
SeaweedFS 
Intro

2019.3
chris.lu@gmail.com



SeaweedFS Intro
● Overview
● Internal Architecture

○ Object/Blob store
○ Filer Store
○ S3/Hadoop
○ Notification/Cross-Region Replication



SeaweedFS Intro





Overview: What is special?
● Distributed
● Handles large and small files
● Optimized for large amount of small files
● Random access any file
● Low-latency access any file
● Parallel processing



Overview: APIs
● REST API for object storage
● REST/gRPC API for file system storage
● Hadoop Compatible
● FUSE client to mount file system locally
● S3 API



Architecture
● Object Storage
● File Storage
● Interface/Client Layer



Volume Store
● Based on Facebook 

Haystack paper

https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf


Object Storage

Object Storage

Master

Volume 
Server

Volume 
Server

Volume 
Server

Client Write
1. Http request file id

3. Http upload file with file id

2. Get file id



Object Storage

Object Storage

Master

Volume 
Server

Volume 
Server

Volume 
Server

Client Write
1. Http request file id

3. Http upload file with file id

2. Get file id

Example file id, 3,01637037d6

● 3 : a volume id
● 01: file key
● 637037d6: file cookie



Object Storage

Object Storage

Master

Volume 
Server

Volume 
Server

Volume 
Server

Client Read
1. Lookup volume id

3. Http get file with file id

2. Get volume location

● Volume locations can be cached.
● Clients can also subscribe to volume 

location changes.

 



Object Storage

File Storage

Master

Volume 
Server

Volume 
Server

Volume 
Server

Filer Client Upload a file to a directory

File Storage

Filer

Filer 
Store

Local
MySql
Postgres
Redis
Cassandra

Metadata

Blobs

S3 API 
Gateway

S3 Clients



Filer Store Data Layout

/a/b/c/ Attr

/a/b/c/def.txt Attr FileChunks



Volume-Aware Clients

Object Storage

Master

Volume 
Server

Volume 
Server

Volume 
Server

Other SeaweedFS 
Volume-Aware Clients

Metadata

File Storage

Filer

Filer 
Store

Local
MySql
Postgres
Redis
Cassandra

Metadata

Blobs

Hadoop Client

Mounted FUSE Client



Volume-based data placement

● Volumes are organized with different settings:
○ Collection

■ TTL
■ Replication

● Master randomly assigns a write request to one of the writable volumes.
● Strong consistent writes to all replicas.
● If one replica fails heartbeat, the master marks the volume id as read-only.
● Writes should be assigned to other writable volumes.



Object Storage

Security: per object access control with JWT

Master

Volume 
Server

Volume 
Server

Volume 
Server

Client
1. Request FileId

3. Upload File with FileId + JWT

2. Get FileId + JWT

● A Json Web Token (JWT) has permission 
to create/update/delete a file.

● Expires after 10 seconds.



Secure Volume Server
● Mutual TLS

○ Secure master to volume server admin 
operations

● JWT
○ Secure object changes

Volume servers can be placed anywhere.

Any server with some free space can be a 
volume server.

Master

Volume 
Server

Volume 
Server

Volume 
Server

Mutual TLS gRPC calls

JWT authorized changes



High Availability: Master Server
Object Storage

Master

Volume 
Server

Volume 
Server

Volume 
Server

Master

Master

● Multi-Master cluster
● Leader election with Raft consensus 

algorithm



High Availability: Filer Server
● Multiple stateless filer servers
● Shared filer store could be any 

HA storage solution.

File Storage

Filer

Filer Store
MySql
Postgres
Redis
Cassandra

Filer Filer



Scalability: Filer
● Direct blob access.
● Filer store can be any proven store, and simple to add new store:

○ Redis
○ MySql/Postgres
○ Cassandra
○ Interface for any key-value store

● Unlimited files under one directory.
● Blob storage supports multiple filers.



File Change Notification
● All filer change notifications can 

be sent to a message queue.
● Protobuf encoded notification.
● Cross-Region replication is built 

on top of this.

File Storage

Filer

Filer 
Store

Local
MySql
Postgres
Redis
Cassandra

Metadata

Message 
Queue

notifications

Kafka
AWS SNS/SQS, 
Azure Service Bus, 
Google Pub/Sub,
NATS and RabbitMQ





Atomicity
Operation Atomicity Note

Creating a file yes

Deleting a file yes

Renaming a file Yes with mysql/postgres.
No with 
redis/leveldb/cassandra.

Implemented via database 
transactions.

Renaming a directory Yes with mysql/postgres.
No with 
redis/leveldb/cassandra.

Implemented via database 
transactions.

Creating a single directory with 
mkdir()

yes

Recursive directory deletion No



Comparing to HDFS
HDFS SeaweedFS

File Metadata Storage Single namenode Multiple stateless filers with 
proven scalable filer store, 
redis/cassandra/etc.

Storing small files Not recommended. Optimized for small files.

Parallel data access Yes Yes

Hadoop Compatible Yes Yes. (Atomic rename via 
database transactions.)



Comparing to CEPH
CEPH SeaweedFS

Data Placement CRUSH maps of the whole 
cluster, rather complicated, 
especially when adding 
storage.
Calculated for each object.

Volume level placement, 
amortized for each object.

Storing small files Not optimized. Optimized for small files.

Scaling file system metadata MDS dynamically partition 
subtree

Flat and linearly scalable.

Easy to set up Mixed reviews Yes

https://ceph.com/wp-content/uploads/2016/08/weil-crush-sc06.pdf


Design Philosophy
● Scale up each layer independently.
● Batch small files

○ Data placement (CEPH file-level, SeaweedFS volume-level)
○ Tracking (HDFS namenode track blocks, SeaweedFS track volume locations)
○ Easy move/delete/replicate operation.



Open APIs
● gRPC APIs for admin operations
● HTTP APIs for uploading and serving blobs
● gRPC for filer metadata operations
● Protocol buffer defined metadata



Future Plan
● Volume Server

○ Async Replica

○ Erasure Coding
○ Tiered Storage

● Integration
○ CSI, docker volume plugin
○ Kerberos

● Tools
○ Auto Balance



Open APIs for possible extensions
● Build a different filer with striping.
● Build a different replication
● Admin tools
● Custom Encryption
● Async Operations

○ Search
○ Secondary index

● Local cache for cloud files
● CDN


