
DevCode
Proyecto web PHP mediante el framework Laravel.

Inicio
Descripción

Descripción de la web
Descripción tecnológica

Laravel
Instalación
Bootstrap

Ventajas de Laravel
Problemas encontrados

Peticiones POST
Clases no encontradas
Rutas no válidas
Columna updated_at
Asociaciones oneToMany

Puesta en marcha
Ejemplos de ejecución
Posibles mejoras
Iteración 1

Diagrama UML
Estructura del proyecto

Modelos
Views
Rutas

Estructura de la web
Estructura parte pública/privada
Estructura administración

Iteración 2
Base de datos

Instalación
Uso de la base de datos
Relaciones entre modelos

Muchos a muchos
Uno a muchos

Registro, Login y Logout
Login
Registro
Logout

Peticiones
Iteración 3

Notificaciones
Tipos de notificaciones

Primer caso: Se ha producido un error.

Segundo caso: Todo ha ido "OK".
Rangos de usuario
Control de errores

Tutorial
Planes
Usuario

Inicio
Proyecto web devCode

Basado en PHP.
Uso del framework Laravel .

Usuarios de prueba:

user@example.org - secret
admin@example.org - secret

Descripción
Este proyecto es la continuación de la primera parte de las prácticas de Ingeniería Web del
curso 2017-2018. Como recordatorio lo que se pretendía conseguir era llevar a cabo un proceso
de ingeniería inversa sobre un sitio web en el que básicamente se pretende conseguir:

Seleccionar un subconjunto de funcionalidades de la página web lo suficientemente
abarcable.

Describir de manera breve y clara el subconjunto seleccionado en forma de un modelo
conceptual WebML.

La propuesta presentada debe estar compuesta por al menos:

Un modelo de datos, que representará las diferentes tablas de datos, los campos de
cada tabla y las relaciones entre ellas.
Un modelo de hipertexto con al menos una vista pública y otra privada. De hecho
este modelo describe una vista del sitio y está compuesto a su vez, por dos modelos,
modelo de composición que representa las páginas de un hipertexto y su contenido.
Por otra parte también tenemos un modelo de navegación que representa los
enlaces entre las páginas y sus elementos de contenido.

Con todo lo anterior y como punto de partida en la segunda parte de la práctica se nos pide
que hagamos un diseño del sistema a partir del sitio web escogido, que planifiquemos el
desarrollo del proyecto a partir de los modelos y diagramas diseñados en la práctica 1. Todo
esto acompañado de su correspondiente implementación utilizando las herramientas,
metodologías, patrones y demás tecnología necesaria para el desarrollo de la página web.En

mailto:user@example.org
mailto:admin@example.org

resumidas cuentas lo que se nos pide es:

Diseño del sistema

Un Wireframe que nos proporcioné una visión general del sistema por perfiles de
usuario,
Mockups detallados de las pantallas principales.
Otros diagramas que nos puedan ayudar.

Planificación

Dividir el proyecto en iteraciones o establecer alguna planificación temporal
adecuada.
Seleccionar una metodología de desarrollo.
Documentar todo el proceso.

Requisitos mínimos de implementación

Registro de usuarios
Inicio y cierre de sesión, control de seguridad.
Web de back-office
Página principal y mínimo dos niveles de navegación completa con las operaciones
necesarias implementadas.

Descripción de la web

El sistema escogido se llama DevCode https://devcode.la/ y es una plataforma online que
permitirá a cualquier interesado en la programación y desarrollo web a recibir nociones
fundamentales que le permitirán iniciarse en el mundo de los desarrolladores.

Devcode oferta una gran selección de cursos (HTML, Javascript, PHP, bootsrap, etc), blogs,
tutoriales. Cada uno de los cuales cuenta con temario y ejercicos para poner en práctica los
conocimientos adquiridos a lo largo del curso.Los temas están compuesto por videos y
recursos externos para dar soporte al contenido.Los cursos finalizan con un proyecto en donde
poner en práctica todo lo aprendido. Además los cursos incluyen exámenes (uno por curso).

Para adquirir alguno de los curso solo tenemos que inscribirnos creando una cuenta gratuita,
siendo posible acceder a los vídeos que componen cada uno de los cursos. El objetivo es
ofrecer una plataforma con vídeos interactivos que muestre también la posibilidad de realizar
proyectos y permita desarrollar ejercicios, teniendo el código disponible para entender mejor el
tema que se está tratando.

Para acceder a todo el contenido, Devcode ofrece tres tipos de suscripciones, plan anual y plan
mensual. En ambos podemos acceder a contenido premium.

Descripción tecnológica

Laravel

https://devcode.la/

Laravel es un framework de código abierto para desarrollar aplicaciones y servicios web con
PHP 5 y PHP 7. El objetivo de Laravel es el de ser un framework que permita el uso de una
sintaxis refinada y expresiva para crear código de forma sencilla, evitando el “código espagueti”
y permitiendo multitud de funcionalidades. Aprovecha todo lo bueno de otros frameworks y
utiliza las características de las últimas versiones de PHP.La mayor parte de su estructura está
formada por dependencias, especialmente de Symfony, lo que implica que el desarrollo de
Laravel dependa también del desarrollo de sus dependencias.Alguna de sus características:

Sistema de ruteo, también RESTful
Blade, Motor de plantillas
Eloquent ORM
Basado en Composer
Soporte para el caché
Soporte para MVC
Usa componentes de Symfony

Instalación

Inicialmentes empezamos instalando la herramienta composer para la administración de
dependencias en PHP. Le permite declarar las bibliotecas de las que depende el proyecto y las
administrará.Laravel utiliza Composer para administrar las dependencias. Es por esto que que
debemos asegurarnos tenerlo instalado antes de usar Laravel.

Una vez instalado laravel podemos empezar a trabajar en nuestro proyecto. Con el siguiente
comando crearemos una nueva instalación de laravel en el directorio especificado y que
contendrá todas las dependencias necesarias.

También podemos crear el proyecto con el siguiente comando.

Para desplegar el proyecto podemos usar el servidor de desarrollo incorporado en PHP con

Alternativamente podemos instalar otro servidor a través de la herramienta xampp.

composer global require "laravel/installer"

laravel new DevCode

composer create-project --prefer-dist laravel/laravel DevCode

php artisan serve

XAMPP es un entorno de desarrollo del lenguaje PHP que incluye un servidor web. Ofrece todo
lo que necesitas para crear y publicar una página web: un servidor web Apache, la base de
datos MariaDB con soporte MySQL, software de desarrollo PHP, y soporte de Perl.

Bootstrap

Bootstrap es un framework basado en HTML, CSS y JavaScript para crear webs responsive, es
decir, 100% adaptables a todo tipo de dispositivos móviles.Es una herramienta de código
abierto y que gracias a su diseño de 12 columnas conseguimos adaptar nuestro contenido a los
distintos tamaños de pantalla. Además soporta las versiones de HTML y CSS, posee un código
limpio y optimizado para que tu web cargue lo más rápido posible. Y es compatible con los
navegadores más populares como safari, chrome, firefox, explorer y opera.

Ventajas de Laravel

Trabajando con laravel como framework de base en el desarrollo de los proyectos web
obtenemos :

Reducción de costos y tiempos en el desarrollo y mantenimiento.
Curva de aprendizaje relativamente Baja (en comparación con otros framework Php).
Flexible y adaptable no solo al MVC Tradicional (Modelo vista controlador) sino que para
reducir código propone usar "Routes with clousures"
Buena y abundante documentación sobre todo en el sitio oficial y otros foros.
Es modular y con una amplio sistemas de paquetes y drivers con el que se puede extender
la funcionalidad de forma fácil, robusta y segura.
Hace que el manejo de los datos en Laravel no sea complejo; mediante Eloquent (que es
un ORM basado en el patrón active record) la interacción con las bases de datos es
totalmente orientada a objetos, siendo compatible con la gran mayoría de las bases de
datos del mercado actual y facilitando la migración de nuestros datos de una forma fácil y
segura. Otro punto es que permite la creación de consultas robustas y complejas.
Facilita el manejo de ruteo de nuestra aplicación como así también la generación de url
amigables y control de enlaces auto–actualizables lo que hace mas fácil el mantenimiento
de un sitio web.
El sistema de plantillas Blade de Laravel, trae consigo la generación de mejoras en la
parte de presentación de la aplicación como la generación de plantillas más simples y
limpias en el código y además incluye un sistema de cache que las hace más rápidas, lo
que mejora el rendimiento de la aplicación.
También cuenta con una herramienta de interfaces de líneas de comando llamada Artisan
que me permite programar tareas programadas como por ejemplo ejecutar migraciones,
pruebas programadas, etc.

Problemas encontrados

Peticiones POST

Surge un problema a la hora de hacer una petición POST. Por seguridad, Laravel indica que
debe indicarse como cabecera un token especial llamado CSRF Protection como se indica en
su wiki

Para ello, debe añadirse como HEADER de la web:

Una vez se tiene dicho token se podrá utilizar en una petición A JAX mediante JQUERY:

En caso se querer probar la API desde herramientas externas, como por ejemplo, POSTMan
debe eliminarse el control de dicho token en laravel, para ello, se debe comentar la siguiente
línea:

Permitiendo una llamada POST desde POSTMan si es requerido.

Clases no encontradas

Si se descarga una rama o se utilizan cambios o nuevas clases de otras ramas e indica que
alguna clase no existe, se debe ejecutar:

Rutas no válidas

Dependiendo de la máquina donde se ejecute y su configuración a veces existen problemas
con las rutas indicando:

Para arreglarlo, se deberá utilizar en la URL el parámetro index.php:

// File: /resources/views/layout.blade.php

<meta name="csrf-token" content="{{ csrf_token() }}" />

headers: {

 'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')

 },

// File: /app/Http/Kernel.php

 \App\Http\Middleware\VerifyCsrfToken::class,

$ php artisan optimize

Not Found

The requested URL /devCode/public/cursos was not found on this server.

https://laravel.com/docs/5.4/csrf

Columna updated_at

Por defecto, laravel añade dicha columna a las tablas, si no ha sido añadida, en el modelo se
debe añadir:

Asociaciones oneToMany

Para asignar una variable en la clase Many-To-One, en este caso, por ejemplo, tutorial, se debe
asociar un objeto del tipo de la relación como se indica a continuación:

Puesta en marcha
El proyecto una vez descargado se deberán seguir los siguientes pasos:

Ser copiado en la carpeta donde se situe el

de la máquina que lo ejecute.

Para este primer paso tan solo es necesario copiar la carpeta /public , por tanto, si
se crea un link a dicha carpeta en la carpeta donde se situe el servidor localhost
será suficiente.

Ejecutar:

Si aparecen los siguientes errores:

Problema al abrir laravel.log : Ejecutar: $ sudo chmod -R 777 ./storage

Generar la Key utilizada:

http://127.0.0.1/devCode/public/index.php/cursos/

public $timestamps = false;

$tutorial->author()->associate(Author::find(9));

localhost

$ composer install

$ php artisan key:generate

Configurar la base de datos como indica en el siguiente enlace.

Asegurarnos que la herramienta composer está instalado. Es esencial dado que un
proyecto que depende de ciertas librerías desarrolladas por terceros, y a su vez, éstas
librerías también dependen de otras, lo que hace Composer en este caso es averiguar que
librerías deben instalarse; es decir, resuelve todas las dependencias indirectas y descarga
automáticamente la versión correcta de cada paquete.

Normalmente estará ubicada en la carpeta /vendor dentro del directorio del
proyecto.

Y ya está la web funcionado!

http://127.0.0.1/devCode/public/index.php

Usuarios de prueba:

user@example.org - secret
admin@example.org - secret

Ejemplos de ejecución
Ejemplos de vistas:

https://github.com/bertus193/devCode/wiki/Base-de-Datos
http://127.0.0.1/devCode/public/index.php
mailto:user@example.org
mailto:admin@example.org

Posibles mejoras
Algunas mejoras a nivel funcional:

Mejorar el catálogo de de cursos añadiendo una mayor variedad de los mismos
Proporcionar contenido a los cursos y blogs (tutoriales y tv) con su respectivos temas,
recursos, ejercicios y examen final.
Dotar de mayor practicidad y funcionalidad al hecho de que los usuarios sean premium.
Incorporar un sistema de discusiones para que los usuarios puedan compartir opiniones o
plantear dudas a cerca de los cursos.
Proporcionar al administrador de mayor maniobrabilidad para poder gestionar la web
como se haría en un sistema real.

En cuanto a nivel de diseño algunas posibles mejoras podrían ser:

Singleton para poder establecer un usuario global en el Controller el cuál sea
establecido una sola vez.
Factory para poder agrupar los tutoriales y tv en Comunidad ya que poseen demasiados
atributos en común.

Iteración 1

Diagrama UML

​

Estructura del proyecto

El proyecto contendrá la siguiente estructura:

Modelos

en la carpeta app/Models :

Cada modelo utilizará el namespace App\Models; .
Los controladores se basarán en los modelos, por tanto, por ejemplo, el método
login() de User se realizará en UserController .

Para el modelo User extendido de Authenticatable se deberá cambiar la siguiente línea:

Views

Las vistas se dividirán en:

Páginas en la carpeta resources/views/pages .

Vistas de acceso público en: resources/views/pages/public .
Vistas de acceso de usuario: resources/views/pages/user .
Vistas de administración: resources/views/pages/admin .

// File: /config/auth.php

 'providers' => [

 'users' => [

 'driver' => 'eloquent',

 'model' => App\Models\User::class,

],

https://user-images.githubusercontent.com/22213393/34534863-29fca422-f0c0-11e7-8217-42521c2f6ddc.png

Items en subcarpetas resources/views/subcarpeta .

Vista principal + Vista admin principal en resources/views/ .

Rutas

Tendrán como nombre model.metodo.
Seguirá un esquema APIRest, por tanto, las URL se tratarán como modelos y si se desea un
usuario en concreto se utilizará:

Estructura de la web

Estructura parte pública/privada

Las páginas serán imprimidas a través de los controladores mediante el nombre showPage,
siendo Page el nombre de la página que se desea mostrar.

Las páginas tendrán siempre la siguiente estructura:

Por tanto, todas las páginas heredarán la estructura de layout , el cuál se encargará de
importar las librerías y ficheros globales del website. En caso se querer añadir un script o estilo
CSS en especial se realizará en el cuerpo de la página.

Layout como esqueleto de la web, por tanto, tiene la siguiente estructura:

/users/email/email@email.com

/users/id

/users/id/accionAUsuario

@extends('layout')

@section('page')

Cuerpo de la página

@stop

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>DevCode</title>

 <meta name="csrf-token" content="{{ csrf_token() }}" />

 scripts

 </head>

 <body>

 <header>

 contenido Header

 </header>

 <main>

Estructura administración

El panel de administración contará con una capa más, la cuál mostrará secciones que engloban
todo el panel de administración.

Para ello, las páginas heredarán de admin y ya no lo harán de layout .

El encargado de heredar de layout por tanto, será admin , éste como en el punto anterior,
poseerá la herencia de layout y tendrá la sección page .

Por último, admin llamará a la sección adminPage para mostrar el cuerpo de la página del
panel de administración que se encuentre el usuario.

Iteración 2

Base de datos

Instalación

En este caso se ha optado por una base de datos MySQL.

Se debe renombrar el fichero .env.example a .env .

En windows: $ rename ".env.example" ".env" .

En linux: $ mv ".env.example" ".env" .

Para la conexión de laravel con la base de datos se debe modificar el archivo .env indicando:

 @yield('page')

 </main>

 <footer class="inner-body">

 contenido Footer

 </footer>

 </body>

</html>

@extends('admin')

@section('adminPage')

Se puede crear una base de datos mediante la secuencia de comandos:

Uso de la base de datos

Para crear una tabla en la base de datos se utilizarán las herramientas aportadas por el
Framework, en este caso, se aportan varias herramientas concentradas en la carpeta
database del proyecto.

En este caso, se utilizará una biblioteca de datos ya preparada para poder poner en marcha el
proyecto con datos ficticios en la máxima brevedad posible.

Para añadir las tablas a la base de datos, que en este caso se ha optado por una base de datos
MySQL se utilizará la herramienta migrate

Y para añadir datos a las tablas de la base de datos se utilizará la herramienta db:seed :

Relaciones entre modelos

Muchos a muchos

Para esta relación se ha decidido crear una tabla auxiliar, la cuál posee 2 claves ajenas que
apuntan a la clave primaria de las cada tabla a la qué se hace referencia.

Por tanto, la migración tendrá la siguiente estructura:

DB_CONNECTION = mysql

DB_HOST = 127.0.0.1

DB_PORT = 3306

DB_DATABASE = devCode

DB_USERNAME = username

DB_PASSWORD = password

$ CREATE USER 'devcode'@'localhost' IDENTIFIED BY 'secret';

$ GRANT ALL PRIVILEGES ON *.* TO 'devcode'@'localhost' WITH GRANT OPTION;

$ php artisan migrate

$ php artisan db:seed

Al eliminar la fila de la tabla 1 o 2 se borrará automáticamente en cascada las relaciones que
posea.

Al ser una relación muchos a muchos, hay que añadir una variable en el modelo que relacione
ambas tablas, para ello, se deberá añadir en el modelo las siguientes líneas:

Por tanto, a la hora de cargar el usuario en el controlador, al haberlo hecho global (user =
tabla1):

Se podrán acceder a sus corriespondientes relaciones con tabla2 (tabla2 = cursos) desde
cualquier vista.

Uno a muchos

Para realizar esta relación, al igual que en la relación muchos a muchos, se debe implentar en la
migración:

Nombre de tabla: 'tabla1_tabla2'

$table->integer('tabla1_id')->unsigned()->nullable();

$table->foreign('tabla1_id')->references('id')->on('tabla1')-

>onDelete('cascade');

$table->integer('tabla2_id')->unsigned()->nullable();

$table->foreign('tabla2_id')->references('id')->on('tabla2')-

>onDelete('cascade');

// Modelo tabla1

public function tabla2(){

 return $this->belongsToMany('App\Models\Tabla2', 'tabla1_tabla2');

}

//File: /app/Http/Controllers/Controller.php

$this->user = User::find(Auth::user()->id);

$user->cursos

Nombre de tabla: 'tabla1'

$table->integer('tabla2_id')->unsigned();

$table->foreign('tabla2_id')->references('id')->on('tabla2')-

>onDelete('cascade');

Además, se añade la clave ajena que apunte a la otra tabla indicando que se borre si es borrado
la fila de tabla2 .

Además en los modelos se debe añadir:

Modelo1:

Modelo2:

Registro, Login y Logout

Se ha optado por utilizar la herramienta Auth proporcionada por laravel. Las contraseñas son
cifradas mediante bcrypt y en caso de querer recordar la sesión se utilizará un
remember_token .

Login

Para el inicio de sesión se pedirá el correo electrónico y contraseña, este formulario realizará
una petición Ajax mediante jQuery desde la misma página.

Se controlarán los siguientes errores:

Que se envíe una petición POST y no GET.
Que exista un usuario que posea ambos datos.

El formulario como se ha descrito, se realiza mediante una petición POST utilizando Ajax , por
tanto, no es necesario recargar la página.

Una vez enviado el formulario mediante una petición JSON, al comprobar que todo sea correcto
se realizará:

Almacenando la sesión del usuario.

Registro

public function datoTabla2(){

 return $this->belongsTo('App\Models\ModeloTabla2');

}

public function datosTabla1(){

 return $this->hasMany('App\Models\ModeloTabla1');

}

// $request->input('remember-me') = false/true

Auth::attempt($userData, $request->input('remember-me'))

Para crear un usuario son requeridos los siguientes datos:

Nombre.
Email.
Contraseña.

Al igual que en el inicio de sesión, la petición se realizará en la misma página mediante el
mismo método.

Se controlarán los siguientes errores:

Que se envíe una petición POST y no GET.
Que las contraseñas coincidan.
Que no exista un usuario en la base de datos con dicho correo.

Al registrarse el controlador creará un usuario con los correspondientes datos, cifrando la
contraseña, tras esto, ejecutará:

Para almacenar el usuario en la base de datos.

Logout

Al igual que en los casos anteriores, realiza el mismo tipo de petición mediante POST ,
reenviando al usuario al Home .

Para cerrar la sesión el controlador ejecutará:

Peticiones

Las peticiones al servidor se harán mediante JSON, por tanto, si se desea realizar una peticion
JQuery habrá que indicar:

dataType: 'JSON',

data: jsonAPasar

Para ello se formará el JSON mediante:

JSON.parse(JSON.stringify({'valName1': valName1Value, 'valName2':

valName2Value}));

$user = new User();

[...]

$user->save();

Auth::logout();

El controlador recogerá los datos mediante:

$request->input('$request->input('email')')

Iteración 3

Notificaciones

En cuanto a mensajes que se puedan producir durante la interacción del usuario por el website
se ha decidido por abstraer el método que produce dichas notificaciones, los métodos serán:

//FILE: /public/js/devCode.js

publicErrorMsg(errorMsg)

publicSuccessMsg(successMsg)

Estas funciones podrán llamarse desde cualquier lugar de la web que lo requiera indicando el
mensaje. Se ha decidido separar para diferenciar claramente qué tipo de mensaje se desea
mostrar al usuario.

Cada página se encargará de mostrar un elemento cuyo id será notificationMsg en el
formato que corresponda.

Tipos de notificaciones

Se ha decantado por dos tipos:

Mensajes de error.
Mensajes indicando que todo ha funcionado correctamente.

Para esto, como los controladores solo tienen permitido devolver 2 variables en formato json:
response o error , tan solo será necesario el control de dichas 2 respuestas.

Primer caso: Se ha producido un error.

En este caso, el controlador se encargará de devolver un json que contiene un error indicando
el mensaje de dicho error, tras esto, será enviado al usuario a través de una notificación.

Segundo caso: Todo ha ido "OK".

En este caso, si todo ha funcionado correctamente siempre devolverá "OK" puesto que hay
métodos que no necesitan devolver un texto concreto. En caso se querer indicar al usuario un
mensaje, se indicará antes de enviar al usuario la notificación pertinente.

Rangos de usuario

Cada usuario tiene un rango:

0: Usuario normal (Por defecto).
1: Usuario premium.
2: Administrador.

Planes premium:

1: Anual.
2: Mensual.
3: Gratuito (Por defecto).

La principal funcionalidad del rango es permitir acceder al panel de administración del sitio
web.Ésto es controlado en:

Menú /resources/views/menu/header-menu.blade.php .
Vista principal de administración /resources/views/admin.blade.php .

En este segundo caso se ha optado por ser controlado directamente en la vista para evitar el
duplicamiento de código, en un principio debería ser comprobado en cada método.

Control de errores

Globales:

Que se envíe una petición POST y no GET en caso de ser requerido.
Que el objeto indicado como id no exista.

Tutorial

Que sea un nuevo tutorial:
Solo debe admitir new en la dirección URL.
El nombre de un tutorial no se puede repetir.
Los campos no estén vacíos.

Planes

No se debe perder el rango de administrador al cambiar a cualquier plan.
El rango del usuario debe corresponderse con el plan correspondiente.

Usuario

Formará parte del controlador UserController

Redirigir al perfil si se ha iniciado sesión (login/registro), o al login en caso contrario.

Registro

Que el email no exista ya en la base de datos.

Login

Que el correo y contraseña sean correctos.

	Inicio
	Descripción
	Descripción de la web

	Descripción tecnológica
	Laravel
	Instalación
	Bootstrap
	Ventajas de Laravel

	Problemas encontrados
	Peticiones POST
	Clases no encontradas
	Rutas no válidas
	Columna updated_at
	Asociaciones oneToMany

	Puesta en marcha
	Ejemplos de ejecución
	Posibles mejoras
	Iteración 1
	Diagrama UML
	Estructura del proyecto
	Modelos
	Views
	Rutas

	Estructura de la web
	Estructura parte pública/privada
	Estructura administración

	Iteración 2
	Base de datos
	Instalación
	Uso de la base de datos
	Relaciones entre modelos
	Muchos a muchos
	Uno a muchos

	Registro, Login y Logout
	Login
	Registro
	Logout

	Peticiones

	Iteración 3
	Notificaciones
	Tipos de notificaciones
	Primer caso: Se ha producido un error.
	Segundo caso: Todo ha ido "OK".

	Rangos de usuario
	Control de errores
	Tutorial
	Planes
	Usuario

