Switch branches/tags
Nothing to show
Find file Copy path
1675 lines (1159 sloc) 65 KB

Overview: The ReadonlyREST Suite

ReadonlyREST is a suite of light weight Elasticsearch and Kibana plugins that implement security.

The Elasticsearch plugin known as ReadonlyREST Free is released under the GPLv3 license, or alternatively, a commercial license (see ReadonlyREST Embedded) and lays the technological foundations for the companion Kibana plugin which is released in two versions: ReadonlyREST PRO and ReadonlyREST Enterprise.

Unlike the Elasticsearch plugin, the Kibana plugins are commercial only. But rely on the Elasticsearch plugin in order to work.

For a description of the Kibana plugins, skip to the dedicated documentation page instead.

ReadonlyREST Free plugin for Elasticsearh

In this document we are going to describe how to operate the Elasticsearch plugin in all its features. Once installed, this plugin will greatly extend the Elasticsearch HTTP API (port 9200), adding numerous extra capabilities:

  • Encryption: transform the Elasticsearch API from HTTP to HTTPS
  • Authentication: require credentials
  • Authorization: declar groups of users, permissions and partial access to indices.
  • Access control: complex logic can be modeled using an ACL (access control list) written in YAML.
  • Audit logs: a trace of the access requests can be logged to file or index (or both).

Flow of a Search Request

The following diagram models an instance of Elasticsearch with the ReadonlyREST plugin installed, and configured with SSL encryption and an ACL with at least one "allow" type ACL block.

readonlyrest request processing diagram

  1. The User Agent (i.e. cURL, Kibana) sends a search request to Elasticsearch using the port 9200 and the HTTPS URL schema.
  2. The HTTPS filter in ReadonlyREST plugin unrwaps the SSL layer and hands over the request to Elasticsearch HTTP stack
  3. The HTTP stack in Elasticsearch parses the HTTP request
  4. The HTTP handler in Elasticsearch extracts the indices, action, request type and creates a SearchRequest (internal Elasticsearch format).
  5. The SearchRequest goes through the ACL (access control list), external systems like LDAP can be asynchronously queried, and an exit result is eventually produced.
  6. The exit result is used by the audit log serializer, to write a record to index and/or Elasticsearch log file
  7. If no ACL block was matched, or if a type: forbid block was matched, ReadonlyREST does not forward the search request to the search engine, and creates an "unauthorized" HTTP response.
  8. In case the ACL matched an type: allow block, the request is forwarded to the search engine
  9. The Elasticsearch code creates a search response containing the results of the query 10.The search response is converted to an HTTP response by the Elasticsearch code
  10. The HTTP response flows back to ReadonlyREST's HTTPS filter and to the User agent

Installing the plugin

To install ReadonlyREST plugin for Elasticsearch:

1. Obtain the build

From the official download page. Select your Elasticsearch version and send yourself a link to the compatible ReadonlyREST zip file.

Install the build

bin/elasticsearch-plugin install file:///tmp/

Notice how we need to type in the format file:// + absolute path (yes, with three slashes).

3.Create settings file

Create and edit the readonlyrest.yml settings file in the same directory where elasticsearch.yml is found:

vim $ES_HOME/conf/readonlyrest.yml

Now write some basic settings, just to get started. In this example we are going to tell ReadonlyREST to require HTTP Basic Authentication for all the HTTP requests, and return 401 Unauthorized otherwise.


    - name: "Require HTTP Basic Auth"
      type: allow
      auth_key: user:password 

4. Disable X-Pack security module

(applies to ES 6.4.0 or greater)

ReadonlyREST and X-Pack security module can't run together, so the latter needs to be disabled.

Edit elasticsearch.yml and append false.

 vim $ES_HOME/conf/elasticsearch.yml

5. Start Elasticsearch



service start elasticsearch

Depending on your environment.

Now you should be able to see the logs and ReadonlyREST related lines like the one below:

[2018-09-18T13:56:25,275][INFO ][o.e.p.PluginsService     ] [c3RKGFJ] loaded plugin [readonlyrest]

6. Test everything is working

The following command should succeed, and the response should show a status code 200.

curl -vvv -u user:password "http://localhost:9200/_cat/indices"

The following command should not succeed, and the response should show a status code 401

curl -vvv "http://localhost:9200/_cat/indices"

Upgrading the plugin

To upgrade ReadonlyREST for Elasticsearch:

1. Stop Elasticsearch.

Either kill the process manually, or use:

service stop elasticsearch

depending on your environment.

2. Uninstall ReadonlyREST

bin/elasticsearch-plugin remove readonlyrest

3. Install the new version of ReadonlyREST into Elasticsearch.

bin/elasticsearch-plugin install file://<download_dir>/readonlyrest-<ROR_VERSION>_es<ES_VERSION>.zip


bin/elasticsearch-plugin install file:///tmp/

4. Restart Elasticsearch.



service start elasticsearch

Depending on your environment.

Now you should be able to see the logs and ReadonlyREST related lines like the one below:

[2018-09-18T13:56:25,275][INFO ][o.e.p.PluginsService     ] [c3RKGFJ] loaded plugin [readonlyrest]

Removing the plugin

1. Stop Elasticsearch.

Either kill the process manually, or use:

service stop elasticsearch

depending on your environment.

2. Uninstall ReadonlyREST from Elasticsearch:

bin/elasticsearch-plugin remove readonlyrest

3. Start Elasticsearch.



service start elasticsearch

Depending on your environment.

Now you should be able to see the logs and ReadonlyREST related lines like the one below:

[2018-09-18T13:56:25,275][INFO ][o.e.p.PluginsService     ] [c3RKGFJ] loaded plugin [readonlyrest]

Deploying ReadonlyREST in a stable production cluster

Unless some advanced features are being used (see below),this Elasticsearch plugin operates like a lightweight, stateless filter glued in front of Elasticsearch HTTP API. Therefore it's sufficient to install the plugin only in the nodes that expose the HTTP interface (port 9200).

Installing ReadonlyREST in a dedicated node has numerous advantages:

  • No need to restart all nodes, only the one you have installed the plugin into.
  • No need to restart all nodes for updating the security settings
  • No need to restart all nodes when a security update is out
  • Less complexity on the actual cluster nodes.

For example, if we want to move to HTTPS all the traffic coming from Logstash into a 9 nodes Elasticsearch cluster which has been running stable in production for a while, it's not necessary to install ReadonlyREST plugin in all the nodes.

Creating a dedicated, lightweight ES node where to install ReadonlyREST:

  1. (Optional) disable the HTTP interface from all the existing nodes
  2. Create a new, lightweight, dedicated node without shards, nor master eligibility.
  3. Configure ReadonlyREST with SSL encryption in the new node
  4. Configure Logstash to connect to the new node directly in HTTPS.

An exception

⚠️IMPORTANT when filter or fields rules are used, it's required to install ReadonlyREST plugin in all the data nodes. This happens because these rules are implemented at Lucene level.

ACL basics

The core of this plugin is an ACL (access control list). A logic structure very similar to the one found in firewalls. The ACL is part of the plugin configuration, and it's written in YAML.

  • The ACL is composed of an ordered sequence of named blocks
  • Each block contains some rules, and a policy (forbid or allow)
  • HTTP requests run through the blocks, starting from the first,
  • The first block that satisfies all the rules decides if to forbid or allow the request (according to its policy).
  • If none of the block match, the request is rejected

⚠️IMPORTANT: The ACL blocks are evaluated sequentially, therefore the ordering of the ACL blocks is crucial. The order of the rules inside an ACL block instead, is irrelevant.


    - name: "Block 1 - only Logstash indices are accessible"
      type: allow # <-- default policy type is "allow", so this line could be omitted
      indices: ["logstash-*"] # <-- This is a rule
    - name: "Block 2 - Blocking everything from a network"
      type: forbid 
      hosts: [""] # <-- this is a rule

An Example of Access Control List (ACL) made of 2 blocks.

The YAML snippet above, like all of this plugin's settings should be saved inside the readonlyrest.yml file. Create this file on the same path where elasticsearch.yml is found.

TIP: If you are a subscriber of the PRO or Enterprise Kibana plugin, you can edit and refresh the settings through a GUI. For more on this, see the documentation for ReadonlyREST plugin for Kibana.


An SSL encrypted connection is a prerequisite for secure exchange of credentials and data over the network. ReadonlyREST can be configured to require that all REST requests come through HTTPS.

Letsencrypt certificates work just fine, once they are inide a JKS keystore.

⚠️IMPORTANT: to enable ReadonlyREST's SSL stack, open elasticsearch.yml and append this one line:

http.type: ssl_netty4

Now in readonlyrest.yml add the following settings:

      keystore_file: "keystore.jks"
      keystore_pass: readonlyrest
      key_pass: readonlyrest

The keystore should be stored in the same directory with elasticsearch.yml and readonlyrest.yml.

Restrict SSL protocols and ciphers

Optionally, it's possible to specify a list allowed SSL protocols and SSL ciphers. Connections from clients that don't support the listed protocols or ciphers will be dropped.

      # put the keystore in the same dir with elasticsearch.yml 
      keystore_file: "keystore.jks"
      keystore_pass: readonlyrest
      key_pass: readonlyrest
      allowed_protocols: [TLSv1.2]
      allowed_ciphers: [TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256]

ReadonlyREST will log a list of available ciphers and protocols supported by the current JVM at startup.

[2018-01-03T10:09:38,683][INFO ][t.b.r.e.SSLTransportNetty4] ROR SSL: Available ciphers: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_RSA_WITH_AES_128_CBC_SHA
[2018-01-03T10:09:38,684][INFO ][t.b.r.e.SSLTransportNetty4] ROR SSL: Restricting to ciphers: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
[2018-01-03T10:09:38,684][INFO ][t.b.r.e.SSLTransportNetty4] ROR SSL: Available SSL protocols: TLSv1,TLSv1.1,TLSv1.2
[2018-01-03T10:09:38,685][INFO ][t.b.r.e.SSLTransportNetty4] ROR SSL: Restricting to SSL protocols: TLSv1.2

Blocks of rules

Every block must have at least the name field, and optionally a type field valued either "allow" or "forbid". If you omit the type, your block will be treated as type: allow by default.

Keep in mind that ReadonlyREST ACL is a white list, so by default all request are blocked, unless you specify a block of rules that allowes all or some requests.

  • name will appear in logs, so keep it short and distinctive.
  • type can be either allow or forbid. Can be omitted, default is allow.
    - name: "Block 1 - Allowing anything from localhost"
      type: allow
      # In real life now you should increase the specificity by adding rules here (otherwise this block will allow all requests!)

Example: the simplest example of an allow block.

⚠️IMPORTANT: if no blocks are configured, ReadonlyREST rejects all requests.


ReadonlyREST access control rules allow to take decisions on three levels:

  • Network level
  • HTTP level
  • Elasticsearch level

Please refrain from using HTTP level rules to protect certain indices or limit what people can do to an index. The level of control at this level is really coarse, especially because Elasticsearch REST API does not always respect RESTful principles. This makes of HTTP a bad abstraction level to write ACLs in Elasticsearch all together.

The only clean and exhaustive way to implement access control is to reason about requests AFTER ElasticSearch has parsed them. Only then, the list of affected indices and the action will be known for sure. See Elasticsearch level rules.

Transport level rules

These are the most basic rules. It is possible to allow/forbid requests originating from a list of IP addresses, host names or IP networks (in slash notation).


hosts: [""] Match a request whose origin IP address (also called origin address, or OA in logs) matches one of the specified IP addresses or subnets.


hosts_local: ["", ""] Match a request whose destination IP address (called DA in logs) matches one of the specified IP addresses or subnets. This finds application when Elasticsearch HTTP API is bound to multiple IP addresses.

HTTP Level rules


accept_x-forwarded-for_header: false

⚠️DEPRECATED (use x_forwarded_for instead) A modifier for hosts rule: if the origin IP won't match, fallback to check the X-Forwarded-For header


x_forwarded_for: [""]

Behaves exactly like hosts, but gets the source IP address (a.k.a. origin address, OA in logs) inside the X-Forwarded-For header only (useful replacement to hostsrule when requests come through a load balancer like AWS ELB)

Load balancers

This is a nice tip if your Elasticsearch is behind a load balancer. If you want to match all the requests that come through the load balancer, use x_forwarded_for: [""]. This will match the requests with a valid IP address as a value of the X-Forwarded-For header.


methods: [GET, DELETE]

Match requests with HTTP methods specified in the list. N.B. Elasticsearch HTTP stack does not make any difference between HEAD and GET, so all the HEAD request will appear as GET.


headers: ["h1:x*y","h2:*xy"]

Match if all the HTTP headers are found in the request. This is useful used in conjunction with proxy_auth, to carry authorization information (i.e. headers: x-usr-group: admins).


headers_and: ["hdr1:val_*xyz","hdr2:xyz_*"]

Alias for headers rule


headers_or: ["x-myheader:val*","header2:*xy"]

Match if at least one the specified HTTP headers key:value pairs is matched.


uri_re: ^/secret-index/.*

☠️HACKY (try to use indices/actions rule instead)

Specify a regular expression to match the request URI.


maxBodyLength: 0

Match requests having a request body length less or equal to an integer. Use 0 to match only requests without body.

NB: Elasticsearch HTTP API breaks the specifications, nad GET requests might have a body length greater than zero.


api_keys: [123456, abcdefg]

A list of api keys expected in the header X-Api-Key

Elasticsearch level rules


indices: ["sales", "logstash-*"]

Match if the request involves whose name indices whose name is "sales", or starts with "logstash-", or of both.

In ReadonlyREST we roughly classify requests as:

  • "read": the request will not change the data or the configuration of the cluster
  • "write": when allowed, the request changes the internal state of the cluster or the data.

If a read request asks for a some indices they have permissions for and some indices that they do NOT have permission for, the request is rewritten to involve only the subset of indices they have permission for. This is behaviour is very useful in Kibana: different users can see the same dashboards with data from only their own indices.|

If a write request wants to write to indices they don't have permission for, the write request is rejected.


actions: ["indices:data/read/*"]

Match if the request action starts with "indices:data/read/".

In Elasticsearch, each request carries only one action. Here is a complete list of valid action strings as of Elasticsearch 5.1.2.





















kibana_access: ro

Enables the minimum set of actions necessary for browsers to use Kibana.

This "macro" rule allows the minimum set of actions necessary for a browser to use Kibana. This rule allows a set of actions towards the designated kibana index (see kibana_index rule - defaults to ".kibana"), plus a stricter subset of read-only actions towards other indices, which are considered "data indices".

The idea is that with one single rule we allow the bare minimum set of index+action combinations necessary to support a Kibana browsing session.

Possible access levels:

  • ro_strict: the browser has a read-only view on Kibana dashboards and settings and all other indices.
  • ro: some write requests can go through to the .kibana index so that UI state in discover can be saved and short urls can be created.
  • rw: some more actions will be allowed towards the .kibana index only, so Kibana dashboards and settings can be modified.
  • admin: like above, but has additional permissions to use the ReadonlyREST PRO/Enterprise Kibana app.

This rule is often used with the indices rule, to limit the data a user is able to see represented on the dashboards. In that case do not forget to allow the custom kibana index in the indices rule!


kibana_index: .kibana-user1

Default value is .kibana

Specify to what index we expect Kibana to attempt to read/write its settings (use this together with kibana.index setting in kibana.yml.)

This value directly affects how kibana_access works because at all the access levels (yes, even admin), kibana_access rule will not maatch any write request in indices that are not the designated kibana index.

If used in conjunction with ReadonlyREST Enterprise, this rule enables multi tenancy, because in ReadonlyREST, a tenancy is identified with a set of Kibana configurations, which are by design collected inside a kibana index (default: .kibana).


snapshots: ["snap_@{user}_*"]

Restrict what snapshots names can be saved or restored


repositories: ["repo_@{user}_*"]

Restrict what repositories can snapshots be saved into


filter: '{"query_string":{"query":"user:@{user}"}}'

This rule enables Document Level Security (DLS). That is: return only the documents that satisfy the boolean query provided as an argument.

This rule lets you filter the results of a read request using a boolean query. You can use dynamic variables i.e. @{user} (see dedicated paragraph) to inject a user name or some header values in the query, or even environmental variables.

NB: install ReadonlyREST plugin in all the cluster nodes that contain data in order for filter and fields rule to work

Example: per-user index segmentation

In the index "test-dls", each user can only search documents whose field "user" matches their user name. I.e. A user with username "paul" requesting all documents in "test-dls" index, won't see returned a document containing a field "user": "jeff" .

  proxy_auth: "*"
  indices: ["test-dls"]
  filter: '{"query_string":{"query":"user:@{user}"}}'

Example 2: Prevent search of "classified" documents.

In this example, we want to avoid that users belonging to group "press" can see any document that has a field "access_level" with the value "classified". And this policy is applied to all indices (no indices rule is specified).

- name: "::Press::"
  groups: ["press"]
  filter: '{"bool": {"must_not": [{"term": {"access_level": {"value": "classified"}}}]}}'

⚠️IMPORTANT The filterand fields rules will only affect "read" requests, therefore "write" requests will not match because otherwise it would implicitly allow clients to "write" without the filtering restriction. For reference, this behaviour is identical to x-pack and search guard.

If you want to allow write requests (i.e. for Kibana sessions), just duplicate the ACL block, have the first one with filter and/or fields rule, and the second one without.

⚠️IMPORTANT: Install ReadonlyREST plugin in all the cluster nodes that contain data* in order for filter and fields rules to work


This rule enables Field Level Security (FLS). That is: only return certain fields from queries.

NB: You can only provide a full black list or white list. Grey lists (i.e. ["~a", "b"]) are invalid settings and Elasticsearch will refuse to boot up if this condition is detected.

Whitelist mode

fields: ["allowed_fields_prefix_*", "_*"]

If the current is a search request, return all matching documents, but deprived of all the fields, except the ones that start with allowed_fields_prefix_ or with underscore.

If you use whitelist mode, remember to allow the mandatory, internally used fields (the ones that start with underscore, _*).

Blacklist mode (recommended)

fields: ["~excluded_fields_prefix_*", "~excluded_field"]

If the current is a search request, return all matching documents, but deprived of the excluded_field and the ones that start with excluded_fields_prefix_.

Example: hide prices from catalogue indices

- name: "External users - hide prices"
  fields: ["~price"]
  indices: ["catalogue_*"]

⚠️IMPORTANT The filterand fields rules will only affect "read" requests, therefore "write" requests will not match because otherwise it would implicitly allow clients to "write" without the filtering restriction. For reference, this behaviour is identical to x-pack and search guard.

If you want to allow write requests (i.e. for Kibana sessions), just duplicate the ACL block, have the first one with filter and/or fields rule, and the second one without.

⚠️IMPORTANT: Install ReadonlyREST plugin in all the cluster nodes that contain data* in order for filter and fields rules to work


Local ReadonlyREST users are authenticated via HTTP Basic Auth. This authentication method is secure only if SSL is enabled.


auth_key: sales:p455wd

Accepts HTTP Basic Auth. Configure this value in clear text. Clients will need to provide the header e.g. Authorization: Basic c2FsZXM6cDQ1NXdk where "c2FsZXM6cDQ1NXdk" is Base64 for "sales:p455wd".

⚠️IMPORTANT: this rule is handy just for tests, replace it with another rule that hashes credentials, like: auth_key_sha256, or auth_key_unix.


auth_key_sha256: 280ac6f...94bf9

Accepts HTTP Basic Auth. The value is a string like username:password hashed in SHA256. Clients will need to provide the usual Authorization header. |


auth_key_unix: test:$6$rounds=65535$d07dnv4N$QeErsDT9Mz.ZoEPXW3dwQGL7tzwRz.eOrTBepIwfGEwdUAYSy/NirGoOaNyPx8lqiR6DYRSsDzVvVbhP4Y9wf0 # Hashed for "test:test"

⚠️IMPORTANT this hashing algorithm is very CPU intensive, so we implemented a caching mechanism around it. However, this will not protect Elasticsearch from a DoS attack with a high number of requests with random credentials.

This method is based on /etc/shadow file syntax.

If you configured sha512 encryption with 65535 rounds on your system the hash in /etc/shadow for the account test:test will be test:$6$rounds=65535$d07dnv4N$QeErsDT9Mz.ZoEPXW3dwQGL7tzwRz.eOrTBepIwfGEwdUAYSy/NirGoOaNyPx8lqiR6DYRSsDzVvVbhP4Y9wf0

    - name: Accept requests from users in group team1 on index1
      groups: ["team1"]
      indices: ["index1"]
    - username: test
      auth_key_unix: test:$6$rounds=65535$d07dnv4N$QeErsDT9Mz.ZoEPXW3dwQGL7tzwRz.eOrTBepIwfGEwdUAYSy/NirGoOaNyPx8lqiR6DYRSsDzVvVbhP4Y9wf0 #test:test
      groups: ["team1"]

You can generate the hash with mkpasswd Linux command, you need whois package apt-get install whois (or equivalent)

mkpasswd -m sha-512 -R 65534

Also you can generate the hash with a python script (works on Linux):

import crypt
import random
import sys
import string

def sha512_crypt(password, salt=None, rounds=None):
    if salt is None:
        rand = random.SystemRandom()
        salt = ''.join([rand.choice(string.ascii_letters + string.digits)
                        for _ in range(8)])

    prefix = '$6$'
    if rounds is not None:
        rounds = max(1000, min(999999999, rounds or 5000))
        prefix += 'rounds={0}$'.format(rounds)
    return crypt.crypt(password, prefix + salt)

if __name__ == '__main__':
    if len(sys.argv) > 1:
        print sha512_crypt(sys.argv[1], rounds=65635)
        print "Argument is missing, <password>"

Finally you have to put your username at the begining of the hash with ":" separator test:$6$rounds=65535$d07dnv4N$QeErsDT9Mz.ZoEPXW3dwQGL7tzwRz.eOrTBepIwfGEwdUAYSy/NirGoOaNyPx8lqiR6DYRSsDzVvVbhP4Y9wf0

For example, test is the username and $6$rounds=65535$d07dnv4N$QeErsDT9Mz.ZoEPXW3dwQGL7tzwRz.eOrTBepIwfGEwdUAYSy/NirGoOaNyPx8lqiR6DYRSsDzVvVbhP4Y9wf0 is the hash for test (the password is identical to the username in this example).

proxy_auth: "*"

proxy_auth: "*"

Delegated authentication. Trust that a reverse proxy has taken care of authenticating the request and has written the resolved user name into the X-Forwarded-User header. The value "*" in the example, will let this rule match any username value contained in the X-Forwarded-User header. If you are using this technique for authentication in Kibana, don't forget to add this snippet to conf/kibana.yml:

elasticsearch.requestHeadersWhitelist: ['x-forwarded-user']

So that Kibana will forward the necessary headers to Elasticsearch.


groups: ["group1", "group2"]

Limit access to members of specific user groups. See User management.


session_max_idle: 1h

⚠️DEPRECATED Browser session timeout (via cookie). Example values 1w (one week), 10s (10 seconds), 7d (7 days), etc. NB: not available for Elasticsearch 2.x.


See below, the dedicated LDAP section


See below, the dedicated JSON Web Tokens section


Used to delegate authentication to another server that supports HTTP Basic Auth. See below, the dedicated External BASIC Auth section


Used to delegate groups resolution for a user to a JSON microservice. See below, the dedicated Groups Provider Authorization section


For Enterprise customers only, required for SAML authentication.


    - name: "ReadonlyREST Enterprise instance #1"
        name: "kbn1"

    - name: "ReadonlyREST Enterprise instance #2"
        name: "kbn2"

    - name: kbn1
      signature_key: "shared_secret_kibana1" # <- use environmental variables for better security!

    - name: kbn2
      signature_key: "shared_secret_kibana2" # <- use environmental variables for better security!

This authentication and authorization connector represents the secure channel (based on JWT tokens) of signed messages necessary for our Enterprise Kibana plugin to securely pass back to ES the username and groups information coming from browser-driven authentication protocols like SAML

Continue reading about this in the kibana plugin documentation, in the dedicated SAML section

Ancillary rules


verbosity: error

Don't spam elasticsearch log file printing log lines for requests that match this block. Defaults to info.

Audit & Troubleshooting

The main issues seen in support cases:

  • Bad ordering or ACL blocks. Remember that the ACL is evaluated sequentially, block by block. And the first block whose rules all match is accepted.
  • Users don't know how to read the HIS field in the logs, which instead is crucial because it contains a trace of the evaluation of rules and blocks.
  • LDAP configuration: LDAP is tricky to configure in any system. Configure ES root logger to DEBUG editing $ES_HOME/config/ to see a trace of the LDAP messages.

Interpreting logs

ReadonlyREST prints a log line for each incoming request (this can be selectively avoided on ACL block level using the verbosity rule).

Allowed requests

This is an example of a request that matched an ACL block (allowed) and has been let through to Elasticsearch.

ALLOWED by { name: '::PERSONAL_GRP::', policy: ALLOW} req={ ID:1667655475--1038482600#1312339, TYP:SearchRequest, CGR:N/A, USR:simone, BRS:true, ACT:indices:data/read/search, OA:, IDX:, MET:GET, PTH:/_search, CNT:<N/A>, HDR:Accept,Authorization,content-length,Content-Type,Host,User-Agent,X-Forwarded-For, HIS:[::PERSONAL_GRP::->[kibana_access->true, kibana_hide_apps->true, auth_key->true, kibana_index->true]], [::Kafka::->[auth_key->false]], [::KIBANA-SRV::->[auth_key->false]], [guest lol->[auth_key->false]], [::LOGSTASH::->[auth_key->false]] }


The log line immediately states that this request has been allowed by an ACL block called "::PERSONAL_GRP::". Immediately follows a summary of the requests' anatomy. The format is semi-structured, and it's intended for humans to read quickly, it's not JSON, or anything else.

Similar information gets logged in JSON format into Elasticsearch documents enabling the audit logs feature described later.

Here is a glossary:

  • ID: ReadonlyREST-level request id
  • TYP: String, the name of the Java class that internally represent the request type (very useful for debug)
  • CGR: String, the request carries a "current group" header (used for multi-tenancy).
  • USR: String, the user name ReadonlyREST was able to extract from Basic Auth, JWT, LDAP, or other methods as specified in the ACL.
  • BRS: Boolean, an heuristic attempt to tell if the request comes from a browser.
  • ACT: String, the elasticsearch level action associated with the request. For a list of actions, see our actions rule docs.
  • OA: IP Address, originating address (source address) of the TCP connection underlying the http session.
  • IDX: Strings array: the list of indices affected by this request.
  • MET: String, HTTP Method
  • CNT: String, HTTP body content. Comes as a summary of its lenght, full body of the request is available in debug mode.
  • HDR: String array, list of HTTP headers, headers' content is available in debug mode.
  • HIS: Chronologically ordered history of the ACL blocks and their rules being evaluated, This is super useful for knowing what ACL block/rule is forbidding/allowing this request.

In the example, the block ::PERSONAL_GRP:: is allowing the request because all the rules in this block evaluate to true.

Forbidden requests

This is an example of a request that gets forbidden by ReadonlyREST ACL.

FORBIDDEN by default req={ ID:747832602--1038482600#1312150, TYP:SearchRequest, CGR:N/A, USR:[no basic auth header], BRS:true, ACT:indices:data/read/search, OA:, IDX:, MET:GET, PTH:/_search, CNT:<N/A>, HDR:Accept,content-length,Content-Type,Host,User-Agent,X-Forwarded-For, HIS:[::Infosec::->[groups->false]], [::KIBANA-SRV::->[auth_key->false]], [guest lol->[auth_key->false]], [::LOGSTASH::->[auth_key->false]], [::Infosec::->[groups->false]], [::ADMIN_GRP::->[groups->false]], [::Kafka::->[auth_key->false]], [::PERSONAL_GRP::->[groups->false]] }

The above rule gets forbidden "by default". This means that no ACL block has matched the request, so ReadonlyREST's default policy of rejection takes effect.

Audit logs

ReadonlyREST can write events very similarly to Logstash into to a series of indices named by default readonlyrest_audit-YYYY-MM-DD. Every event contains information about a request and how the system has handled it. Here is an example of the data points contained in each audit event. We can leverage all this information to build interesting Kibana dashboards, or any other visualization.

    "error_message": null,
    "headers": [
    "acl_history": "[[::LOGSTASH::->[auth_key->false]], [::RW::->[kibana_access->true, indices->true, kibana_hide_apps->true, auth_key->true]], [kibana->[auth_key->false]], [::RO::->[auth_key->false]]]",
    "origin": "",
    "final_state": "ALLOWED",
    "task_id": 1158,
    "type": "SearchRequest",
    "req_method": "GET",
    "path": "/readonlyrest_audit-2017-06-29/_search?pretty",
    "indices": [
    "@timestamp": "2017-06-30T09:41:58Z",
    "content_len_kb": 0,
    "error_type": null,
    "processingMillis": 0,
    "action": "indices:data/read/search",
    "matched_block": "::RW::",
    "id": "933409190-292622897#1158",
    "content_len": 0,
    "user": "simone"

Here is a configuration example, you can see the audit_collector: true setting, which nomally defaults to false. Note how the successful requests matched by the first rule (Kibana) will not be written to the audit log, because the verbosity is set to error. Audit log in facts, obey the verbosity setting the same way regular text logs do.

    audit_collector: true

    - name: Kibana
      type: allow
      auth_key: kibana:kibana
      verbosity: error
    - name: "::RO::"
      auth_key: simone:ro
      kibana_access: ro

Extended audit

If you want to log the request content then an additional serializer is provided. This will log the entire user request within the content field of the audit event. To enable, configure the audit_serializer parameter as below.

  audit_collector: true
  audit_serializer: tech.beshu.ror.requestcontext.QueryAuditLogSerializer

Custom audit indices name and time granularity

It is possible to change the name of the produced audit log indices by specifying a template value as audit_index_template.

Example: tell ROR to write on monthly index.

  audit_collector: true
  audit_index_template: "'custom-prefix'-yyyy-MM"  # <--monthly pattern

⚠️IMPORTANT: notice the single quotes inside the double quoted expression. This is the same syntax used for Java's SimpleDateFormat.

Custom audit log serializer

You can write your own custom audit log serializer class, add it to the ROR plugin class path and configure it through the YAML settings.


  1. Create a new Java project in your IDE
  2. Create a class like this:
import tech.beshu.ror.ResponseContext;
import tech.beshu.ror.requestcontext.AuditLogSerializer;

import java.util.HashMap;
import java.util.Map;

  public static class MySerializer implements AuditLogSerializer {

    public Map<String, ?> createLoggableEntry(ResponseContext context) {
      Map<String, Object> theMap = new HashMap<>();
      theMap.put("indices", context.getRequestContext().getIndices());
      return theMap;
  1. Satisfy the two tech.beshu.* imports above by copy-pasting the two classes from ROR core code base into your project (they have no other dependency).

  2. Find the MyCustomSerializer.class somewhere in your build directory

  3. jar cvf CUSTOMSERIALIZER.jar MyCustomSerializer.class

  4. mv CUSTOMSERIALIZER.jar plugins/readonlyrest/

  5. Your config/readonlyrest.yml should start like this

    audit_serializer: MyCustomSerializer
  1. Start elasticsearch (with ROR installed) and grep for:
[2017-11-09T09:42:51,260][INFO ][t.b.r.r.SerializationTool] Using custom serializer: MyCustomSerializer


Follow these approaches until you find the solution to your problem

Scenario: you can't understand why your requests are being forbidden by ReadonlyREST (or viceversa)

Step 1: see what block/rule is matching Take the Elasticsearch log file, and grep the logs for ACT:. This will show you the whole request context (including the action and indices fields) of the blocked requests. You can now tweak your ACL blocks to include that action.

Step 2: enable debug logs

Logs are good for auditing the activity on the REST API. You can configure them by editing $ES_HOME/config/logging.yml (Elasticsearch 2.x) or $ES_HOME/config/ file (Elasticsearch 5.x)

For example, you can enable the debug log globally by setting the rootLoggerto debug. This is really useful especially to debug the activity of LDAP and other external connectors.

Trick: log requests to different files

Here is a snippet for ES 5.x that logs all the received requests as a new line in a separate file:

#Plugin readonly rest separate access logging file definition
appender.access_log_rolling.type = RollingFile = access_log_rolling
appender.access_log_rolling.fileName = ${sys:es.logs}_access.log
appender.access_log_rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c] %marker%.-10000m%n
appender.access_log_rolling.layout.type = PatternLayout
appender.access_log_rolling.filePattern = ${sys:es.logs}_access-%d{yyyy-MM-dd}.log
appender.access_log_rolling.policies.type = Policies
appender.access_log_rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.access_log_rolling.policies.time.interval = 1
appender.access_log_rolling.policies.time.modulate = true = org.elasticsearch.plugin.readonlyrest.acl
logger.access_log_rolling.level = info
logger.access_log_rolling.appenderRef.access_log_rolling.ref = access_log_rolling
logger.access_log_rolling.additivity = false

# exclude kibana, beat and logstash users as they generate too much noise
logger.access_log_rolling.filter.regex.type = RegexFilter
logger.access_log_rolling.filter.regex.regex = .*USR:(kibana|beat|logstash),.*
logger.access_log_rolling.filter.regex.onMatch = DENY
logger.access_log_rolling.filter.regex.onMisMatch = ACCEPT

Users and Groups

Sometimes we want to make allow/forbid decisions according to the username associated to a HTTP request. The extraction of the user identity (username) can be done via HTTP Basic Auth (Authorization header) or delegated to a reverse proxy (see proxy_auth rule).

The validation of the said credentials can be carried on locally with hard coded credential hashes (see auth_key_sha256 rule), via one or more LDAP server, or we can forward the Authorization header to an external web server and examine the HTTP status code (see external_authentication).

Optionally we can introduce the notion of groups (see them as bags of users). The aim of having groups is to write a very specific block once, and being able to allow multiple usernames that satisfy the block.

Groups can be declared and associated to users statically in the readonlyrest.yml file. Alternatively, groups for a given username can be retrieved from an LDAP server or from a LDAP server, or a custom JSON/XML service.

You can mix and match the techniques to satisfy your requirements. For example, you can configure ReadonlyREST to:

  • Extract the username from X-Forwarded-User
  • Resolve groups associated to said user through a JSON microservice

Another example:

  • Extract the username from Authorization header (HTTP Basic Auth)
  • Validate said username's password via LDAP server
  • resolve groups associated to the user from groups defined in readonlyrest.yml

More examples are shown below together with a sample configuration.

Local users and groups

The groups rule accepts a list of group names. This rule will match if the resolved username (i.e. via auth_key) is associated to the given groups. In this example, the usernames are statically associated to group names.


    - name: Accept requests from users in group team1 on index1
      type: allow  # Optional, defaults to "allow" will omit now on.
      groups: ["team1"]
      indices: ["index1"]

    - name: Accept requests from users in group team2 on index2
      groups: ["team2"]
      indices: ["index2"]

    - name: Accept requests from users in groups team1 or team2 on index3
      groups: ["team1", "team2"]
      indices: ["index3"]


    - username: alice
      auth_key: alice:p455phrase
      groups: ["team1"]

    - username: bob
      auth_key: bob:s3cr37
      groups: ["team2", "team4"]

    - username: claire
      auth_key_sha256: e0bba5fda92dbb0570fd2e729a3c8ed6b1d52b380581f32427a38e396ba28ec6 #claire:p455key
      groups: ["team1", "team5"]

Example: rules are associated to groups (instead of users) and users-group association is declared separately later under users:

Environmental variables

Anywhere in readonlyrest.yml you can use the espression ${MY_ENV_VAR} to replace in place the environmental variables. This is very useful for injecting credentials like LDAP bind passwords, especially in Docker.

For example, here we declare an environment variable, and we write ${LDAP_PASSWORD} in our settings:

$ export LDAP_PASSWORD=S3cr3tP4ss 
$ cat readonlyrest.yml
    - name: ldap1
      host: ""
      port: 389                                                     
      ssl_enabled: false                                            
      ssl_trust_all_certs: true                                     
      bind_dn: "cn=admin,dc=example,dc=com"                         
      bind_password: "${LDAP_PASSWORD}"                                     
      search_user_base_DN: "ou=People,dc=example,dc=com"

And ReadonlyREST ES will load "S3cr3tP4ss" as bind_password.

Dynamic variables

One of the neatest feature in ReadonlyREST is that you can use dynamic variables inside most rules values. The variables you can currently replace into rules values are these:

  • @{user} gets replaced with the username of the successfully authenticated user
  • @{xyz} gets replaced with any xyz HTTP header included in the incoming request (useful when reverse proxies handle authentication)

Indices from user name

You can let users authenticate externally, i.e. via LDAP, and use their user name string inside the indices rule.


    - name: "Users can see only their logstash indices i.e. alice can see alice_logstash-20170922"
        name: "myLDAP" 
      indices: ["@{user}_logstash-*"]
    # LDAP connector settings omitted, see LDAP section below..

Kibana index from headers

Imagine that we delegate authentication to a reverse proxy, so we know that only authenticated users will ever reach Elasticsearch. We can tell the reverse proxy (i.e. Nginx) to inject a header called x-nginx-user containing the username.


    - name: "Identify a personal kibana index where each user is supposed to save their dashboards"
      kibana_access: rw
      kibana_index: ".kibana_@{x-nginx-user}" 

LDAP connector

In this example, users credentials are validate via LDAP. The groups associated to each validated users are resolved using the same LDAP server.

Simpler: authentication and authorization in one rule


    - name: Accept requests from users in group team1 on index1
      type: allow                                           # Optional, defaults to "allow", will omit from now on.
        name: "ldap1"                                       # ldap name from below 'ldaps' section
        groups: ["g1", "g2"]                                # group within 'ou=Groups,dc=example,dc=com'
      indices: ["index1"]
    - name: Accept requests from users in group team2 on index2
        name: "ldap2"
        groups: ["g3"]
        cache_ttl_in_sec: 60
      indices: ["index2"]

    - name: ldap1
      host: ""
      port: 389                                                     # optional, default 389
      ssl_enabled: false                                            # optional, default true
      ssl_trust_all_certs: true                                     # optional, default false
      bind_dn: "cn=admin,dc=example,dc=com"                         # optional, skip for anonymous bind
      bind_password: "password"                                     # optional, skip for anonymous bind
      search_user_base_DN: "ou=People,dc=example,dc=com"
      user_id_attribute: "uid"                                      # optional, default "uid"
      search_groups_base_DN: "ou=Groups,dc=example,dc=com"
      unique_member_attribute: "uniqueMember"                       # optional, default "uniqueMember"
      connection_pool_size: 10                                      # optional, default 30
      connection_timeout_in_sec: 10                                 # optional, default 1
      request_timeout_in_sec: 10                                    # optional, default 1
      cache_ttl_in_sec: 60                                          # optional, default 0 - cache disabled
      group_search_filter: "(objectClass=group)(cn=application*)"   # optional, default (cn=*)
      group_name_attribute: "cn"                                    # optional, default "cn"
    - name: ldap2
      host: ""
      port: 636
      search_user_base_DN: "ou=People,dc=example2,dc=com"
      search_groups_base_DN: "ou=Groups,dc=example2,dc=com"

Advanced: authentication and authorization in separate rules

    enable: true
    response_if_req_forbidden: Forbidden by ReadonlyREST ES plugin

    - name: Accept requests to index1 from users with valid LDAP credentials, belonging to LDAP group 'team1' 
      ldap_authentication: "ldap1"  
        name: "ldap1"                                       # ldap name from 'ldaps' section
        groups: ["g1", "g2"]                                # group within 'ou=Groups,dc=example,dc=com'
      indices: ["index1"]
    - name: Accept requests to index2 from users with valid LDAP credentials, belonging to LDAP group 'team2'
        name: "ldap2"  
        cache_ttl_in_sec: 60
        name: "ldap2"
        groups: ["g3"]
        cache_ttl_in_sec: 60
      indices: ["index2"]

    - name: ldap1
      host: ""
      port: 389                                                 # default 389
      ssl_enabled: false                                        # default true
      ssl_trust_all_certs: true                                 # default false
      bind_dn: "cn=admin,dc=example,dc=com"                     # skip for anonymous bind
      bind_password: "password"                                 # skip for anonymous bind
      search_user_base_DN: "ou=People,dc=example,dc=com"
      user_id_attribute: "uid"                                  # default "uid"
      search_groups_base_DN: "ou=Groups,dc=example,dc=com"
      unique_member_attribute: "uniqueMember"                   # default "uniqueMember"
      connection_pool_size: 10                                  # default 30
      connection_timeout_in_sec: 10                             # default 1
      request_timeout_in_sec: 10                                # default 1
      cache_ttl_in_sec: 60                                      # default 0 - cache disabled
    - name: ldap2
      host: ""
      port: 636
      search_user_base_DN: "ou=People,dc=example2,dc=com"
      search_groups_base_DN: "ou=Groups,dc=example2,dc=com"

LDAP configuration notes

  • search_user_base_DN should refer to the base Distinguished Name of the users to be authenticated.
  • search_groups_base_DN should refer to the base Distinguished Name of the groups to which these users may belong.
  • By default, users in search_user_base_DN should contain a uid LDAP attribute referring to a unique ID for the user within the base DN. An alternative attribute name can be specified via the optional user_id_attribute configuration item.
  • By default, groups in search_groups_base_DN should contain a uniqueMember LDAP attribute referring to the full DNs of the users that belong to the group. (There may be any number of occurrences of this attribute within a particular group, as any number of users may belong to the group.) An alternative attribute name can be specified via the optional unique_member_atttribute configuration item.
  • group_name_attribute is the LDAP group object attribute that contains the names of the ROR groups
  • group_search_filter is the LDAP search filter (or filters) to limit the user groups returned by LDAP. This filter will be joined (with &) with unique_member_atttribute=user_dn filter resulting in this LDAP search filter: (&YOUR_GROUP_SEARCH_FILTER(unique_member_attribute=user_dn)). Examples:
group_search_filter: "(objectClass=group)"
group_search_filter: "(objectClass=group)(cn=application*)"
group_search_filter: "(cn=*)" # basically no group filtering

(An example OpenLDAP configuration file can be found in our tests: /src/test/resources/test_example.ldif)

Caching can be configured per LDAP client (see ldap1) or per rule (see Accept requests from users in group team2 on index2 rule)

External Basic Auth

ReadonlyREST will forward the received Authorization header to a website of choice and evaluate the returned HTTP status code to verify the provided credentials. This is useful if you already have a web server with all the credentials configured and the credentials are passed over the Authorization header.

    - name: "::Tweets::"
      methods: GET
      indices: ["twitter"]
      external_authentication: "ext1"

    - name: "::Facebook posts::"
      methods: GET
      indices: ["facebook"]
        service: "ext2"
        cache_ttl_in_sec: 60


    - name: "ext1"
      authentication_endpoint: "http://external-website1:8080/auth1"
      success_status_code: 200
      cache_ttl_in_sec: 60
      validate: false # SSL certificate validation (default to true)

    - name: "ext2"
      authentication_endpoint: "http://external-website2:8080/auth2"
      success_status_code: 204
      cache_ttl_in_sec: 60

To define an external authentication service the user should specify:

  • name for service (then this name is used as id in service attribute of external_authentication rule)
  • authentication_endpoint (GET request)
  • success_status_code - authentication response success status code

Cache can be defined at the service level or/and at the rule level. In the example, both are shown, but you might opt for setting up either.

Custom groups providers

This external authorization connector makes it possible to resolve to what groups a users belong, using an external JSON or XML service.


    - name: "::Tweets::"
      methods: GET
      indices: ["twitter"]
        proxy_auth_config: "proxy1"
        users: ["*"]
        user_groups_provider: "GroupsService"
        groups: ["group3"]

    - name: "::Facebook posts::"
      methods: GET
      indices: ["facebook"]
        proxy_auth_config: "proxy1"
        users: ["*"]
        user_groups_provider: "GroupsService"
        groups: ["group1"]
        cache_ttl_in_sec: 60


    - name: "proxy1"
      user_id_header: "X-Auth-Token"                           # default X-Forwarded-User


    - name: GroupsService
      groups_endpoint: "http://localhost:8080/groups"
      auth_token_name: "token"
      auth_token_passed_as: QUERY_PARAM                        # HEADER OR QUERY_PARAM
      response_groups_json_path: "$..groups[?(].name"   # see:
      cache_ttl_in_sec: 60

In example above, a user is authenticated by reverse proxy and then external service is asked for groups for that user. If groups returned by the service contain any group declared in groups list, user is authorized and rule matches.

To define user groups provider you should specify:

  • name for service (then this name is used as id in user_groups_provider attribute of groups_provider_authorization rule)
  • groups_endpoint - service with groups endpoint (GET request)
  • auth_token_name - user identifier will be passed with this name
  • auth_token_passed_as - user identifier can be send using HEADER or QUERY_PARAM
  • response_groups_json_path - response can be unrestricted, but you have to specify JSON Path for groups name list (see example in tests)

As usual, the cache behaviour can be defined at service level or/and at rule level.

JSON Web Token (JWT) Auth

The information about the user name can be extracted from the "claims" inside a JSON Web Token. Here is an example.

    - name: Valid JWT token with a viewer role
      kibana_access: ro
        name: "jwt_provider_1"
        roles: ["viewer"]
    - name: Valid JWT token with a writer role
      kibana_access: rw
        name: "jwt_provider_1"
        roles: ["writer"]
    - name: jwt_provider_1
      signature_algo: RSA
      signature_key: "your_signature"
      user_claim: email
      roles_claim: resource_access.client-app.roles # JSON-path style
      header_name: Authorization

The user_claim indicates which field in the JSON will be interpreted as the user name. The signature_key is used shared secret between the issuer of the JWT and ReadonlyREST. It is used to verify the cryptographical "paternity" of the message. The header_name is used if we expect the JWT Token in a custom header (i.e. Google Cloud IAP signed headers)

GPLv3 License

ReadonlyREST Free (Elasticsearch plugin) is released under the GPLv3 license. For what this kind of software concerns, this is identical to GPLv2, that is, you can treat ReadonlyREST as you would treat Linux code. The big difference from Linux is that here you can ask for a commercial license and stop thinking about legal implications.

Here is a practical summary of what dealing with GPLv3 means:


  • Distribute for free or commercially a version (partial or total) of this software (along with its license and attributions) as part of a product or solution that is also released under GPL-compatible license. Please notify us if you do so.
  • Use a modified version internally to your company without making your changes available under the GPLv3 license.
  • Distribute for free or commercially a modified version (partial or total) of this software, provided that the source is contributed back as pull request to the original project or publicly made available under the GPLv3 or compatible license.


  • Sell or give away a modified version of the plugin (or parts of it, or any derived work) without publishing the modified source under GPLv3 compatible licenses.
  • Modify the code for a paying client without immediately contributing your changes back to this project's GitHub as a pull request, or alternatively publicly release said fork under GPLv3 or compatible license.

GPLv3 license FAQ

1. Q: I sell a proprietary software solution that already includes many other OSS components (i.e. Elasticsearch). Can I bundle also ReadonlyREST into it?

A: No, GPLv3 does not allow it. But hey, no problem, just go for the Enterprise subscription.

2. Q: I have a SaaS and we want to use a version of ReadonlyREST for Elasticsearch (as is, or modified), do I need a commercial license?

A: No, you don't. Go for it! However if you are using Kibana, consider the Enterprise offer which includes multi-tenancy.

3. Q: I'm a consultant and I will charge my customer for modifying this software and they will not sell it as a product or part of their product.

A: This is fine with GPLv3.


Please don't hesitate to contact us for a re-licensed copy of this source. Your success is what makes this project worthwhile, don't let legal issues slow you down.

See commercial license FAQ page for more information.


  1. Download the binary release of the latest version of ReadonlyREST from the download page
  2. cd to the Elasticsearch home
  3. Install the plugin

Elasticsearch 5.x

 bin/elasticsearch-plugin install file:///download-folder/

Elasticsearch 2.x

bin/plugin install file:///download-folder/
  1. Edit config/readonlyrest.yml and add your configuration as seen in examples.

Build from Source

You need to have installed: git, maven, Java 8 JDK, zip. So use apt-get or brew to get them.

  1. Clone the repo
git clone
  1. cd elasticsearch-readonlyrest-plugin
  2. Launch the build script bin/

You should find the plugin's zip files under /target (Elasticsearch 2.x) or build/releases/ (Elasticsearch 5.x).


A small library of typical use cases.

Secure Logstash

We have a Logstash agent installed somewhere and we want to ship the logs to our Elasticsearch cluster securely.

Elasticsearch side

Step 1: Bring Elasticsearch HTTP interface (port 9200) to HTTPS When you get SSL certificates (i.e. from your IT department, or from LetsEncrypt), you should obtain a private key and a certificate chain. In order to use them with ReadonlyREST, we need to wrap them into a JKS (Java key store) file. For the sake of this example, or for your testing, we won't use real SSL certificates, we are going to create a self signed certificate.

Remember, we'll do with a self-signed certificate for example convenience, but if you deploy this to a server, use a real one!

keytool -genkey -keyalg RSA -alias selfsigned -keystore keystore.jks -storepass readonlyrest -validity 360 -keysize 2048

Now copy the keystore.jks inside the plugin directory inside the Elasticsearch home.

cp keystore.jks /elasticsearch/config/

IMPORTANT: to enable ReadonlyREST's SSL stack, open elasticsearch.yml and append this one line:

http.type: ssl_netty4

Step 3 Now We need to create some credentials for logstash to login, let's say

  • user = logstash
  • password = logstash

Step 4 Hash the credentials string logstash:logstash using SHA256. The simplest way is to paste the string in an online tool You should have obtained "4338fa3ea95532196849ae27615e14dda95c77b1".

Step 5 Let's add some configuration to our Elasticsearch: edit conf/readonlyrest.yml and append the following lines:

      enable: true
      # keystore in the same dir with readonlyrest.yml
      keystore_file: "keystore.jks"
      keystore_pass: readonlyrest
      key_pass: readonlyrest

    response_if_req_forbidden: Forbidden by ReadonlyREST ES plugin


    - name: "::LOGSTASH::"
      auth_key_sha256: "280ac6f756a64a80143447c980289e7e4c6918b92588c8095c7c3f049a13fbf9" #logstash:logstash
      actions: ["cluster:monitor/main","indices:admin/types/exists","indices:data/read/*","indices:data/write/*","indices:admin/template/*","indices:admin/create"]
      indices: ["logstash-*"] 

Logstash side

Edit the logstash configuration file and fix the output block as follows:

output {
  elasticsearch {
    ssl => true
    ssl_certificate_verification => false
    hosts => ["YOUR_ELASTICSEARCH_HOST:9200"]
    user => logstash
    password => logstash

The ssl_certificate_verification bit is necessary for accepting self-signed SSL certificates. You might also need to add cacert parameter to provide the path to your .cer or .pem file.

Secure Metricbeats

Very similarly to Logstaash, here's a snippet of configuration for Metricbeats logging agent configuration of metricbeat - elasticsearch section

On the Metricbeats side

  username: metricbeat
  password: hereyourpasswordformetricbeat
  protocol: https
  hosts: ["xx.xx.xx.xx:9200"]
  worker: 1
  index: "log_metricbeat-%{+yyyy.MM}"
  template.enabled: false
  template.versions.2x.enabled: false
  ssl.enabled: true
  ssl.certificate_authorities: ["./certs/your-rootca_cert.pem"]
  ssl.certificate: "./certs/your_srv_cert.pem"
  ssl.key: "./certs/your_srv_key.pem"

Of course, if you do not use ssl, disable it.

On the Elasticsearch side

       enable: true
       # keystore in the same dir with elasticsearch.yml
       keystore_file: "keystore.jks"
       keystore_pass: readonlyrest
       key_pass: readonlyrest

    - name: "metricbeat can write and create its own indices"
      auth_key_sha1: fd2e44724a234234454324253094080986e8fda
      actions: ["indices:data/read/*","indices:data/write/*","indices:admin/template/*","indices:admin/create"]
      indices: ["metricbeat-*", "log_metricbeat*"]