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Abstract—Splitting and merging data is a requirement for
many parallel or distributed processing operations. Naive
algorithms to split and merge 3D blocks from ultra-high
resolution images perform very poorly, as a result of seek
times. In contrast, naive algorithms to split and merge 3D slabs
perform optimally as seek time is significantly minimized. We
introduce and analyze sequential algorithms (Clustered reads,
Multiple reads, Clustered writes, and Multiple writes) that
leverage memory buffering to address this issue. Clustered
reads and Clustered writes, access image chunks only once,
but they have to seek in the reconstructed image. Multiple
reads and Multiple writes minimize seeks in the reconstructed
image, but they access image chunks multiple times. Evaluation
on a 3850x3025x3500 brain image shows that our algorithms
perform similarly to the optimal configuration provided that
enough memory is available. Additionally, Multiple reads sup-
ports on-the-fly compression of the merged image transparently
but Clustered reads does not, due to its use of negative seeking.
We conclude that splitting and merging large 3D images can
be done efficiently without relying on complex data formats.

I. INTRODUCTION

Three-dimensional images that exceed typical memory
size are increasingly found in a variety of disciplines.
Big Brain, for instance, is a 3D histological image of the
human brain that represents 1 TB of raw data organized in
3600 planes at full resolution and 76 GB at a 40-micrometer
isotropic resolution commonly used in neurosciences [1].
Other examples found in medical imaging, our primary
domain of interest, include high-resolution 3D electron mi-
croscopy (see, e.g., [2]) or micro- and nano-tomography [3].
As such images would typically be processed on a comput-
ing cluster, possibly using locality-aware file systems such
as the Hadoop Distributed File System (HDFS [4]), software
libraries are needed to split and merge them efficiently, in
particular to limit file seeks. In this paper we introduce and
compare sequential algorithms to split and merge images
with reduced seeking.

We assume that the high-resolution image is split into
chunks representing 3D blocks or 3D slabs that fit in
memory. A 3D block consists of a stack of one or more
2D tiles (incomplete slices or incomplete columns) spanning
contiguous slices, whereas a 3D slab is a series of one
of more complete contiguous 2D slices. A dataset such
as Big Brain would perhaps be split into 125 chunks of

600 MB. The decision to split an image into slabs or blocks,
and the size of the chunks, is up to the application. For
instance, spatial filtering would commonly require blocks,
whereas slabs might be preferable for acquisition artifact
removal. Applications that process voxels individually, for
instance histogram computation or k-means clustering, could
work on either slabs or blocks. Flexibility is thus required
in the splitting scheme.

We also assume that the byte organization in image files
is arbitrary but known to the algorithm. Some formats,
for instance the file format defined by the Neuroimaging
Informatics Technology Initiative (NIfTI — https://nifti.nimh.
nih.gov) store the complete image in column-major order,
that is, elements belonging to the same column are stored
in a contiguous order. Other formats, such as HDF5-based
MINC 2.0 [5], provide more flexibility by allowing data
to be partitioned in limited-sized chunks, each chunk being
stored in a specific order. Byte organization is obviously a
critical factor of seek time. The main idea of our algorithms
will be to rearrange ordering in memory before or after I/O
operations.

The literature on this problem is remarkably scarce.
Parallel and distributed image processing has obviously been
extensively studied and used in various platforms [6], [7],
[8], [9], [10], [11], but methods have focused on geometrical
approaches to partition images, and on load-balancing or
task scheduling techniques. Instead, we aim at algorithms to
efficiently split or merge images regardless of the geometry
of the chunks. Although seek times are often identified as
an issue, the preferred solution is usually to optimize data
storage formats for a certain application. For instance, the
Open Connectome Data Cluster [12] is a data warehouse
system that allows users to retrieve specific 3D blocks from
large image datasets. It reduces seek times through a specific
file format based on space-filling curves, which elegantly
preserves spatial proximity on disk. On the contrary, we are
searching for algorithms that would reduce the seek time
regardless of the data format, such that applications with
flexible splitting schemes can be served.

To summarize, our paper makes the following contri-
butions. (1) We propose a set of algorithms to split and
merge large 3D images from 3D blocks or 3D slabs. (2)
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We determine the complexity of those algorithms in terms
of numbers of seeks, as a function of the image size,
splitting scheme and available memory. (3) We evaluate
our algorithms using the Big Brain dataset and two storage
drives with different characteristics. Section II presents our
algorithms, Section III describes their implementation, Sec-
tion IV reports experimental results and Section V concludes
the paper.

II. ALGORITHMS

Split and merge relate to the same dual problem in our
context. We focus here on merging for the sake of concision.
Splitting algorithms can be derived from merging ones by
swapping reads and writes. Our goal then is to merge a set
of n chunks into a single reconstructed 3D image with R
voxels of size b. For simplicity, we assume that chunks are
non-overlapping cuboids that all have the same dimension.

Although our algorithms could be applied to any byte
organization, we consider a file format where voxels are
written in column-major order. All voxels in a slice have
the same k and all voxels in a column have the same j.

A. Notations

We adopt the following notations (see Figure 1):

o R = D?: number of voxels in the reconstructed image.
o b: number of bytes per voxel (in B).

e n: number of chunks (blocks or slabs).

o m: amount of available memory (in B).

e m’ < m: amount of used memory (in B).

We also have the following relations:

o Number of slices/rows/columns in a block: i/% =d.
e Number of blocks in a block column: /.

B. Disk model

A disk is characterized by its read and write rates, its
access time and its seek time. For common file sizes, seek
time is negligible compared to read or write time as typical
seek times range from about 0.1 ms for Solid-State Drives
(SSD) to 10 ms for Hard-Disk Drives (HDD). However, as
we will shown later, naive algorithms might seek up to 107
times to merge a high-resolution image, which renders total
seek time comparable to read and write times. In addition,
extensive seeking also has an effect on read and write
rates, as these are typically increasing with the duration of
uninterrupted reads or writes.

In our analysis, we do not distinguish between access
time and seek time. We also assume that seeks require a
constant amount of time, regardless of the position seeked
to. That is, we focus on the average seek time. In practice,
large variations would be expected depending on the seek
distance, but modeling such variations would inevitably lead
to models specific to the hardware, file system or operating
system, which we intentionally avoid here. Likewise, in
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Figure 1: Notations. A
block column is shown
in red. A block slab is
shown in blue.

Figure 2: Buffer used
in Clustered reads (d=4).
White portions in the
buffer are not allocated.

contemporary systems, read and write times are greatly
impacted by caches operating at several levels, which we
do not model here. Thus, our goal is to find algorithms
that minimize the number of seek and file access operations,
which we denote “number of seeks” in the remainder.

C. Slabs vs blocks

Algorithms 1 and 2 show the naive merging methods for
slabs and blocks. These algorithms have very different com-
plexities even though blocks and slabs have identical sizes.
Since slabs are stored contiguously in the reconstructed
image, the number of seeks in Algorithm 1 is only 2n as n
seeks are required to read the slabs and n seeks are required
to write them:

Nilabs = 21 (D

However, Algorithm 2 has to do extra seeks for each column
in each slice of each block:

2
Nblocks =n-+nd

or, using R and n as main variables:

2
R
Nblocks =n+n ( > (2)

n

In practice, this difference could lead to a tremendous
slowdown, as we will show later.

Algorithm 1 Naive merging from slabs

for each slab do

read slab

write slab in reconstructed image
end for

Algorithm 2 Naive merging from blocks
for each block do
read block

write block in reconstructed image
end for




D. Buffered slabs

Algorithm 1 is a particular case of memory buffering
where the amount of available memory equals the maximum
size of a chunk. More buffering can be achieved when
the amount of available memory increases, as shown in
Algorithm 3.

Algorithm 3 Buffered merging from slabs

1: sorted_slabs = sort slabs by increasing k values
2: initialize buffer

3: fori=0;i<n;i+=1 do

4:  slab = sorted_slabs][i]

5 if sizeof(buffer)+sizeof(slab) > m then
6: write buffer in reconstructed image
7 clear buffer

8: end if

9:  read slab and append it to buffer

10: end for

This algorithm writes in the reconstructed image using a
single seek per memory load. Therefore:
bR
Nbuft_slabs =1 + {—‘ (3)
m
Buffered slabs is straightforward to implement, however, its
extension to block merging is not easy. The remainder of
this Section presents our attempts for such an extension.

E. Buffered blocks: Clustered reads

Clustered reads is the more direct extension of Buffered
slabs to blocks: it loads multiple blocks in memory, con-
catenates them in a buffer and writes the buffer in the
reconstructed image. Seeking is reduced compared to Naive
blocks since contiguous parts of the buffer are written
without seeking. A given block is accessed only once during
the whole merging process.

The buffer, capable of storing multiple disjoint sequences
of contiguous bytes without having to allocate memory for
the bytes between such sequences, can be represented by an
associative array or a Python dictionary. Figure 2 illustrates
how the buffer would fill up for the two first blocks in a
reconstructed image, assuming, for the sake of this particular
example, that blocks are of size 4x4x4.

The number of seeks performed by Clustered reads de-
pends on how blocks loaded in memory arrange in the recon-
structed image. In the best case, complete contiguous slabs
of the reconstructed image can be assembled in memory and
written in a single seek. In the worst case, the memory load
only partially covers columns in the reconstructed image:
0O(d?) seeks are then required during writing, one for every
column of every tile. In the intermediary case, columns are
complete but some slices can only be partially reconstructed:
O(d) seeks are then required.

Case 1: single blocks Case 2: complete block columns
b,=d

2

Case 3: complete block slices
b,=d? =

Figure 3: Memory-load configurations in Clustered reads,
leading to different number of seeks. Red blocks need
seeking before each of their columns (d? seeks). Blue blocks
need seeking before each of their tiles (d seeks). Green
blocks need only a single seek. Grey, dashed, transparent
blocks represent the contiguous memory loads and are added
for the sake of visualization.
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Figure 4: Configurations that increase the number of seeks
per memory-load and are thus deliberately avoided by
Clustered reads. Left: configuration with incomplete block
columns (multiplies the number of seeks by d compared to
complete block columns). Right: configuration with block
columns that overlap multiple block slices (multiplies the
number of seeks by 2 compared to non-overlapping config-
urations).

Clustered reads focuses on the three memory load con-
figurations represented in Figure 3: the amount of memory
m' used by the algorithm is rounded down to the closest
number of complete blocks (Case 1), of complete block
columns (Case 2) or of complete block slices (Case 3).
This is in general reasonable since adding an incomplete
columns to a set of complete ones multiplies the number
of required seeks by d, as illustrated in Figure 4-Left. In
some cases though, rounding m down to m’ might increase
the number of required memory loads to a point that the
overall number of seeks also increases. Such cases are,
however, slightly unusual and their complete description
requires extensive calculations involving modulo arithmetic,
which we felt were unwieldy to report here.

Our algorithm also avoids configurations where the mem-
ory load overlaps multiple block slices in Case 2 or multiple
block columns in Case 1, as such overlaps multiply the
number of required seeks (see Figure 4-Right).

Clustered reads is described in Algorithm 4. Function
switch (line 3) selects one of the three cases based on
the amount of available memory and the number of blocks.
It returns m’ and case, the identifier of the selected case.
Function check_overlap (line 7) determines whether
two blocks overlap multiple block slabs (Case 2) or multiple
block columns (Case 1). For Case 3 it always returns false.



Function sizeof (line 8) returns the actual memory used
by its argument, including only its allocated segments in the
case that the argument is a buffer.

Algorithm 4 Buffered merging of blocks with Clustered
reads

1: sorted_blocks = sort blocks by increasing (k,j,i)
2: initialize buffer

3: (m’,case)=switch(m,n,R,b)

4: old_block = sorted_blocks[0]

5: fori=0;i<n ; i+=1 do

6:  block = sorted_blocks[i]

7. overlap = check_overlap(block,old_block,case)

8:  if sizeof(buffer)+sizeof(block) > m’ or overlap=true
then

9: write buffer in reconstructed image

10: clear buffer

11: overlap = false

12:  end if

13:  read block and insert it in buffer

14: end for

The amount of memory used m/’ is set as follows in each
of the 3 cases:

:%L@J'm/ _ Rb | mim’ o Bb [ myn
n LRbD2 T o2l Rb |70 Yn | Rb
The number of seeks performed by Clustered reads in each
of the three cases is:

!
my

Nég =n+abi, i€[1,3],

where z; is the number of required memory loads and b; is
the number of seeks required to write a memory load. The
first n seeks in the equation correspond to the reading of all
the blocks. According to Figure 3, we have:

2
b=d =2 ; bQ:d:f/E ; oby=1
n n

The numbers of memory loads required to reconstruct the

image are:
Rb =2 | Rb |,— | Rb
™= L/ﬁm—‘\/ﬁ 2= [ g | 9=

Because our algorithm avoids overlapping configurations, x1
is proportional to the total number of block columns in the
image \3/52 and x5 is proportional to the total number

of block slices (/n). Finally, the total number of seeks
performed by Clustered reads to reconstruct the image is:
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Figure 5: Memory-load configurations in multiple reads
(d=4, D=16, n=064, ky = ko = ks = kg4 = k5 = 1). Red
color shows the content of the memory load. Small dots
depict block frontiers and long dashes depict columns and
slices within blocks.

It should be noted that N g is not a continuous function of
m, due to the differences among b; values.

F. Buffered blocks: Multiple reads

Multiple reads is shown in Algorithm 5. The main idea
of this algorithm is that blocks are read partially (line 9)
to ensure that the memory buffer only contains contiguous
bytes. Therefore, the buffer can be written continuously to
the reconstructed image, without seeking (line 13). However,
a given block might be read multiple times, in different
memory loads.

Algorithm 5 Buffered merging of blocks with multiple reads

1: sorted_blocks = sort blocks by increasing (k,j,i)
2: start_index = 0 ; end_index=(m-1)

3: write_range = (start_index, end_index)

4: while end_index <Rb do

5.  initialize buffer

6:  for block in sorted_blocks do

7: if block has voxels in write_range then

8: block_data = read block

9: in block_data, extract the columns in write_range
10: insert columns in buffer

11: end if

12:  end for

13:  write buffer to reconstructed_image

14:  start_index = end_index + 1 ; end_index += m
15: end while

In the complexity analysis, we assume that m’ represents
an integer number k of sub-columns (Case 1, k1 < ¥/n), of
complete columns (Case 2, ko < d), of tile columns (Case
3, ks < ¥/m), of slices (Case 4, k4 < d) or of block slices
(Case 5, ks < ¥/n), as illustrated in Figure 5. In each of



these 5 cases, we define v; as follows:
vi =db ; va = Db ;vg = Ddb; vy = D? ; vs = D*db
so that we have:

ki_LmJ and m) =k, i€ [l,5]

Vi

The total number of seeks performed by multiple reads in
Case i is:

i €[1,5]

where x; is the total number of memory loads, b; is the
number of blocks accessed by the first (2;—1) memory loads
and b} is the number of blocks access by the last memory
load. The first x; seeks in the equation correspond to the
writing of all memory loads (1 seek per memory load). We

have:
Rb .
Ty = ’(W—‘, Ze[[175ﬂ

and:
by = ky;by = /by = ks /miby = I/ 3bs = ks /n”
and:

by, = /nD? mod ki; by = by; by = ¢/n (/nD mod ks)
bil = b47 b/5 = %2 (% mod k5)

It gives the following expression for NyR:
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Figure 6: Number of seeks for Clustered reads vs Multiple
reads, for D=3458 and b=2. Left: n=125; Right: n=64,000.
Case 1 and Case 2 denote Clustered read configurations.

And finally, using R and n as main variables:
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G. Analysis

Figure 6 plots Equations 4 and 5 for different values of n.
When Clustered reads is in Case 1 or 2, it may outperform
Multiple reads only for large values of n. When Clustered
reads is in Case 3, it is equivalent to Multiple reads:
assuming that Rb is an exact multiple of m, Equations 4
and 5 both boil down to n + £&,

m
III. IMPLEMENTATION

We implemented the 5 algorithms presented earlier in
a Python library called sam (for “split and merge”). It
uses Nibabel [13] for image I/O and NumPy for array
manipulations.

The data buffer used in Clustered reads and Multiple
reads is implemented as a Python dictionary where the keys
are offsets in the reconstructed image and the values are
NumPy arrays containing the data starting at this offset.
When the memory load is complete, dictionary entries are
written sequentially to the reconstructed image. In Clustered
reads, some seeking might be required between writes. In
Multiple reads, dictionary entries are always contiguous in
the reconstructed image. We tried to use a single NumPy
array as a buffer, but we finally abandoned it as inserting
data at a specific position in a NumPy array copies the
data in memory, which increases both the execution time
and the peak memory consumption. We also implemented
a defragmentation procedure for the dictionary that merges




contiguous dictionary entries in a single one, but we aban-
doned it as it proved more time-consuming than going
through all the initial entries, due to the overhead of resizing
NumPy arrays to merge entries.

The implementation of splitting algorithms was greatly
facilitated by the availability of so-called array proxies in
Nibabel, which help reading specific sub-parts of large im-
ages. Nibabel’s array proxies essentially provided the buffer
implementation for splitting algorithms. Unfortunately, they
are not available to write data.

In Multiple reads, block headers are read in a first
pass where column indices in the reconstructed image are
stored in memory. Those indices are then processed in each
memory load, to identify the blocks that contribute to it.

We also implemented the splitting algorithms correspond-
ing to Clustered reads and Multiple reads, called Clustered
writes and Multiple writes.

A. Lossless compression

We implemented lossless compression for all algorithms
using Python’s gzip library. Compression is done on the fly,
that is, while the data is being read or written during splitting
and merging. On-the-fly compression of large datasets is a
challenge when extensive seeking is involved as the gzip li-
brary has to decompress all the data until the seek position to
read from it, making access time a linear function of the seek
position. This is potentially an issue for Clustered writes,
which could be addressed by indexing techniques such as
described in [14] for the NiFTI format and implemented
in https://github.com/pauldmccarthy/indexed_gzip. Multiple
writes is not impacted since it does not seek in the large
image.

In addition, “negative” seeking (seeking to a position that
precedes the current one) is not possible while writing a
compressed file, which renders Naive blocks unusable with
compressed data and Clustered reads usable only in Case 3.
Again, Multiple reads is not impacted since it does not seek
in the large image.

IV. EXPERIMENTS
A. Data

We used the 3850x3025x3500 Big Brain image split into
125 non-overlapping chunks of size 770x605x700, with 2
bytes per voxel (total size uncompressed is 75.92 GB). The
Big Brain image was also split into 125 non-overlapping
slabs of size 3850x3025x28 for our experiments.

Big Brain is a reference brain based on the reconstruction
of 7404 histological sections at nearly cellular resolution of
20 micrometers [1]. It is a freely, publicly available tool with
numerous applications in neurosciences and neurosurgery.

We used the blocks of the 2015 Big Brain release with 40-
micrometer isotropic resolution available at ftp://bigbrain.
loris.ca/BigBrainRelease.2015/3D_Blocks/40um. We con-
verted them to NiFTI 1.0 using Nibabel and left them

3GB 6GB 9GB 12GB 16GB
Clustered reads 1 2 2 2 3
Multiple reads 4 4 4 4 5

Table I: Algorithm configurations by memory values.

uncompressed. These blocks were then used to reconstruct
the Big Brain that was split into our desired block and slab
configurations using our naive splitting algorithms.

B. Hardware

We used a Dell Precision Tower 3620 workstation with
CentOS Linux release 7.3.1611, 32 GB of RAM and
two disks: (1) a Hard Disk Drive (HDD): HGST Travel-
star 7K1000, 7200 rpm, 931GiB (1TB), firmware version
JBOOA3WO; (2) a Solid-state drive (SSD): SanDisk X400
2.5, 238GiB (256GB), firmware version X4130012. Both
drives used 512-byte logical sectors, 4096-byte physical
sectors, SATA >3.1 (6.0 Gb/s) and were accessed through
the XFS file system v4.5.0. We used iotop (http://guichaz.
free.fr/iotop) to monitor I/Os on the workstation and make
sure that no other process was compromising our measures.

C. Execution conditions

We used Git tag 0.1.1 of our sam library. Our
experiment scripts are available at https:/github.com/
big-data-lab-team/paper-sequential-split-merge/blob/
master/scripts/experiment. We used them to split and merge
using Buffered slabs, Clustered reads and Multiple reads,
with 3 GB, 6 GB, 9 GB, 12 GB and 16 GB of memory.
Table I shows the configurations of Clustered reads and
Multiple reads for each memory value, according to
Equations 4 and 5. For instance, at 3 GB, Clustered reads
were in Case 1. We also did a run with 0 GB of memory
for Buffered slabs and Clustered reads, which triggered
Naive slabs and Naive blocks. We did 5 repetitions for
each memory value. Memory values were shuffled in each
repetition, to avoid potential ordering biases such as caching
effects. To ensure equal conditions, we dropped the kernel
page, dentry and inode caches before each run (echo 3
| sudo tee /proc/sys/vm/drop_caches). We
measured the cumulative read, write and seek time in each
run, as well as the overhead time defined as the total time
minus the sum of all other times.

Compressed blocks and slabs were also merged into a
compressed image. On-the-fly gzip compression was used
for Naive slabs, Buffered slabs and Multiple reads. As
explained before, Clustered reads could only be applied to
compressed data while in Case 3, i.e., for 16 GB, and Naive
blocks could not be used at all with on-the-fly compression.
To give a reference, we used Naive blocks with offline
compression, that is, we wrote an uncompressed image and
compressed it sequentially afterwards.
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D. Results

All the experimental data and scripts used to generate
the figures in this Section are available at https://github.
com/big-data-lab-team/paper-sequential-split-merge under
GPLv3 license.

1) Seeks: The number of seeks is reported in Figure 7, for
all algorithms and the corresponding models (Equations 1
to 5). Note the logarithmic y scale. Error bars are not
reported as numbers of seeks were constant across all
repetitions. The average relative model errors are 12.7%
(Naive blocks), 0% (Naive slabs), 3.3% (Clustered reads),
26.8% (Multiple reads) and 0.9% (Buffered slabs), explained
by the fact that the model assumes cuboid blocks while we
used non-cuboid ones in the experiment. For Multiple reads,
our complexity analysis also assumed that one of the 5 Cases
in Figure 5 was used while they are blended in practice.
Overall, the model correctly explains the observations.
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Figure 7: Number of seeks for all algorithms. y scale is
logarithmic. Each algorithm is represented with a different
color. Dark color is experimental value; bright color is
model.

As expected, the difference between Naive blocks and
Naive slabs is tremendous, in the order of 50 million seeks.
The difference between Clustered reads and Multiple reads
is consistent with our analysis. For 3 GB, the number of
seeks in Clustered reads is 4 orders of magnitude higher
than for Multiple reads, and 5 orders of magnitude higher
than Naive slabs. This huge difference comes from the fact
that at 3 GB Clustered reads are in Case 1. For 6 GB, 9 GB
and 12 GB, Clustered reads are in Case 2 and the difference
with Multiple reads and Buffered slabs reduces. At 16 GB,
all algorithms perform the same.

2) Merge time: Figure 8 shows the merge time for all
algorithms by memory values. Naive blocks are 9.5 times
slower than Naive slabs on HDD (6.7 times on SSD),
which quantifies the effect of the problem targeted by our
algorithms. In the remainder we use Naive blocks and Naive
slabs as references to evaluate our algorithms.

Buffered slabs provides a negligible speed-up compared
to Naive slabs. In most cases, their memory overhead would
not be worth the time gain.

Clustered reads provides substantial speed ups compared
to Naive blocks, both on HDD and on SSD. It is 6.8
times faster than Naive blocks on HDD and 5.1 times on
SSD (average accross all repetitions, all memory values).
Surprisingly, it performs substantially faster than Naive
blocks even at 3 GB, while in Case 1. This may be explained
by the fact that the seeks required to write incomplete block
columns to the reconstructed image are shorter than the ones
for Naive blocks.

Multiple reads is even faster than Clustered reads on this
dataset. They are 8.4 times faster than Naive blocks on HDD
and 5.3 times on SSD (average accross all repetitions, all
memory values).
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Figure 8: Merge time by algorithm. Top: HDD. Bottom:
SSD. Each algorithm is represented with a different color.
Averages over 5 repetitions. Error bars show =+ 1 standard
deviation.

3) Merge time breakdown: Figure 9 shows how the total
merge time breaks down to read, write, seek and overhead
time for our algorithms. Naive blocks and Naive slabs are
shown as references. The huge difference between Naive
blocks and Naive slabs is coming from both the seek time
and the write time, which suggests that seeking degrades the
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Figure 9: Breakdown of total merge times. Left column:
HDD. Right column: SSD.

write rate in addition to introducing extra delays. Clustered
reads reduces the seek time and thus the read time very
substantially. Multiple reads almost annihilates the seek time
and brings the read time to a value comparable to Naive
slabs. The same behavior is observed on HDD and on SSD,
although the effect of seeking is slightly smaller on SSD,
as expected. Read times are consistently and substantially
lower than write times. This may be a result of discrepancies
between disk read and writes rates, or of reading data using
Python’s NumPy package, which is more efficient than using
native Python as is the case with our writes. The overhead
time is small for both Clustered reads and Multiple reads.

4) Split time: The total split time by algorithm is shown
in Figure 10. The difference between Naive blocks and Naive
slabs is still significant (average ratio is 1.4 on SSD, 2.0 on
HDD) although less than for merging. On SSD, Clustered
writes and Multiple writes both perform similarly to Naive
slabs. On HDD, Clustered writes is slightly slower than
Multiple writes until 16 GB. Buffered slabs provides no
speed-up compared to Naive slabs.

The breakdown by read, write and overhead time is shown
in Figure 11. We were not able to measure seek time
for splitting algorithms as it was blended in read time by
the Nibabel library. Naive blocks are strongly penalized
by important read times coming from extensive seeking.
Buffered slabs, Clustered writes and Multiple writes all
reduce the read time compared to Naive blocks, but they also
increase the write time, most likely due to caching effects
in Naive blocks and slabs.

4000 T T T T T T
Naive blocks 3
3500 - A Naive slices 1 7|
L Cluster writes I |
3000 > .
@ Multiple writes
o 2500 - Buffered slices T—
€
= 2000 (- T
=
= 1500 *
w0
1000 T
500 B
0 1
0.6 3 6 9 12 16
Memory (GB)
4000 T T T T T T
Naive blocks =3
3500 - Naive slices === |
3000 Cluster writes |
= Multiple writes
° 2500 Buffered slices T—— -
£ 2000 1
£ 1500 | .
n
1000 _
500 - —

0.6 3 6 9 12 16
Memory (GB)

Figure 10: Split time by algorithm. Top: HDD. Bottom:
SSD. Each algorithm is represented with a different color.
Averages over 5 repetitions. Error bars show =+ 1 standard
deviation.

E. Compression

Figure 12 shows the impact of gzip compression on the
merging time, for Multiple reads and Naive slabs. Unsurpris-
ingly, compression dramatically slows down merging time
for all algorithms. Multiple reads, however, still provides
speed-up compared to Naive blocks, although it does not
completely reach the performance of Buffered slabs and
Naive slabs.

V. DISCUSSION

Clustered reads and Multiple reads reduce to a negligible
amount the overall seek time required to split or merge 3D
blocks in a high-resolution image where data is stored lin-
early. Both algorithms performed equivalently and compared
to the reference configuration where slabs are merged or split
without seeking. Our initial problem is solved.

Our results demonstrate that large images stored in simple
formats may be split and merged without performance loss
compared to more complex formats, for instance MINC
2.0 or the format based on space-filling curves mentioned
in [12]. This is of major interest in the current open-
science context since simpler formats favor data-sharing and
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Figure 11: Breakdown of total split times. Left column:
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Figure 12: Merging time by algorithm, using compression
(on SSD). Each algorithm is represented with a different
color. Hatching represents compression. Averages over 5
repetitions. Error bars show £ 1 standard deviation.

interoperability. Moreover, our algorithms could potentially
be adapted to any chunk geometry, even though we demon-
strated them on slabs and blocks only, while file formats
inevitably assume a particular geometry. For instance, the
format in [12] is not designed to naively split slabs. However,
we aimed to extract all the blocks, whereas [12] aimed to
extract a single block from a large image. MINC 2.0 might
also help with on-the-fly compression for Clustered reads.
On-the-fly compression, indeed, could not be used with
Clustered reads due to its use of negative seeking. This

was not a problem for Multiple reads since Multiple reads
completely removes seeking in the large image. Likewise,
Multiple writes would not benefit from techniques aiming
at accelerating random access reads in compressed images
since they do not need to seek in it.

I/O optimization is a holistic problem that is in practice
highly dependent on the hardware used, firmware, operating
system, file system and programming language. Caching
occurs at various levels and might always influence per-
formance, potentially differently depending on the split or
merge algorithm used. In some disks, seek time greatly
varies with the seek distance, which would open the door
to additional opportunities for I/O optimization. Interactions
between those components might also result in performance
differences particular to a specific algorithm. To ensure the
portability of our library across systems and configurations,
we focused on reducing the overall number of seeks and
ignored specific system configurations. We demonstrated
the performance of our methods on both an HDD and an
SSD disk, using state-of-the-art and widely used versions of
Linux (CentOS7) and file systems (XFS v4.5.0).

High-resolution images are likely to be processed on com-
puting clusters, for instance using software from the Hadoop
project, in particular the Hadoop Distributed File System [4].
In this context parallel split-and-merge algorithms would be
beneficial, since the various blocks of a large image could
be uploaded to different disks concurrently. In the same
vein, “re-spliting” algorithms would be beneficial in case an
image already split needs to be split in a different geometry.
Designing such algorithms is part of our future work, in
which Clustered reads and Multiple reads will be used as
starting points.

Our sam library is available at https://github.com/
big-data-lab-team/sam under MIT license.
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