar la herramienta auth proporcionada por laravel. Las contrasefias son
cifradas mediante bcrypty en caso de querer recordar la sesion se utilizara un

remember_ token .
Login

Para el inicio de sesion se pedira el correo electronico y contrasefia, este formulario realizara
una peticion aAjax mediante jouery desde la misma pagina.

Se controlaran los siguientes errores:

® Que se envie una peticién POST y no GET.
e (Que exista un usuario que posea ambos datos.

El formulario como se ha descrito, se realiza mediante una peticién POST utilizando ajax , por
tanto, no es necesario recargar la pagina.

Una vez enviado el formulario mediante una peticion JSON, al comprobar que todo sea correcto
se realizara:

// Srequest->input('remember-me') = false/true

Auth::attempt ($SuserData, S$Srequest->input('remember-me'))

Almacenando la sesién del usuario.

Registro

Para crear un usuario son requeridos los siguientes datos:

e Nombre.
e Email.
e Contrasefa.

Aligual que en el inicio de sesidn, la peticidn se realizara en la misma pagina mediante el
mismo método.

Se controlaran los siguientes errores:

® Que se envie una peticién POST y no GET.
® Que las contrasefas coincidan.
® Que no exista un usuario en la base de datos con dicho correo.

Al registrarse el controlador creara un usuario con los correspondientes datos, cifrando la
contrasefia, tras esto, ejecutara:

Suser = new User();

[...]

Suser->save();

Para almacenar el usuario en la base de datos.

Logout

Al igual que en los casos anteriores, realiza el mismo tipo de peticién mediante posT ,
reenviando al usuario al Home .

Para cerrar la sesion el controlador ejecutara:

Auth::logout();

Peticiones

Las peticiones al servidor se haran mediante JSON, por tanto, si se desea realizar una peticion
JQuery habra que indicar:

dataType: 'JSON',

data: jsonAPasar

Para ello se formara el JSON mediante:

JSON.parse(JSON.stringify({'valNamel': valNamelValue, 'valName2':

valName2Value}));

El controlador recogera los datos mediante:

Srequest->input('S$request->input('email')")

Iteracion 3

Notificaciones

En cuanto a mensajes que se puedan producir durante la interaccién del usuario por el website
se ha decidido por abstraer el método que produce dichas notificaciones, los métodos seran:

//FILE: /public/js/devCode.js
publicErrorMsg(errorMsg)

publicSuccessMsg(successMsg)

Estas funciones podran llamarse desde cualquier lugar de la web que lo requiera indicando el
mensaje. Se ha decidido separar para diferenciar claramente qué tipo de mensaje se desea
mostrar al usuario.

Cada pagina se encargara de mostrar un elemento cuyo id serd notificationMsg en el
formato que corresponda.

Tipos de notificaciones

Se ha decantado por dos tipos:

e Mensajes de error.
e Mensajes indicando que todo ha funcionado correctamente.

Para esto, como los controladores solo tienen permitido devolver 2 variables en formato json:
response O error ,tan solo serad necesario el control de dichas 2 respuestas.

Primer caso: Se ha producido un error.

En este caso, el controlador se encargara de devolver un json que contiene un error indicando
el mensaje de dicho error, tras esto, sera enviado al usuario a través de una notificacién.

Segundo caso: Todo ha ido "OK".

En este caso, si todo ha funcionado correctamente siempre devolvera "OK" puesto que hay
métodos que no necesitan devolver un texto concreto. En caso se querer indicar al usuario un
mensaje, se indicara antes de enviar al usuario la notificacion pertinente.

Rangos de usuario

Cada usuario tiene un rango:

e (: Usuario normal (Por defecto).
e 1:Usuario premium.
e 2: Administrador.

Planes premium:

e 1:Anual.
e 2: Mensual.
e 3: Gratuito (Por defecto).

La principal funcionalidad del rango es permitir acceder al panel de administracién del sitio
web.Esto es controlado en:

® Menl /resources/views/menu/header-menu.blade.php .

e Vista principal de administracion /resources/views/admin.blade.php .

En este segundo caso se ha optado por ser controlado directamente en la vista para evitar el
duplicamiento de cédigo, en un principio deberia ser comprobado en cada método.

Control de errores

Globales:

® Que se envie una peticibn POST y no GET en caso de ser requerido.
® Que el objeto indicado como id no exista.

Tutorial

Que sea un nuevo tutorial:
Solo debe admitir new en la direccién URL.

El nombre de un tutorial no se puede repetir.
Los campos no estén vacios.

Planes

® No se debe perder el rango de administrador al cambiar a cualquier plan.
® Elrango del usuario debe corresponderse con el plan correspondiente.

Usuario

Formara parte del controlador UserController

e Redirigir al perfil si se ha iniciado sesion (login/registro), o al login en caso contrario.
e Registro

o Que el email no exista ya en la base de datos.
e |ogin

o Que el correo Yy contrasefia sean correctos.

	Inicio
	Descripción
	Descripción de la web

	Descripción tecnológica
	Laravel
	Instalación
	Bootstrap
	Ventajas de Laravel

	Problemas encontrados
	Peticiones POST
	Clases no encontradas
	Rutas no válidas
	Columna updated_at
	Asociaciones oneToMany

	Puesta en marcha
	Ejemplos de ejecución
	Posibles mejoras
	Iteración 1
	Diagrama UML
	Estructura del proyecto
	Modelos
	Views
	Rutas

	Estructura de la web
	Estructura parte pública/privada
	Estructura administración

	Iteración 2
	Base de datos
	Instalación
	Uso de la base de datos
	Relaciones entre modelos
	Muchos a muchos
	Uno a muchos

	Registro, Login y Logout
	Login
	Registro
	Logout

	Peticiones

	Iteración 3
	Notificaciones
	Tipos de notificaciones
	Primer caso: Se ha producido un error.
	Segundo caso: Todo ha ido "OK".

	Rangos de usuario
	Control de errores
	Tutorial
	Planes
	Usuario

