Welcome To Chemistry Class!

Da Labs

Da Labs

The average was 95% and there were four perfect scores.

Da Labs

The average was 95% and there were four perfect scores.
In 9.1 , you need to indicate you sampled from a clear portion of the hot saltwater.

Da Labs

The average was 95% and there were four perfect scores.
In 9.1 , you need to indicate you sampled from a clear portion of the hot saltwater.

In 9.2, you were supposed to note the fact that the first two solutions were clear.

Da Labs

The average was 95% and there were four perfect scores.
In 9.1 , you need to indicate you sampled from a clear portion of the hot saltwater.

In 9.2 , you were supposed to note the fact that the first two solutions were clear.

In 9.3, indicate that the plate was cleaned and dried between trials.

Lily's 9.2

Jacob F.'s Brother Multitasking

Concentration

Concentration

Lots of ways to measure this. Any amount divided by any volume is concentration.

Concentration

Lots of ways to measure this. Any amount divided by any volume is concentration.

So grams $/ \mathrm{mL}$, moles $/ \mathrm{cm}^{3}$, pounds $/ \mathrm{in}^{3}$, etc.

Concentration

Lots of ways to measure this. Any amount divided by any volume is concentration.

So grams $/ \mathrm{mL}$, moles $/ \mathrm{cm}^{3}$, pounds $/ \mathrm{in}^{3}$, etc.
One of the most useful measures of concentration for chemists is Moles/Liter, which is called molarity and is often abbreviated with an M.

Concentration

Lots of ways to measure this. Any amount divided by any volume is concentration.

So grams $/ \mathrm{mL}$, moles $/ \mathrm{cm}^{3}$, pounds $/ \mathrm{in}^{3}$, etc.
One of the most useful measures of concentration for chemists is Moles/Liter, which is called molarity and is often abbreviated with an M.

For this measure of concentration, you divide the moles of solute by the liters of solution.

Concentration

Lots of ways to measure this. Any amount divided by any volume is concentration.

So grams $/ \mathrm{mL}$, moles $/ \mathrm{cm}^{3}$, pounds $/ \mathrm{in}^{3}$, etc.
One of the most useful measures of concentration for chemists is Moles/Liter, which is called molarity and is often abbreviated with an M.

For this measure of concentration, you divide the moles of solute by the liters of solution.

This is NOT the same as moles of solute divided by liters of solvent, even when the solute is solid and the solvent is liquid. Why?

Concentration

Lots of ways to measure this. Any amount divided by any volume is concentration.

So grams $/ \mathrm{mL}$, moles $/ \mathrm{cm}^{3}$, pounds $/ \mathrm{in}^{3}$, etc.
One of the most useful measures of concentration for chemists is Moles/Liter, which is called molarity and is often abbreviated with an M.

For this measure of concentration, you divide the moles of solute by the liters of solution.

This is NOT the same as moles of solute divided by liters of solvent, even when the solute is solid and the solvent is liquid. Why?

The solute adds a small amount of volume to the solution.

In The Lab, This Requires a Volumetric Flask

In The Lab, This Requires a Volumetric Flask

In The Lab, This Requires a Volumetric Flask

When the solution's meniscus is here, its volume is 100.00 mL

In The Lab, This Requires a Volumetric Flask

 When the solution's meniscus is here, itsvolume is 100.00 mL
You measure out a certain mass of solute
and determine the number of moles.
(100

In The Lab, This Requires a Volumetric Flask volume is 100.00 mL

You measure out a certain mass of solute and determine the number of moles.
You transfer the solid to the flask.

In The Lab, This Requires a Volumetric Flask
When the solution's meniscus is here, its
volume is 100.00 mL
You measure out a certain mass of solute and determine the number of moles.
You transfer the solid to the flask.
You add some solvent to the flask, swirling to dissolve the solute.

In The Lab, This Requires a Volumetric Flask

 volume is 100.00 mLYou measure out a certain mass of solute and determine the number of moles.
You transfer the solid to the flask.
You add some solvent to the flask, swirling to dissolve the solute.

You continue to do that until the solution is close to the top of the bulb.

In The Lab, This Requires a Volumetric Flask

 When the solution's meniscus is here, its volume is 100.00 mLYou measure out a certain mass of solute and determine the number of moles. You transfer the solid to the flask.

You add some solvent to the flask, swirling to dissolve the solute.

You continue to do that until the solution is close to the top of the bulb.

Then you add solvent until the meniscus is at the mark.

In The Lab, This Requires a Volumetric Flask

When the solution's meniscus is here, its volume is 100.00 mL

You measure out a certain mass of solute and determine the number of moles. You transfer the solid to the flask.

You add some solvent to the flask, swirling to dissolve the solute.

You continue to do that until the solution is close to the top of the bulb.

Then you add solvent until the meniscus is at the mark.
You then put on the lid and turn the flask upside down and rightside up several times to finish mixing.

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M?

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M?

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$
$+12 \times 1.01 \mathrm{amu}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$
$+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{100.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1} \times$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{100.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1} \times \frac{1 \mathrm{~mole} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{100.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1} \times \frac{1 \mathrm{~mole} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{100.0 \mathrm{gC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1} \times \frac{1 \mathrm{~mole} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$
$+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{100.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1} \times \frac{1 \mathrm{~mole}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.18 \mathrm{gC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$
$+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$
$+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

M is moles per liter, so we need to change $m L$ into L :

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?
 Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\frac{100.0 \mathrm{gC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1} \times \frac{1{\text { mole } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}_{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}}{18}=0.5550$ moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
M is moles per liter, so we need to change $m L$ into L :

250.00 mL

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?

Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

M is moles per liter, so we need to change $m L$ into L :
$\frac{250.00 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?
 Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

M is moles per liter, so we need to change $m L$ into L :
$\frac{250.00 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?
 Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$
1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

M is moles per liter, so we need to change $m L$ into L :
$\frac{250.00 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?
 Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=6 \times 12.01 \mathrm{amu}$ $+12 \times 1.01 \mathrm{amu}+6 \times 16.00 \mathrm{amu}$ Mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18 \mathrm{amu}$ 1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.18$ g C $_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ $\frac{100.0 \mathrm{gC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1} \times \frac{1{\text { mole } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}_{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}}{18}=0.5550$ moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
M is moles per liter, so we need to change $m L$ into L :
$\frac{250.00 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}=0.25000 \mathrm{~L}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?
0.5550 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 0.25000 L of solution

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M?
0.5550 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 0.25000 L of solution

Concentration $=\frac{\text { moles }}{\text { Liters }}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M?
0.5550 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 0.25000 L of solution

Concentration $=\frac{\text { moles }}{\text { Liters }}$

Concentration $=$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M?
0.5550 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 0.25000 L of solution

Concentration $=\frac{\text { moles }}{\text { Liters }}$
0.5550 moles

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M?
0.5550 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 0.25000 L of solution

Concentration $=\frac{\text { moles }}{\text { Liters }}$
Concentration $=\frac{0.5550 \mathrm{moles}}{0.25000 \mathrm{~L}}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?
0.5550 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 0.25000 L of solution

Concentration $=\frac{\text { moles }}{\text { Liters }}$
Concentration $=\frac{0.5550 \mathrm{moles}}{0.25000 \mathrm{~L}}$
Concentration $=$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M?
0.5550 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 0.25000 L of solution

Concentration $=\frac{\text { moles }}{\text { Liters }}$
Concentration $=\frac{0.5550 \mathrm{moles}}{0.25000 \mathrm{~L}}$
Concentration $=2.220 \frac{\text { moles }}{\mathrm{L}}$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in \mathbf{M} ?
0.5550 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 0.25000 L of solution

Concentration $=\frac{\text { moles }}{\text { Liters }}$
Concentration $=\frac{0.5550 \mathrm{moles}}{0.25000 \mathrm{~L}}$
Concentration $=2.220 \frac{\text { moles }}{\mathrm{L}}$

Concentration $=$

A solution is made by dissolving 100.0 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ in enough water to make 250.00 mL of solution. What is the concentration in M?
0.5550 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and 0.25000 L of solution

Concentration $=\frac{\text { moles }}{\text { Liters }}$
Concentration $=\frac{0.5550 \mathrm{moles}}{0.25000 \mathrm{~L}}$
Concentration $=2.220 \frac{\text { moles }}{\mathrm{L}}$
Concentration $=2.220 \mathrm{M}$

We Often Use Concentration to Determine Moles

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}=0.0145 \mathrm{~L}$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}=0.0145 \mathrm{~L}$
moles $=$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}=0.0145 \mathrm{~L}$
moles $=3.45 \frac{\mathrm{moles}}{\mathrm{L}}$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}=0.0145 \mathrm{~L}$
moles $=3.45 \frac{\text { moles }}{\mathrm{L}} \times 0.0145 \mathrm{~L}$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}=0.0145 \mathrm{~L}$
moles $=3.45 \frac{\text { moles }}{Ł} \times 0.0145 \mathrm{~L}$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}=0.0145 \mathrm{~L}$
moles $=3.45 \frac{\text { moles }}{Ł} \times 0.0145 \pm$

We Often Use Concentration to Determine Moles

You have 14.5 mL of a 3.45 M sugar water solution. How many moles of sugar do you have?

Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters
We have mL , not L , so we have to convert:
$\frac{14.5 \mathrm{~mL}}{1} \times \frac{0.001 \mathrm{~L}}{1 \mathrm{~mL}}=0.0145 \mathrm{~L}$
moles $=3.45 \frac{\text { moles }}{ \pm} \times 0.0145 \pm=\mathbf{0 . 0 5 0 0}$ moles

So Of Course We Can Use This in Stoichiometry

So Of Course We Can Use This in Stoichiometry

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?

So Of Course We Can Use This in Stoichiometry

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many \mathbf{g} of PbI_{2} were formed?
Last week, we determined the chemical equation:

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many \mathbf{g} of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters $=0.0097 \frac{\text { moles }}{\mathrm{L}}$

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters $=0.0097 \frac{\text { moles }}{\mathrm{L}} \times 0.2500 \mathrm{~L}$

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters $=0.0097 \frac{\text { moles }}{ \pm} \times 0.2500 \mathrm{~L}$

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters $=0.0097 \frac{\text { moles }}{ \pm} \times 0.2500 \mathrm{~L}$

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters $=0.0097 \frac{\text { moles }}{ \pm} \times 0.2500 \mathrm{t}$
moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

So Of Course We Can Use This in Stoichiometry

 In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI. How many g of PbI_{2} were formed?Last week, we determined the chemical equation:
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
To use the chemical equation, we need moles:
Concentration $=\frac{\text { moles }}{\text { Liters }}$
moles $=$ Concentration \times Liters $=0.0097 \frac{\text { moles }}{ \pm} \times 0.2500 \mathrm{t}$
moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many \mathbf{g} of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \text { mole } \mathrm{PbI}_{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \text { mole } \mathrm{PbI}_{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \text { mole } \mathrm{PbI}_{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of PbI_{2} were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \mathrm{~mole}_{\mathrm{PbI}}^{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.0024{\text { mole } \mathrm{PbI}_{2}}^{2}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of PbI_{2} were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \mathrm{~mole}_{\mathrm{PbI}}^{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.0024{\text { mole } \mathrm{PbI}_{2}}^{2}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of PbI_{2} were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \mathrm{~mole}_{\mathrm{PbI}}^{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.0024{\text { mole } \mathrm{PbI}_{2}}^{2}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of PbI_{2} were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}

Mass of $\mathrm{PbI}_{2}=$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of PbI_{2} were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \mathrm{~mole}_{\mathrm{PbI}}^{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.0024{\text { mole } \mathrm{PbI}_{2}}^{2}$

82	53	
$\mathbf{P b}$	$\begin{array}{c}\text { I } \\ \text { I } \\ 207.20\end{array}$	Mass of $\mathrm{PbI}_{2}=207.20 \mathrm{amu}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of PbI_{2} were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}

| 82 | 53 |
| :---: | :---: | :---: |
| $\mathbf{P b}$ | \mathbf{I} |
| 207.20 | 126.90 | Mass of $\mathrm{PbI}_{2}=207.20 \mathrm{amu}+2 \times 126.90 \mathrm{amu}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of PbI_{2} were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}

| 82 | 53 |
| :---: | :---: | :---: |
| $\mathbf{P b}$ | \mathbf{I} |
| 207.20 | 126.90 | Mass of $\mathrm{PbI}_{2}=207.20 \mathrm{amu}+2 \times 126.90 \mathrm{amu}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of PbI_{2} were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \mathrm{~mole}_{\mathrm{PbI}}^{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.0024{\text { mole } \mathrm{PbI}_{2}}^{2}$

82	53	Mass of $\mathrm{PbI}_{2}=207.20 \mathrm{amu}+2 \times 126.90 \mathrm{amu}$
$\mathbf{P b}$	\mathbf{I}	
207.20	126.90	Mass of $\mathrm{PbI}_{2}=$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of PbI_{2} were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \mathrm{~mole}_{\mathrm{PbI}}^{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.0024{\text { mole } \mathrm{PbI}_{2}}^{2}$

82	53	Mass of $\mathrm{PbI}_{2}=207.20 \mathrm{amu}+2 \times 126.90 \mathrm{amu}$
$\mathbf{P b}$	\mathbf{I}	
207.20	126.90	

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \mathrm{~mole}_{\mathrm{PbI}}^{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.0024{\text { mole } \mathrm{PbI}_{2}}^{2}$

82	53	Mass of $\mathrm{PbI}_{2}=207.20 \mathrm{amu}+2 \times 126.90 \mathrm{amu}$
$\mathbf{P b}$	\mathbf{I}	Mass of $\mathrm{PbI}_{2}=461.00 \mathrm{amu}$
207.20	126.90	$\begin{array}{l}\text { mole } \mathrm{PbI}_{2}=\end{array}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many g of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=0.0024$ moles

The equation tells us 1 mole $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1$ mole PbI_{2}
$\frac{0.0024 \text { moles } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1} \times \frac{1 \mathrm{~mole}_{\mathrm{PbI}}^{2}}{1 \text { mole } \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.0024{\text { mole } \mathrm{PbI}_{2}}^{2}$

82	53	Mass of $\mathrm{PbI}_{2}=207.20 \mathrm{amu}+2 \times 126.90 \mathrm{amu}$
$\mathbf{P b}$	\mathbf{I}	Mass of $\mathrm{PbI}_{2}=461.00 \mathrm{amu}$
207.20	126.90	$\begin{array}{l}\text { mole } \mathrm{PbI}_{2}=461.00 \mathrm{~g} \mathrm{PbI}_{2}\end{array}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many \mathbf{g} of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
0.0024 mole PbI_{2}
1 mole $\mathrm{PbI}_{2}=461.00 \mathrm{~g} \mathrm{PbI}_{2}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many \mathbf{g} of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
0.0024 mole PbI_{2}
1 mole $\mathrm{PbI}_{2}=461.00 \mathrm{~g} \mathrm{PbI}_{2}$
0.0024 moles PbI_{2}

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many \mathbf{g} of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
0.0024 mole PbI_{2}
1 mole $\mathrm{PbI}_{2}=461.00 \mathrm{~g} \mathrm{PbI}_{2}$
$\frac{0.0024 \text { moles } \mathrm{PbI}_{2}}{1} \times \frac{461.00 \mathrm{~g} \mathrm{PbI}_{2}}{1{\text { mole } \mathrm{PbI}_{2}}^{1}, \frac{1}{}}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many \mathbf{g} of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
0.0024 mole PbI_{2}
1 mole $\mathrm{PbI}_{2}=461.00 \mathrm{~g} \mathrm{PbI}_{2}$
$\frac{0.0024 \text { moles } \mathrm{PbI}_{2}}{1} \times \frac{461.00 \mathrm{~g} \mathrm{PbI}_{2}}{1 \mathrm{~mole} \mathrm{PbI}_{2}}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many \mathbf{g} of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
0.0024 mole PbI_{2}
1 mole $\mathrm{PbI}_{2}=461.00 \mathrm{~g} \mathrm{PbI}_{2}$
$\frac{0.0024 \text { moles } \mathrm{PbI}_{2}}{1} \times \frac{461.00 \mathrm{~g} \mathrm{PbI}_{2}}{1 \text { mole } \mathrm{PbI}_{2}}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many \mathbf{g} of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
0.0024 mole PbI_{2}
1 mole $\mathrm{PbI}_{2}=461.00 \mathrm{~g} \mathrm{PbI}_{2}$
$\frac{0.0024 \text { moles } \mathrm{PbI}_{2}}{1} \times \frac{461.00 \mathrm{~g} \mathrm{PbI}_{2}}{1 \text { mole } \mathrm{PbI}_{2}}=\mathbf{1 . 1} \mathbf{g ~ P b I}_{2}$

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many \mathbf{g} of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
0.0024 mole $\mathrm{PbI}_{2} \quad 1 \mathrm{~mole}_{\mathrm{PbI}}^{2} 2=461.00 \mathrm{~g} \mathrm{PbI}_{2}$
$\frac{0.0024 \text { moles } \mathrm{PbI}_{2}}{1} \times \frac{461.00 \mathrm{~g} \mathrm{PbI}_{2}}{1 \text { mole } \mathrm{PbI}_{2}}=\mathbf{1 . 1} \mathbf{g ~ P b I}_{2}$
When we have molarity and volume, then, we have moles.

In the demonstration last week, 250.0 mL of a 0.0097 M solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ were added to an excess of KI . How many \mathbf{g} of $\mathrm{PbI}_{\mathbf{2}}$ were formed?
0.0024 mole $\mathrm{PbI}_{2} \quad 1$ mole $\mathrm{PbI}_{2}=461.00 \mathrm{~g} \mathrm{PbI}_{2}$
$\frac{0.0024 \text { moles } \mathrm{PbI}_{2}}{1} \times \frac{461.00 \mathrm{~g} \mathrm{PbI}_{2}}{1 \text { mole } \mathrm{PbI}_{2}}=\mathbf{1 . 1} \mathbf{g ~ P b I}_{2}$
When we have molarity and volume, then, we have moles.

This is important, because when we use chemical equations, we need to see what we know the moles of. Grams and a chemical formula will give us moles, but so will concentration and volume.

Molality

Molality

This is another way to measure concentration.

Molality

This is another way to measure concentration.
It is defined as moles of solute divided by kilograms of solvent.

Molality

This is another way to measure concentration.
It is defined as moles of solute divided by kilograms of solvent.

Unlike molarity, we don't care about the volume of the solution. We are only interested in the ratio of solute to solvent.

Molality

This is another way to measure concentration.
It is defined as moles of solute divided by kilograms of solvent.

Unlike molarity, we don't care about the volume of the solution. We are only interested in the ratio of solute to solvent.

This makes the unit moles $/ \mathrm{kg}$, and it is often abbreviate with as m.

Molality

This is another way to measure concentration.
It is defined as moles of solute divided by kilograms of solvent.

Unlike molarity, we don't care about the volume of the solution. We are only interested in the ratio of solute to solvent.

This makes the unit moles $/ \mathrm{kg}$, and it is often abbreviate with as m.

We won't use this in stoichiometry, but we will use it in something else.

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?
4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

20
 Ca
 40.08

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

20	17
$\mathbf{C a}$	$\mathbf{C l}$
40.08	35.45

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

20
 Ca
 40.08

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?$$
\text { molality }=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}
$$

20	17
$\mathbf{C a}$	$\mathbf{C l}$
40.08	35.45

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

20	17
$\mathbf{y y}$	
$\mathbf{C a}$	
40.08	$\mathbf{C l}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$ Mass of $\mathrm{CaCl}_{2}=$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$
Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?$$
\text { molality }=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}
$$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$
Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$
1 mole $\mathrm{CaCl}_{2}=$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?$$
\text { molality }=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}
$$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$
Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$
1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?$$
\text { molality }=\frac{\text { moles of solute }}{\text { kg of solvent }}
$$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$
Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$
1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{~g} \mathrm{CaCl}_{2}}{1} \times$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?```
molality =}\frac{\mathrm{ moles of solute}}{\textrm{kg}\mathrm{ of solvent}
\begin{tabular}{|c|c|c|}
\hline 20 & 17 & Mass of \(\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}\) \\
\hline Ca & Cl & Mass of \(\mathrm{CaCl}_{2}=110.98 \mathrm{amu}\) \\
\hline 40.08 & 35.45 & 1 mole \(\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}\) \\
\hline
\end{tabular}
```

$\underline{4.51 \mathrm{~g} \mathrm{CaCl}_{2}} \times \underline{1 \mathrm{~mole} \mathrm{CaCl}_{2}}$

### 4.51 g of $\mathrm{CaCl}_{2}$ is dissolved in 150.0 g of water. What is

 the molality of the solution?```
molality =}\frac{\mathrm{ moles of solute}}{\textrm{kg}\mathrm{ of solvent}
\begin{tabular}{|c|c|c|}
\hline 20 & 17 & Mass of \(\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}\) \\
\hline Ca & CI & Mass of \(\mathrm{CaCl}_{2}=110.98 \mathrm{amu}\) \\
\hline 40.08 & 35.45 & \\
\hline
\end{tabular}
```

$$
\frac{4.51 \mathrm{~g} \mathrm{CaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{~g} \mathrm{CaCl}_{2}}
$$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?```
molality =}\frac{\mathrm{ moles of solute}}{\textrm{kg}\mathrm{ of solvent}
\begin{tabular}{c|c||l}
\hline 20 & 17 & \begin{tabular}{l}
Mass of \(\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}\) \\
\begin{tabular}{c|c}
\(\mathbf{C a}\) \\
40.08 & \(\mathbf{C l}\) \\
& 35.45
\end{tabular} \\
\hline
\end{tabular} Mass of \(\mathrm{CaCl}_{2}=110.98 \mathrm{amu}\) \\
1 mole \(\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}\) \\
\hline
\end{tabular}
\[
\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{~g} \mathrm{CaCl}_{2}}
\]
```


### 4.51 g of $\mathrm{CaCl}_{2}$ is dissolved in 150.0 g of water. What is

 the molality of the solution?```
molality =}\frac{\mathrm{ moles of solute}}{\textrm{kg}\mathrm{ of solvent}
\begin{tabular}{c|c||l}
\hline 20 & 17 & \begin{tabular}{l} 
Mass of \(\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}\) \\
\begin{tabular}{c|c}
\(\mathbf{C a}\) \\
40.08 & \(\mathbf{C l}\) \\
& 35.45
\end{tabular} \\
\hline
\end{tabular} Mass of \(\mathrm{CaCl}_{2}=110.98 \mathrm{amu}\) \\
1 mole \(\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}\) \\
\hline
\end{tabular}
\[
\frac{4.51 \mathrm{~g} \mathrm{CaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{gCaCl}_{2}}
\]
```


4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$
Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$
1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{CaCl}_{2}}=0.0406$ moles CaCl_{2}

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution? molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$ Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$ 1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{CaCl}_{2}}=0.0406$ moles CaCl_{2}
$\frac{150.0 \mathrm{~g}}{1} \times$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution? molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$ Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$ 1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{~g} \mathrm{CaCl}_{2}}=0.0406$ moles CaCl_{2}
$\frac{150.0 \mathrm{~g}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution? molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$ Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$ 1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{~g} \mathrm{CaCl}_{2}}=0.0406$ moles CaCl_{2}
$\frac{150.0 \mathrm{~g}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution? molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$
Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$
1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{~g} \mathrm{CaCl}_{2}}=0.0406$ moles CaCl_{2}
$\frac{150.0 \frac{\mathrm{~g}}{\mathrm{~g}}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \frac{\mathrm{~g}}{\mathrm{~g}}}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution? molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$
Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$
1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{~g} \mathrm{CaCl}_{2}}=0.0406$ moles CaCl_{2}
$\frac{150.0 \frac{\mathrm{~g}}{\mathrm{~g}}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}}=0.1500 \mathrm{~kg}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution? molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$ Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$ 1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{CaCl}_{2}}=0.0406$ moles CaCl_{2}
$\frac{150.0 \frac{g}{\mathrm{~g}}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \frac{\mathrm{~g}}{\mathrm{~g}}}=0.1500 \mathrm{~kg}$
molality $=$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?$$
\text { molality }=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}
$$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution? molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$
Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$
1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{CaCl}_{2}}=0.0406$ moles CaCl_{2}
$\frac{150.0 \frac{\mathrm{~g}}{\mathrm{~g}}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \frac{\mathrm{~g}}{\mathrm{~g}}}=0.1500 \mathrm{~kg}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0406 \text { moles }}{0.1500 \mathrm{~kg}}$

4.51 g of CaCl_{2} is dissolved in 150.0 g of water. What is

 the molality of the solution?$$
\text { molality }=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}
$$

Mass of $\mathrm{CaCl}_{2}=40.08 \mathrm{amu}+2 \times 35.45 \mathrm{amu}$ Mass of $\mathrm{CaCl}_{2}=110.98 \mathrm{amu}$ 1 mole $\mathrm{CaCl}_{2}=110.98 \mathrm{~g} \mathrm{CaCl}_{2}$
$\frac{4.51 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CaCl}_{2}}{110.98 \mathrm{CaCl}_{2}}=0.0406$ moles CaCl_{2}
$\frac{150.0 \frac{\mathrm{~g}}{\mathrm{~g}}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}}=0.1500 \mathrm{~kg}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0406 \text { moles }}{0.1500 \mathrm{~kg}}=\mathbf{0 . 2 7 1} \mathbf{~ m}$

Why Use Such a Strange Unit?

Why Use Such a Strange Unit?

It governs certain properties of solutions, such as freezing point. This video shows you freezing point depression and how it can be used for a nice effect.

Why Use Such a Strange Unit?

It governs certain properties of solutions, such as freezing point. This video shows you freezing point depression and how it can be used for a nice effect.

The dissolved carbon dioxide lowered the freezing point of the solution, so that it wasn't frozen, even at $-8^{\circ} \mathrm{C}$.

Why Use Such a Strange Unit?

It governs certain properties of solutions, such as freezing point. This video shows you freezing point depression and how it can be used for a nice effect.

The dissolved carbon dioxide lowered the freezing point of the solution, so that it wasn't frozen, even at $-8^{\circ} \mathrm{C}$.

When the carbon dioxide was released, the concentration of carbon dioxide in the solution decreased, because the gas bubble out.

Why Use Such a Strange Unit?

It governs certain properties of solutions, such as freezing point. This video shows you freezing point depression and how it can be used for a nice effect.

The dissolved carbon dioxide lowered the freezing point of the solution, so that it wasn't frozen, even at $-8^{\circ} \mathrm{C}$.

When the carbon dioxide was released, the concentration of carbon dioxide in the solution decreased, because the gas bubble out.

This raised the freezing temperature, and it froze.

Why Use Such a Strange Unit?

It governs certain properties of solutions, such as freezing point. This video shows you freezing point depression and how it can be used for a nice effect.

The dissolved carbon dioxide lowered the freezing point of the solution, so that it wasn't frozen, even at $-8{ }^{\circ} \mathrm{C}$.

When the carbon dioxide was released, the concentration of carbon dioxide in the solution decreased, because the gas bubble out.

This raised the freezing temperature, and it froze.
NOTE: There is more going on than just freezing point depression.

Freezing point depression depends on the number of particles into which the solute dissolves.

Freezing point depression depends on the number of particles into which the solute dissolves. When a molecule of CaCl_{2} dissolves, how many particles are added to the solution?

Freezing point depression depends on the number

 of particles into which the solute dissolves. When a molecule of CaCl_{2} dissolves, how many particles are added to the solution?One Ca^{2+} ion and two Cl^{-}ions, so 3 .

Freezing point depression depends on the number

 of particles into which the solute dissolves. When a molecule of CaCl_{2} dissolves, how many particles are added to the solution?One Ca^{2+} ion and two Cl^{-}ions, so 3 . When a molecule of $\mathrm{K}_{2} \mathrm{SO}_{4}$ dissolves, how many particles are added to the solution?

Freezing point depression depends on the number

 of particles into which the solute dissolves. When a molecule of CaCl_{2} dissolves, how many particles are added to the solution?One Ca^{2+} ion and two Cl^{-}ions, so 3 . When a molecule of $\mathrm{K}_{2} \mathrm{SO}_{4}$ dissolves, how many particles are added to the solution?

You are supposed to recognize that SO_{4} in an ionic compound represents the polyatomic ion $\mathrm{SO}_{4}{ }^{2-}$.

Freezing point depression depends on the number of particles into which the solute dissolves.
 When a molecule of CaCl_{2} dissolves, how many particles are added to the solution?

One Ca^{2+} ion and two Cl^{-}ions, so 3 . When a molecule of $\mathrm{K}_{2} \mathrm{SO}_{4}$ dissolves, how many particles are added to the solution?

You are supposed to recognize that SO_{4} in an ionic compound represents the polyatomic ion $\mathrm{SO}_{4}{ }^{2-}$.
So this is two $\mathrm{K}+$ ions and one $\mathrm{SO}_{4}{ }^{2-}$ ion. Once again, then, 3 particles are added to the solution.

Freezing point depression depends on the number of particles into which the solute dissolves. When a molecule of CaCl_{2} dissolves, how many particles are added to the solution?

One Ca^{2+} ion and two Cl^{-}ions, so 3 . When a molecule of $\mathrm{K}_{2} \mathrm{SO}_{4}$ dissolves, how many particles are added to the solution?

You are supposed to recognize that SO_{4} in an ionic compound represents the polyatomic ion $\mathrm{SO}_{4}{ }^{2-}$.
So this is two $\mathrm{K}+$ ions and one $\mathrm{SO}_{4}{ }^{2-}$ ion. Once again, then, 3 particles are added to the solution.
When a molecule of NH_{3} dissolves, how many particles are added to the solution?

Freezing point depression depends on the number of particles into which the solute dissolves. When a molecule of CaCl_{2} dissolves, how many particles are added to the solution?

One Ca^{2+} ion and two Cl^{-}ions, so 3 . When a molecule of $\mathrm{K}_{2} \mathrm{SO}_{4}$ dissolves, how many particles are added to the solution?

You are supposed to recognize that SO_{4} in an ionic compound represents the polyatomic ion $\mathrm{SO}_{4}{ }^{2-}$.
So this is two $\mathrm{K}+$ ions and one $\mathrm{SO}_{4}{ }^{2-}$ ion. Once again, then, 3 particles are added to the solution. When a molecule of NH_{3} dissolves, how many particles are added to the solution?

This is covalent and thus doesn't split up. So just 1.

Freezing Point Depression

Freezing Point Depression

$$
\Delta T=-i \cdot K_{f} m
$$

Freezing Point Depression

Change in $\longrightarrow \Delta T=-i \cdot K_{f} \cdot m$
freezing point.

Freezing Point Depression

Freezing Point Depression

Freezing Point Depression

Freezing Point Depression

15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

Freezing Point Depression

15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(K_{f}=1.86^{\circ} \mathbf{C} / \mathrm{m}\right)$
First, we need to find i. What is it?

Freezing Point Depression

Change in freezing point. \# of solute particles solvent
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(K_{f}=1.86^{\circ} \mathbf{C} / \mathbf{m}\right)$
First, we need to find i . What is it?
In an ionic compound, we should recognize NO_{3} as the polyatomic nitrate ion. Thus, there is one Al^{3+} and three nitrate ions, making $\mathrm{i}=4$.

Freezing Point Depression

Change in freezing point. \# of solute particles solvent
15.0 g of Al($\left.\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(K_{f}=1.86^{\circ} \mathbf{C} / \mathbf{m}\right)$
First, we need to find i . What is it?
In an ionic compound, we should recognize NO_{3} as the polyatomic nitrate ion. Thus, there is one Al^{3+} and three nitrate ions, making $\mathrm{i}=4$.
For molality, we need moles and kg:

Freezing Point Depression

Change in freezing point. \# of solute particles solvent
15.0 g of Al($\left.\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(K_{f}=1.86^{\circ} \mathbf{C} / \mathbf{m}\right)$
First, we need to find i . What is it?
In an ionic compound, we should recognize NO_{3} as the polyatomic nitrate ion. Thus, there is one Al^{3+} and three nitrate ions, making $\mathrm{i}=4$.
For molality, we need moles and kg:
$\frac{150.0 \mathrm{~g}}{1} \times$

Freezing Point Depression

Change in freezing point. \# of solute particles
molality of solution
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(K_{f}=1.86^{\circ} \mathbf{C} / \mathbf{m}\right)$
First, we need to find i . What is it?
In an ionic compound, we should recognize NO_{3} as the polyatomic nitrate ion. Thus, there is one Al^{3+} and three nitrate ions, making i $=4$.
For molality, we need moles and kg :
$\frac{150.0 \mathrm{~g}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}}$

Freezing Point Depression

Change in freezing point. \# of solute particles
molality of solution
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(K_{f}=1.86^{\circ} \mathbf{C} / \mathbf{m}\right)$
First, we need to find i . What is it?
In an ionic compound, we should recognize NO_{3} as the polyatomic nitrate ion. Thus, there is one Al^{3+} and three nitrate ions, making i $=4$.
For molality, we need moles and kg :
$\frac{150.0 \frac{\mathrm{~g}}{\mathrm{~g}}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}}$

Freezing Point Depression

Change in freezing point. \# of solute particles
molality of solution
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(K_{f}=1.86^{\circ} \mathbf{C} / \mathbf{m}\right)$
First, we need to find i . What is it?
In an ionic compound, we should recognize NO_{3} as the polyatomic nitrate ion. Thus, there is one Al^{3+} and three nitrate ions, making i $=4$.
For molality, we need moles and kg :
$\frac{150.0 \frac{\mathrm{~g}}{\mathrm{~g}}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \frac{\mathrm{~g}}{8}}$

Freezing Point Depression

Change in freezing point. \# of solute particles
molality of solution
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(K_{f}=1.86^{\circ} \mathbf{C} / \mathbf{m}\right)$
First, we need to find i . What is it?
In an ionic compound, we should recognize NO_{3} as the polyatomic nitrate ion. Thus, there is one Al^{3+} and three nitrate ions, making i $=4$.
For molality, we need moles and kg :
$\frac{150.0 \frac{\mathrm{~g}}{\mathrm{~g}}}{1} \times \frac{1 \mathrm{~kg}}{1,000 \frac{\mathrm{~g}}{\mathrm{~g}}}=0.1500 \mathrm{~kg}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{i}=4$ and the solvent is 0.1500 kg
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{i}=4$ and the solvent is 0.1500 kg
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{i}=4$ and the solvent is 0.1500 kg

15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{i}=4$ and the solvent is 0.1500 kg

15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$
$\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

13	7	8
$\mathbf{A l}$	\mathbf{N}	\mathbf{O}
26.98	14.01	16.00

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

13	7	8
$\mathbf{A l}$	\mathbf{N}	\mathbf{O}
26.98	14.01	16.00

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

13	7	8
$\mathbf{A l}$	\mathbf{N}	\mathbf{O}
26.98	14.01	16.00

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$
1 mole $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$
$1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$
1 mole $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}^{\left(\mathrm{NO}_{3}\right)_{3}}}{1} \times$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$
$1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$15.0 \mathrm{~g} \mathrm{Al}_{\mathrm{g}}\left(\mathrm{NO}_{3}\right)_{3} \times \underline{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$
$1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$
1 mole $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{\left.213.01 \mathrm{~g} \mathrm{Al(NO}_{3}\right)_{3}}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$
$1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0-\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ $1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \frac{\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} .}{}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ $1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ molality $=$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ 1 mole $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \frac{\mathrm{~g}}{\mathrm{~S}} \mathrm{~A}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ $1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0704 \mathrm{moles}}{0.1500 \mathrm{~kg}}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ $1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0704 \mathrm{moles}}{0.1500 \mathrm{~kg}}=0.469 \mathrm{~m}$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ $1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \frac{\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} .}{}$ molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0704 \mathrm{moles}}{0.1500 \mathrm{~kg}}=0.469 \mathrm{~m}$
$\Delta \mathrm{T}=-\mathrm{i} \cdot \mathrm{K}_{\mathrm{f}} \cdot \mathrm{m}$

15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What

 is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ $1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0704 \mathrm{moles}}{0.1500 \mathrm{~kg}}=0.469 \mathrm{~m}$
$\Delta T=-i \cdot K_{f} \cdot m=-4$

15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What

 is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ 1 mole $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0704 \mathrm{moles}}{0.1500 \mathrm{~kg}}=0.469 \mathrm{~m}$
$\Delta \mathrm{T}=-\mathrm{i} \cdot \mathrm{K}_{\mathrm{f}} \cdot \mathrm{m}=-4 \cdot\left(1.86 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right)$

15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What

 is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ 1 mole $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0704 \mathrm{moles}}{0.1500 \mathrm{~kg}}=0.469 \mathrm{~m}$
$\Delta \mathrm{T}=-\mathrm{i} \cdot \mathrm{K}_{\mathrm{f}} \cdot \mathrm{m}=-4 \cdot\left(1.86 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot(0.469 \mathrm{~m})$

15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What

 is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ 1 mole $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0704 \mathrm{moles}}{0.1500 \mathrm{~kg}}=0.469 \mathrm{~m}$
$\Delta \mathrm{T}=-\mathrm{i} \cdot \mathrm{K}_{\mathrm{f}} \cdot \mathrm{m}=-4 \cdot\left(1.86 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot(0.469 \mathrm{~m})$

15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What

 is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ 1 mole $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0704 \mathrm{moles}}{0.1500 \mathrm{~kg}}=0.469 \mathrm{~m}$
$\Delta \mathrm{T}=-\mathrm{i} \cdot \mathrm{K}_{\mathrm{f}} \cdot \mathrm{m}=-4 \cdot\left(1.86 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot(0.469 \mathrm{~m})$
15.0 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ is dissolved in 150.0 g of water. What is the freezing point of the solution? $\left(\mathrm{K}_{\mathrm{f}}=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$ $\mathrm{i}=4$ and the solvent is 0.1500 kg

Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=26.98 \mathrm{amu}$ $+3 \times 14.01 \mathrm{amu}+9 \times 16.00 \mathrm{amu}$
Mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{amu}$ $1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}=213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
$\frac{15.0 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{1} \times \frac{1 \mathrm{~mole} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}{213.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}}=0.0704 \mathrm{moles} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ molality $=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{0.0704 \mathrm{moles}}{0.1500 \mathrm{~kg}}=0.469 \mathrm{~m}$
$\Delta T=-\mathrm{i} \cdot \mathrm{K}_{\mathrm{f}} \cdot \mathrm{m}=-4 \cdot\left(1.86 \frac{{ }^{\circ} \mathrm{C}}{\mathrm{m}}\right) \cdot(0.469 \mathrm{~m})=\mathbf{- 3 . 4 9}{ }^{\circ} \mathbf{C}$

Boiling Point Elevation

Boiling Point Elevation

$$
\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{~K}_{\mathrm{b}} \cdot \mathrm{~m}
$$

Boiling Point Elevation

Change in $\Delta \mathrm{T}=\mathrm{i} \cdot \mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$ boiling point.

Boiling Point Elevation

Boiling Point Elevation

Boiling Point Elevation

Boiling Point Elevation

Note that there is no negative sign, because boiling point is elevated.

Boiling Point Elevation

Note that there is no negative sign, because boiling point is elevated.

Why is freezing point depressed and boiling point elevated?

Boiling Point Elevation

Note that there is no negative sign, because boiling point is elevated.

Why is freezing point depressed and boiling point elevated?
It's all about attraction. To freeze, the solvent molecules must form a crystal, but the solute molecules get in the way, because they want to stay close to the solvent molecules. For boiling point, the attraction makes it harder to get solvent molecules to leave.

Important Things to Remember for Both

Important Things to Remember for Both

You need to determine if the solute is covalent or ionic. If it is covalent, $\mathrm{i}=1$.

Important Things to Remember for Both

You need to determine if the solute is covalent or ionic. If it is covalent, $\mathrm{i}=1$.
If it is ionic, you need to identify which ions and how many of each are in the compound. The value of i will be the total number of IONS (not atoms) in the molecule. For CaSO_{4}, $\mathrm{i}=2$, because there is one calcium ion and one sulfate ion.

Important Things to Remember for Both

 You need to determine if the solute is covalent or ionic. If it is covalent, $\mathrm{i}=1$.If it is ionic, you need to identify which ions and how many of each are in the compound. The value of i will be the total number of IONS (not atoms) in the molecule. For CaSO_{4}, $\mathrm{i}=2$, because there is one calcium ion and one sulfate ion.
$\Delta \mathrm{T}$ is not necessarily the answer. It is the difference between the new temperature and the original one. For water, boiling temperature is $100^{\circ} \mathrm{C}$, so once you get $\Delta \mathrm{T}$, you must add it to $100^{\circ} \mathrm{C}$ (which is exact) to get the new boiling point.

Important Things to Remember for Both

You need to determine if the solute is covalent or ionic. If it is covalent, $\mathrm{i}=1$.

If it is ionic, you need to identify which ions and how many of each are in the compound. The value of i will be the total number of IONS (not atoms) in the molecule. For CaSO_{4}, $\mathrm{i}=2$, because there is one calcium ion and one sulfate ion.
$\Delta \mathrm{T}$ is not necessarily the answer. It is the difference between the new temperature and the original one. For water, boiling temperature is $100^{\circ} \mathrm{C}$, so once you get $\Delta \mathrm{T}$, you must add it to $100^{\circ} \mathrm{C}$ (which is exact) to get the new boiling point.

Similarly, the freezing point of alcohol is $-114.1^{\circ} \mathrm{C}$ (not exact). If you get $\Delta \mathrm{T}=-2.2 \mathrm{C}$ for an alcohol-based solution, the new freezing point is $-116.3{ }^{\circ} \mathrm{C}$.

