An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100{ }^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is i?

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100{ }^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is $i$ ?
Because this is a covalent solute, $\mathrm{i}=1$.

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100{ }^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is i ?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100{ }^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is i ?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100{ }^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is $i$ ?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :

$$
\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{~K}_{\mathrm{b}} \cdot \mathrm{~m} \quad 2.1^{\circ} \mathrm{C}=(1)
$$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100{ }^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is $i$ ?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m} \quad 2.1^{\circ} \mathrm{C}=(1) \cdot\left(0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right)$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100{ }^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is $i$ ?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m} \quad 2.1^{\circ} \mathrm{C}=(1) \cdot\left(0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot \mathrm{m}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100{ }^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is i?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m} \quad 2.1^{\circ} \mathrm{C}=(1) \cdot\left(0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot \mathrm{m}$
$\mathrm{m}=$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is i?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m} \quad 2.1^{\circ} \mathrm{C}=(1) \cdot\left(0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot \mathrm{m}$
$\mathrm{m}=\frac{2.1^{\circ} \mathrm{C}}{0.512^{\circ} \frac{\mathrm{C}}{\mathrm{m}}}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is i?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m} \quad 2.1^{\circ} \mathrm{C}=(1) \cdot\left(0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot \mathrm{m}$
$\mathrm{m}=\frac{2.1{ }^{\circ} \mathrm{C}}{0.512^{\circ} \frac{\mathrm{C}}{\mathrm{m}}}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is i?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m} \quad 2.1^{\circ} \mathrm{C}=(1) \cdot\left(0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot \mathrm{m}$
$\mathrm{m}=\frac{2.1{ }^{\circ} \mathrm{C}}{0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
We actually know $\Delta T$. What is it?
Water normally boils at $100^{\circ} \mathrm{C}$, which is exact, so $\Delta \mathrm{T}=2.1^{\circ} \mathrm{C}$ What is i?
Because this is a covalent solute, $\mathrm{i}=1$.
Now we can solve for m :
$\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m} \quad 2.1^{\circ} \mathrm{C}=(1) \cdot\left(0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot \mathrm{m}$
$\mathrm{m}=\frac{2.1{ }^{\circ} \mathrm{C}}{0.512 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}}=4.1 \mathrm{~m}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

$$
\mathrm{m}=4.1 \mathrm{~m}
$$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

$$
\mathrm{m}=4.1 \mathrm{~m}
$$

molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

$$
\mathrm{m}=4.1 \mathrm{~m}
$$

molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

$$
\mathrm{m}=4.1 \mathrm{~m}
$$

molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

$$
\mathrm{m}=4.1 \mathrm{~m}
$$

molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

$$
\mathrm{m}=4.1 \mathrm{~m}
$$

molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$
moles of solute $=4.1 \frac{\mathrm{moles}}{\mathrm{kg}} \times$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{m}=4.1 \mathrm{~m}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$
moles of solute $=4.1 \frac{\text { moles }}{\mathrm{kg}} \times 0.1500 \mathrm{~kg}=$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{m}=4.1 \mathrm{~m}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$
moles of solute $=4.1 \frac{\text { moles }}{\mathrm{kg}} \times 0.1500 \mathrm{~kg}=0.62$ moles

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{m}=4.1 \mathrm{~m}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$
moles of solute $=4.1 \frac{\text { moles }}{\mathrm{kg}} \times 0.1500 \mathrm{~kg}=0.62$ moles
We determined that 1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{m}=4.1 \mathrm{~m}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$
moles of solute $=4.1 \frac{\text { moles }}{\mathrm{kg}} \times 0.1500 \mathrm{~kg}=0.62$ moles
We determined that 1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
0.62 moles

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{m}=4.1 \mathrm{~m}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$
moles of solute $=4.1 \frac{\text { moles }}{\mathrm{kg}} \times 0.1500 \mathrm{~kg}=0.62$ moles
We determined that 1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{0.62 \text { moles }}{1} \times \frac{180.18 \mathrm{~g}}{1 \mathrm{~mole}}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{m}=4.1 \mathrm{~m}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$
moles of solute $=4.1 \frac{\text { moles }}{\mathrm{kg}} \times 0.1500 \mathrm{~kg}=0.62$ moles
We determined that 1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{0.62 \text { moles }}{1} \times \frac{180.18 \mathrm{~g}}{1 \mathrm{~mole}}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{m}=4.1 \mathrm{~m}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$
moles of solute $=4.1 \frac{\text { moles }}{\mathrm{kg}} \times 0.1500 \mathrm{~kg}=0.62$ moles
We determined that 1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{0.62 \text { moles }}{1} \times \frac{180.18 \mathrm{~g}}{1 \text { mole }}$

An unknown amount of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is dissolved in 150.0 g of water. The boiling point of the solution is $102.1^{\circ} \mathrm{C}$. How many grams of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ were used? $\left(\mathrm{K}_{\mathrm{b}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{m}=4.1 \mathrm{~m}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
moles of solute $=$ molality $\times(\mathrm{kg}$ of solvent $)$
moles of solute $=4.1 \frac{\text { moles }}{\mathrm{kg}} \times 0.1500 \mathrm{~kg}=0.62$ moles
We determined that 1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{0.62 \text { moles }}{1} \times \frac{180.18 \mathrm{~g}}{1 \text { mole }}=\mathbf{1 1 0} \mathbf{g}$

