
7.11. Potentio Electrochemical Impedance Spectroscopy technique

Technique ID: 104

Instrument Series	VMP3	SP-300
File	peis.ecc	peis4.ecc
Timebase	24µs*	24µs*

7.11.1. Description

The Potentio Electrochemical Impedance Spectroscopy (PEIS) technique performs impedance measurements into potentiostatic mode in applying a sinus around a DC potential E that can be set to a fixed value or relatively to the cell equilibrium potential.

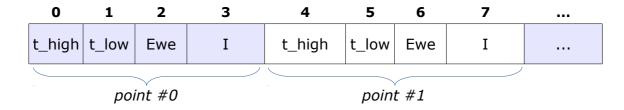
For very capacitive or low impedance electrochemical systems, the potential amplitude can lead to a current overflow that can stop the experiment in order to protect the unit from overheating. Using GEIS instead of PEIS can avoid this inconvenient situation.

Moreover, during corrosion experiment, a potential shift of the electrochemical system can occur. PEIS technique can lead to impedance measurements far from the corrosion potential while GEIS can be performed at a zero current.

7.11.2. Technique parameters

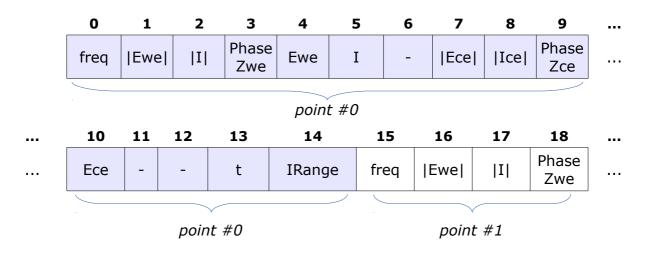
Technique parameters available for the function BL_LOADTECHNIQUE:

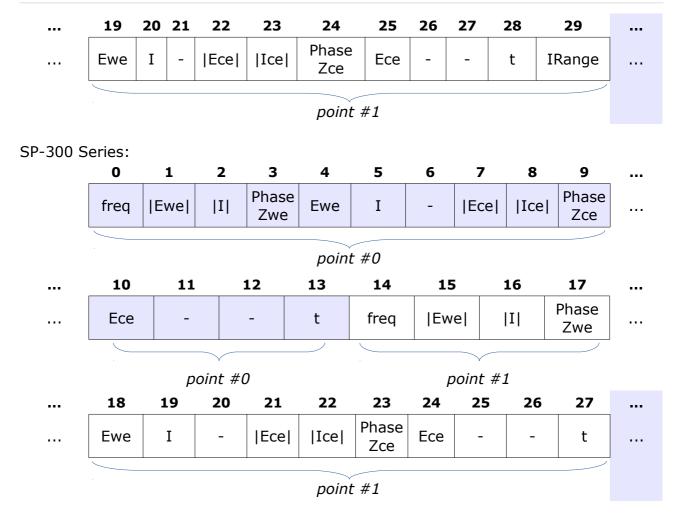
PEIS parameters				
Label	Description	Data types	Data range	
vs_initial	Voltage step vs initial one	boolean	True/False	
vs_final	Voltage step vs initial one	boolean	= vs_initial	
Initial_Voltage_step	Initial voltage step (V)	single	-	
Final_Voltage_step	Final voltage step (V)	single	= Initial_Voltage_step	
Duration_step	Step duration (s)	single	[0tb*2 ³¹]	
Step_number	Number of steps minus 1	integer	= 0	
Record_every_dT	Record every dt (s)	single	≥ 0	
Record_every_dI	Record every dI (A)	single	≥ 0	
Final_frequency	Final frequency (Hz)	single	Depend on instrument	
Initial_frequency	Initial frequency (Hz)	single	Depend on instrument	


^{*} Timebase is for first process only.

PEIS parameters				
Label	Description	Data types	Data range	
sweep	sweep linear/logarithmic (TRUE for linear points spacing)	boolean	True/False	
Amplitude_Voltage	Sinus amplitude (V)	single	Depend on instrument	
Frequency_number	Number of frequencies	integer	≥ 1	
Average_N_times	Number of repeat times (used for frequencies averaging)	integer	≥ 1	
Correction	Non-stationary correction	boolean	True/False	
Wait_for_steady	Number of period to wait before each frequency	single	≥ 0	

7.11.3. Data format


Data format depends of the technique process used to record data. The process index is returned in the field TDATAINFOS.PROCESSINDEX.


Data format of process 0:

• Data format of process 1:

VMP3 Series:

The number of points saved in the buffer is returned in the field TDATAINFOS.NBROWS. The number of variables defining a point is returned in the field TDATAINFOS.NBCOLS.

7.11.4. Data conversion

Data returned into the buffer are not usable as-is, one must convert the data before:

time:

The time for the process 0 is calculated with this formula:

Float conversion:

time (only time of process 1), IRange, freq, Ewe, |Ewe|, Ece, |Ece|, I, |I|, Phase Zwe, Phase Zce must be converted with the function BL_CONVERTNUMERICINTOSINGLE

cycle:

no conversion needed