PyMUMPS: A parallel sparse direct solver
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
examples
mumps
.gitattributes
.gitignore
COPYING
MANIFEST.in
README.md
setup.py

README.md

PyMUMPS: A parallel sparse direct solver

Requirements

Getting Started

Install using python setup.py install or run from the local checkout.

Examples

Centralized input & output. The sparse matrix and right hand side are input only on the rank 0 process. The system is solved using all available processes and the result is available on the rank 0 process.

from mumps import DMumpsContext
ctx = DMumpsContext()
if ctx.myid == 0:
    ctx.set_centralized_sparse(A)
    x = b.copy()
    ctx.set_rhs(x) # Modified in place
ctx.run(job=6) # Analysis + Factorization + Solve
ctx.destroy() # Cleanup

Re-use symbolic or numeric factorizations.

from mumps import DMumpsContext
ctx = DMumpsContext()
if ctx.myid == 0:
    ctx.set_centralized_assembled_rows_cols(A.row+1, A.col+1) # 1-based
ctx.run(job=1) # Analysis

if ctx.myid == 0:
    ctx.set_centralized_assembled_values(A.data)
ctx.run(job=2) # Factorization

if ctx.myid == 0:
    x = b1.copy()
    ctx.set_rhs(x)
ctx.run(job=3) # Solve

# Reuse factorizations by running `job=3` with new right hand sides
# or analyses by supplying new values and running `job=2` to repeat
# the factorization process.