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Abstract

The scientific knowledge about which genes are involved in which
diseases grows rapidly, which makes it difficult to keep up with new
publications and genetics datasets. The DISEASES database aims to
provide a comprehensive overview by systematically integrating and
assigning confidence scores to evidence for disease–gene associations
from curated databases, genome-wide association studies (GWAS), and
automatic text mining of the biomedical literature. Here, we present
a major update to this resource, which greatly increases the number
of associations from all these sources. This is especially true for the
text-mined associations, which have increased by at least 9-fold at all
confidence cutoffs. We show that this dramatic increase is primarily
due to adding full-text articles to the text corpus, secondarily due
to improvements to both the disease and gene dictionaries used for
named entity recognition, and only to a very small extent due to the
growth in number of PubMed abstracts. DISEASES now also makes
use of a new GWAS database, TIGA, which considerably increased the
number of GWAS-derived disease–gene associations. DISEASES itself
is also integrated into several other databases and resources, including
GeneCards/MalaCards, Pharos/TCRD, and the Cytoscape stringApp.
All data in DISEASES is updated on a weekly basis and is available via
a web interface at https://diseases.jensenlab.org, from where it
can also be downloaded under open licenses.

∗Present address: Corti, Copenhagen, Denmark
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1 Introduction

To understand human diseases at the molecular level, we need a comprehen-
sive overview of which genes are linked to each disease. Since these links can
come from many types of data, each of which is growing at a fast rate, there
is a need for frequently updated databases that integrate the heterogeneous5

evidence for disease–gene associations. To this end, we provide the freely
available DISEASES database resource [1], which has been continuously up-
dated on a weekly basis since 2014 on an in-house server. This resource
automatically extracts disease–gene associations from the biomedical liter-
ature by identifying mentions of disease and gene names and counting how10

often they are co-mentioned. These are combined with manually curated as-
sociations and experimental evidence from genome-wide association studies
(GWAS).

The first version of DISEASES included text mining of 24 million ab-
stracts available from the PubMed database, which has since grown by an-15

other 8 million new abstracts. Moreover, text mining of full-text articles can
yield approximately 50% more disease–gene associations (at the same false
positive rate) than text mining of the corresponding abstracts [2]. Com-
bined with the rapid growth of open-access publishing [3], which allows for
text mining and redistribution, this shows a clear opportunity for improving20

resources like DISEASES to go beyond text mining of abstracts only.
Text mining has been applied to many tasks in the biomedical domain,

such as identifying genes and other named entities [4] in text and subse-
quently extracting associations between genes and other genes [5], pathways
[6], and diseases [7]. Many studies have focused on doing the latter based on25

biomedical abstracts only [8], whereas fewer have included full-text articles
too [9]. General text-mining efforts, not specifically focused on disease–gene
associations, of course also extract such associations [10, 11].

DISEASES is not the only database to gather evidence of disease–
gene associations. Such associations have for many years been manu-30

ally annotated by curators of both general protein databases, such as
UniProtKB/Swiss-Prot [12], and databases focused on genetics of diseases,
such as Online Mendelian Inheritance in Man (OMIM) [13] and Medline-
Plus from Genetics Home Reference (GHR) [14]. In addition to these broad
databases, many specialist databases exist which focus on specific diseases35

or classes of diseases, including the cancer mutation databases Catalog of
Somatic Mutations in Cancer (COSMIC) [15] and intOGen [16].

Genome-wide association studies (GWAS) are another important source
of disease–gene associations, which comes with its own ecosystem of database
resources. In GWAS, statistically significant associations between single nu-40

cleotide polymorphisms (SNPs) and phenotypic traits (including diseases)
are identified and used to infer gene–trait associations. These associations,
both at the SNP and gene level, are collected by the National Human

2
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Genome Research Institute (NHGRI)–European Bioinformatics Institute
(EBI) GWAS Catalog [17], GWAS Central [18] databases, and GWASdb45

[19]. However, GWAS results are complex to interpret; the identified SNPs
are typically not the causal mutations, which due to linkage disequilibrium
could reside anywhere within a chromosomal region that may contain mul-
tiple genes [20]. Several secondary GWAS databases, such as DistiLD [21]
and TIGA [22], thus aim to help non-experts interpret GWAS results by50

integrating other relevant information and prioritizing the results.
Several integrative database resources, like DISEASES, combine many

of the types of evidence for disease–gene associations mentioned above.
The best known of these are probably MalaCards/GeneCards [23] and Dis-
GeNET [24], which take two very different approaches. The MalaCards and55

GeneCards databases present one page for each disease and gene, respec-
tively, which gives the user a very comprehensive overview of the available
information, including text mining from DISEASES. DisGeNET, on the
other hand, has a strong focus on scoring the associations and on making
data available amenable to further computational analysis via application60

programming interfaces (APIs). The latter is also true for knowledge-based
aggregators such as Pharos [25] and Open Targets [26], which integrate
many types of evidence from numerous sources, including gene–disease as-
sociations.

In this paper, we describe the major improvements of the DISEASES65

resource made since the 2015 publication [1]. The gene set and associ-
ated dictionary have been updated to be consistent with the latest ver-
sion of STRING [27] and the text corpus in DISEASES is now automat-
ically constructed by merging the open-access subset of PubMed Central
(PMC) with PubMed abstracts. This has jointly led to substantial im-70

provements of the text-mining results. We have further updated DIS-
EASES to import experimental data from a new GWAS resource, TIGA
[22]. We map all disease–gene associations to a common set of identifiers
and provide confidence scores for the associations, which are comparable
across evidence types. All data are freely available both via a web interface75

(https://diseases.jensenlab.org/), as bulk download files, and through
integration into other resources and tools, specifically Cytoscape, TIN-X,
and Pharos.

2 Materials & Methods

The DISEASES database combines heterogeneous evidence from several80

sources. We will go through these, starting with three databases of manually
curated disease—gene associations, followed by two sources of experimen-
tal evidence, and finally the automatic text mining, which we break down
into corpus construction, dictionary construction, named entity recognition

3
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(NER), and co-occurrence scoring. Finally, we describe how the DISEASES85

confidence scores are assigned for each type of evidence.

2.1 MedlinePlus

The genetics section of the MedlinePlus resource, formerly known as Ge-
netics Home Reference, includes disease–gene associations obtained from
manual curation of the biomedical literature [14]. We first download the list90

of all diseases and then query the MedlinePlus REST API with each disease
to retrieve the list of associated HGNC gene symbols. We then use the dic-
tionaries described later to map the disease names and gene symbols to their
Disease Ontology identifiers [28] and STRING v11 identifiers, respectively.

2.2 UniProt Knowledgebase (UniProtKB)95

The Swiss-Prot section of UniProtKB consists of expert-reviewed protein en-
tries, which include diseases associated with each protein among many other
types of biological information [12]. We extract the diseases associated with
a protein entry by parsing the keyword field, where they are specified using
a controlled vocabulary. We manually mapped these to their corresponding100

concepts in Disease Ontology and used the dictionary described later to map
the UniProtKB accession numbers to STRING v11 identifiers.

2.3 Amyloidoses Collection (AmyCo)

The AmyCo database specifically collects information on amyloidoses and
other diseases related to amyloid deposition [29]. It contains manually cu-105

rated data from 249 articles on 75 diseases classified into two broad groups:
amyloidoses and clinical conditions associated with amyloidosis, including
precursors and proteins co-deposited with amyloid deposits. AmyCo identi-
fiers are mapped to their corresponding Disease Ontology identifiers when-
ever the AmyCo name could be found as an exact synonym; otherwise the110

AmyCo identifier is mapped to the Disease Ontology broader parent(s).

2.4 Target Illumination by GWAS Analytics (TIGA)

TIGA [22] is a new weekly updated web resource that imports GWAS
data from the NHGRI-EBI GWAS Catalog [17], maps SNPs to the nearest
protein-coding genes, and evaluates the confidence of each gene–trait associ-115

ation. The latter is done by calculating an average rank score based on the
number and distance of SNPs supporting the association, the p-value of the
most significant SNP, and the number of studies supporting the association
weighted by the Relative Citation Ratio [30] of the underlying publications.
From TIGA, we extract the subset of traits that are diseases and map their120

Experimental Factor Ontology (EFO) terms to the corresponding Disease

4
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Ontology terms based on ontology cross-references and the EMBL-EBI On-
tology Xref Service. The Ensembl gene identifiers are mapped to STRING
v11 identifiers using the gene dictionary described later.

2.5 Text corpora125

As the starting point for doing text mining, a large body of biomedical texts
is needed. We compile such a corpus based on the PMC open-access subset
[3], which consists of 7.3 million full-text articles, and the PubMed abstract
database, which contains 39 million entries, 22 million of which have an
English abstract. To construct a combined corpus, we download both PMC130

and PubMed in XML format, specifically, the BioC version of PMC [31]
and the PubMed baseline plus daily updates. The latter updates also mean
that retracted articles are automatically removed from the corpus as soon
as they have been marked as such in PubMed. As a last step, we exclude
826 publications, which are believed to contain falsified data and to have135

been created by several recently discovered paper mills [32].
As PMC contains articles in several languages and the text-mining

pipeline in DISEASES is designed only for English text, we use the pre-
trained language detection models from fastText [33] to identify the language
of each PMC article and remove articles not in English. We next run the140

NER software (described later) on the English-language articles to count the
number of unique entities found in each article. To eliminate articles that
mention long lists of genes or diseases, we removed the 630 PMC articles
that mentioned more than 200 genes or diseases. For quality reasons and to
have consistent article metadata, we decided to only include articles from145

PMC that are indexed in PubMed. We thus used the identifier mapping file
from PMC to convert PMCIDs to PMIDs, and discarded all PMC articles
for which a PMID did not exist. For the remaining articles, we merged the
information from PMC and PubMed, using the metadata, title and abstract
from PubMed and extending it with the article body text from PMC. Where150

no PMC open-access version of an article was available, we simply used the
metadata, title, and abstract from PubMed.

The corpus in DISEASES is updated every weekend. All results pre-
sented in this paper are based on October 20th, 2021 version of the corpus
(FullText2021). To assess the impact of including full-text open-access pub-155

lications, we also have a second corpus (PubMed2021), which includes only
the title and abstract text of the same publications. Finally, to be able to
assess how much the general growth of PubMed contributes to the perfor-
mance, we have a third corpus, which consists of ∼ 24 million abstracts pub-
lished by end of 2013 (PubMed2013). This corpus closely resembles what160

was in the initial version of DISEASES, which was submitted in January
2014 [1].

5
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2.6 Dictionaries

For mapping names and identifiers and for recognizing them in text, we need
comprehensive dictionaries of human genes and diseases. The dictionary of165

diseases is constructed based on all the names and synonyms from Dis-
ease Ontology [28] and extended with additional amyloidoses from AmyCo,
mappings to ICD-10, and manual additions of missing disease synonyms and
acronyms. The human gene dictionary was obtained from STRING v11.0
[27] and is based on information from Ensembl [34], UniProtKB [12], and170

HGNC [35] databases. We further automatically eliminate clashes between
HGNC gene symbols and disease names and extend both dictionaries with
orthographic variations of names using the exact same rules as in the first
version of DISEASES [1].

We frequently update the dictionaries to incorporate changes to Disease175

Ontology and to correct errors identified by users. In this paper we make
use of two frozen versions of the dictionaries, namely one from October
20th, 2021 (Dict2.0) and, for comparison, the dictionaries from the first
version of DISEASES [1] (Dict1.0). The latest dictionary is available from
the Downloads tab of the DISEASES web resource.180

2.7 Named entity recognition (NER)

To do NER on the very large text corpora described above — and make fre-
quent updates feasible — a highly efficient tool for matching the dictionaries
against the text is needed. As in the previous version of DISEASES, we do
this using the Tagger software, which is described in detail elsewhere [36]185

(https://github.com/larsjuhljensen/tagger), is available for download
from the DISEASES website. Briefly, the combined dictionary is first loaded
into memory in a custom hash table that allows fast, case-insensitive lookup
and further allows for arbitrary insertion and deletion of hyphens. We then
tokenize the text on white-space and special characters (including hyphen190

and slash) and look up combinations of tokens in the combined dictionary
to identify left-most longest matches. To improve the precision, we globally
block tagging of names that would otherwise give rise to many false positives
by manually inspecting the tagging results of all names that occur more than
2000 times in PubMed as well as names that gave rise to errors reported by195

users. Each match in the text is normalized to the unique entity identifier
from the dictionary and, in case of diseases, the term is backtracked to all
parent terms in Disease Ontology.

2.8 Co-occurrence scoring

From the NER results, we calculate co-occurrence score between any given200

pair of a gene and a disease, which quantifies how much these entities have
been mentioned together in the text corpus. The scoring scheme takes into

6

Page 6 of 26

http://mc.manuscriptcentral.com/database

Manuscripts submitted to Database

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

account that co-occurrences within sentences are stronger evidence than co-
occurrences across sentences within a paragraph, which in turn are stronger
than co-occurrences across paragraphs within a paper. The scoring scheme205

further takes into account both how much the entities co-occur on an ab-
solute scale and relative to what would be expected by random chance (z-
scores). This approach is that same as was used in DISEASES v1 [1], except
that the scoring having been extended to handle full-text articles as previ-
ously described [2].210

2.9 Comparison to DISEASES v1

To facilitate comparison with DISEASES v1, which differs both in terms of
the dictionaries and the text corpus used, we generated four datasets of text-
mining results. These represent the following combinations of the old and
new dictionaries (Dict1.0 and Dict2.0 ) with text corpora representing the215

abstracts used in DISEASES v1 (PubMed2013 ), the full set of abstracts now
available (PubMed2021 ), and the combined corpus including also full-text
articles from PMC (FullText2021 ):

(i) Dict1,PubMed2013 : PubMed2013 mined using Dict1.0, representing
the text-mining channel of DISEASES v1 when published220

(ii) Dict1,PubMed2021 : PubMed2021 mined using Dict1.0 to show the
effect of updating DISEASES v1 with new abstracts

(iii) Dict2,PubMed2021 : PubMed2021 mined using Dict2.0 to capture the
changes attributed to dictionary improvements

(iv) Dict2,FullText2021 : FullText2021 mined using Dict2.0, representing225

the text-mining channel of DISEASES v2

2.9.1 Gold standard of disease–gene associations

To build an up-to-date gold standard of disease–gene associations, we fol-
lowed the approach described in the original DISEASES publication [1].
We used the knowledge channel of manually curated annotations imported230

from UniProtKB and MedlinePlus (doi:10.6084/m9.figshare.17075708). A
new reduced benchmarking set is then generated that includes only entity
names explicitly annotated in UniProtKB and MedlinePlus and, with dis-
eases broader parent terms. When an annotated disease was a child term
of another annotated disease, we kept the broader parent terms and back-235

tracked the child-term annotations to it via the is a relationships in the
ontology. The final gold standard comprises 7, 005 of inferred disease–gene
associations, all were given a high confidence score of 4 to 5 stars to show
how they are biologically meaningful.

7
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2.9.2 Benchmarking of text-mined associations240

To evaluate and compare the quality of the text-mining results, we bench-
marked each of the four sets of text-mining results (Dict1.0 PubMed2013,
Dict1.0 PubMed2021, Dict2.0 PubMed2021, and Dict2.0 FullText2021 ) on
the gold standard of disease–gene associations. Given a disease–gene associ-
ation, we labeled it as positive if the association exists in the gold standard,245

labeled it as negative if both the disease and the gene (but not the asso-
ciation) exist in the gold standard, and otherwise discarded it. Based on
this binary labeling, we constructed receiver operating characteristic (ROC)
curves for each of the four sets of text-mining results by sorting the associa-
tions descending by score and plotting the true positive rate (TPR) against250

the false positive rate (FPR). To quantify the difference between the ROC
curves, we calculated the area under curve (AUC) for each.

2.9.3 Benchmarking of GWAS-derived associations

The quality of TIGA gene–disease associations has been discussed in detail in
[22]. Briefly, a benchmarking was performed against the same gold standard255

described above, yielding a ROC curve with an AUC of 0.73.

2.9.4 Confidence scores

To make the different types of evidence comparable, we assign confidence
scores on a scale from 1 to 5 stars. The manually curated gene–disease
associations in the knowledge channel, which also make up the gold standard,260

were assigned the highest confidence of 5 stars.
As in the first version of DISEASES [1], the co-occurrence text-mining

results in a z-score for each association, which is converted into the final
confidence scores using a heuristic. Each star corresponds to two standard
deviations above random expectation, that is a z-score of 6 would become 3265

stars. As automatic text mining is never as reliable as manual curation, the
confidence scores for text mining are capped at 4 stars.

The gene–disease association scores from TIGA are made comparable to
these other scores based on the benchmarks described above. The bench-
mark of TIGA gives us the relationship between TIGA scores and probability270

of association in the gold standard. The benchmark of text mining similarly
gives us the association between z-scores and probability of association in
the gold standard. This allows us to convert TIGA scores into probabilities,
which are in turn converted to the corresponding z-scores and finally to the
star confidence scores.275

8
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3 Results & Discussion

3.1 Overview of the DISEASES resource

Figure 1 gives an overview of the disease–gene associations in DISEASES by
mapping them onto high-level terms in Disease Ontology that have at least
100 associated genes. For each disease term, the area shows the number280

of associations with a confidence score of at least 3 stars, which is further
broken down based on the source of the associations (knowledge, experi-
ments, or text mining). Automatic text mining is by far the biggest source
of associations for all diseases, accounting for more than 60% of the total.

The category of diseases with the most associations, especially from285

knowledge and experiments, is disease of anatomical entity, within which
we see a fairly even distribution across many anatomical systems. This is
followed by disease of cellular proliferation, which almost exclusively covers
cancer–gene associations. By contrast, we find quite few associations (7443)
for disease of infectious agent, which come exclusively from text mining.290

The latter is to be expected, since the DISEASES database aims to identify
causal associations between genes and diseases as reflected in the choice of
gold standard. We thus do not aim to link a gene to a disease based on just
change in expression.

3.2 Growth of the number of disease-gene associations295

The number of open access articles available from PMC has been grown
exponentially over time, reaching more than 7 million as of September 2021.
The inclusion of these — as well as the more than 8 million new PubMed
abstracts published since the initial release of DISEASES in 2015 — has
an obvious and direct effect on the number of disease–gene association one300

can find by text mining. While the text-mining channel in the DISEASES
database is our main focus in this article, it is not the only improvement.
Table 1 provides an overview of the content of the original and the new
releases DISEASES database, showing the number of genes, diseases, and
associations provided by each evidence channel.305

The Knowledge channel has more than doubled in terms of both disease–
gene associations and unique diseases covered. This growth comes primarily
from GHR, which has in the meantime been integrated into MedlinePlus,
but UniProtKB has also grown substantially. AmyCo contributes a compa-
rably low number of new associations, since it covers only a specific type of310

diseases.
The Experiments channel has changed in many ways between the two

versions. Replacing DistiLD with TIGA has increased the number GWAS-
based associations by more than a factor of four and more than doubled the
coverage of genes. However, with the new release we have also to remove315

COSMIC for license reasons, thus losing more than half of the experimental

9
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disease of mental
health

substance-related
disorder

benign neoplasm

musculoskeletal
system disease

cognitive disorder

thoracic disease

sleep disorder

disease of
anatomical entity

gastrointestinal
system disease

nervous system
disease

integumentary
system disease

cardiovascular
system disease

inherited metabolic
disorder

acquired metabolic
disease

syndrome

immune system
disease

disease by
infectious agent

genetic disease

reproductive
system disease

hematopoietic
system disease

viral infectious
disease

urinary system
disease

disease of
metabolism

bacterial infectious
disease

cancer

physical disorder

disease

parasitic infectious
disease

respiratory system
disease

developmental
disorder of mental

health

fungal infectious
disease

endocrine system
disease

disease of cellular
proliferation

pre-malignant
neoplasm

Experiments

Text mining 

Knowledge 

Figure 1: Overview of disease–gene associations in DISEASES. The
number of disease–gene associations with a confidence score of at least 3
stars is proportional to the area of the pie charts, which represent high-level
terms from Disease Ontology. In each pie chart, the associations are broken
down by evidence type, i.e. curated knowledge, GWAS experiments, and
automatic text mining of the literature.
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associations in the original release of DISEASES. All in all, the Experiments
channels has grown by over 70%.

For the Text mining channel, we subdivide the evidence by their con-
fidence scores as presented in the DISEASES web interface. That is, we320

present the number of genes, diseases, and associations that rated as 2-, 3-,
and 4-star confidence as well as the total numbers for the channel (including
association scoring below 2 stars). The number of associations has increased
dramatically at all confidence levels and especially at high confidence levels,
with over 9-fold increase overall and over 17-fold increase for 4-star associ-325

ations. The same trend holds true when looking at the numbers of unique
genes and diseases covered.

Evidence channel Associations Genes Diseases
Knowledge

DISEASES 2021 36,448 (6,739) 3,723 1,528 (1,048)
AmyCo 1,225 (186) 57 180 (52)
MedlinePlus 23,957 (3,516) 2,383 1,460 (966)
UniProtKB 19,517 (3,739) 2,642 270 (119)

DISEASES 2015 15,231 (2,953) 2,001 735 (453)
GHR 7,551 (1,169) 965 671 (390)
UniProtKB 11,576 (2,187) 1,651 271 (120)

Experiments
DISEASES 2021 152,611 (26,346) 9,180 574 (295)

TIGA 152,611 (26,346) 9,180 574 (295)
DISEASES 2015 89,073 (20,206) 10,711 423 (264)

COSMIC 55,791 (13,050) 8,786 142 (76)
DistiLD 36,650 (7,185) 4,315 351 (210)

Text mining
DISEASES 2021 4,512,870 19,116 8,537

4 star confidence 18,129 2,988 2,959
3 star confidence 224,642 11,207 6,711
2 star confidence 1,659,331 18,913 8,342

DISEASES 2015 478,407 15,631 4,598
4 star confidence 1,044 478 662
3 star confidence 15,226 3,207 2,267
2 star confidence 142,892 12,706 4,354

Table 1: Comparison of the new and original versions of DIS-
EASES. For each evidence channel we show the number of associations,
unique genes, and unique diseases for both the new and the originally pub-
lished version of DISEASES. In case of the knowledge and experiments chan-
nels, these numbers are further provided for each of the source databases.
The numbers in parentheses are the counts before evidence was backtracked
to parent terms in Disease Ontology. For the text mining channel, we instead
subdivide the counts by confidence score.

3.3 Improved quality of text-mined associations

We assessed the quality of the disease–gene associations from the new version
of DISEASES to the originally published version by benchmarking both330

against a gold standard of manually annotated gene–disease associations
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(see Materials & Methods for details). The results are shown as ROC curves
in Figure 2, which reveals a substantial improvement both overall (AUC
increasing from 0.829 to 0.916) and in the low false-positive-rate part, which
is arguably the most relevant part. As the ROC curve for the new version335

is consistently above that of the original one, the new version constitutes an
improvement regardless of whether the user cares most about getting higher
true positive rate or lower false positive rate.

This performance improvement is due to a combination of i) general
growth in the number of biomedical abstracts available from PubMed, ii)340

improvements to the dictionaries used for NER, and iii) the addition of
full-text articles from the PMC open access subset. To quantify the im-
portance of each of these factors, we show two additional ROC curves in
Figure 2: performance when updating with new abstracts but still using
the original dictionaries and performance when further updating the dictio-345

naries. Comparing the four ROC curves shows that the growth of PubMed
abstracts alone gives only a small improvement of the AUROC from 0.845 to
0.859. The use of the new dictionaries leads to a bigger incremental improve-
ment, increasing the AUROC from 0.859 to 0.866. However, the addition
of full-text articles to the corpus is responsible for the biggest improvement,350

bringing the AUROC from 0.866 to = 0.922.
These results show that while the growth of the literature does give

an almost free improvement, only requiring the pipeline to rerun on latest
PubMed, the vast majority of the improvement seen between the original
version of DISEASES and the new version stems from our work on improving355

the dictionaries used for NER and on integrating full-text articles into the
corpus. The results also highlight how important it is for text mining efforts
to be permitted to process full-text articles rather than only abstracts.

3.4 Research paper mills

To the best of our knowledge, all assessment of text-mining results to date360

have focused purely on the ability of a text-mining system to correctly ex-
tract what is stated in the text. However, from the perspective of using text
mining to construct a knowledgebase from literature, is equally important
if what is stated in the text is true. Co-mentioning-based systems indirectly
address this, since high-scoring associations will be supported by multiple365

publications.
Recently, the problem of incorrect information in the literature has be-

come a bigger concern due to the discovery of so-called ”paper mills”. These
appear to be companies that mass produce fake articles and sell them to re-
searchers at Chinese hospitals [37]. As these articles were published in inter-370

national journals indexed in PubMed, they would by default be included in
our text corpus, thus providing false support for disease–gene associations in
our database. To avoid this, we have compiled a list of the 826 papers iden-
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Figure 2: Performance improvement of the text mining chan-
nel. As shown in the receiver operating characteristic (ROC) curves,
text mining performs markedly better in the new version of DIS-
EASES (Dict2,FullText2021) compared to the originally published one
(Dict1,PubMed2013). To quantify the sources of improvements, we show
two additional curves: one using the new dictionary on the latest abstract
collection only (Dict2,PubMed2021), and another using the old dictionary
on the same abstracts (Dict1,PubMed2021). Comparing the curves reveals
that most of the improvement stems from the addition of full-text articles,
but that the new disease and gene dictionaries also led to considerable im-
provement. By contrast, the growth in PubMed abstracts from 2013 to
2021 made only a minor difference. The insert shows a zoom of the high-
confidence part of the plot.

tified so far to originate from paper mills (as per June 2021) and explicitly
exclude these from our text corpus. To allow others to also easily exclude375

these papers, the latest list is available for download from the DISEASES
website.
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3.5 Integration into other resources

Just like DISEASES itself builds upon other databases, we have designed
it to be easy to integrate into other resources. We do this both from a380

technical perspective by providing simple bulk download options and from
a legal perspective by not integrating any data that would prevent us using
an open license. Several tools and databases already take advantage of
this, importing either disease–gene associations from all evidence channels
or specifically the associations from text mining.385

The GeneCards and MalaCards databases, both members of the
GeneCards suite, provide a comprehensive overview of information on hu-
man genes, including diseases associations, by integrating evidence from
150 sources [38]. One of these is the text-mined disease–gene associa-
tions from DISEASES, which GeneCards/MalaCards downloads on a regu-390

lar basis and combines with associations from other source databases. The
GeneCards/MalaCards web resources link back to DISEASES website to
allow users to easily inspect the text-mining evidence for any given associ-
ation. The Target Central Resource Database (TCRD) and the associated
Pharos [25] and TIN-X web resources [39], which aim to shed light on poten-395

tial new drug targets, similarly obtain up-to-date disease–gene associations
from the DISEASES database. DISEASES (and “tagger” output) are also
an integral part of Geneshot [40] and Harmonizome [41].

DISEASES is also designed to interface easily with the STRING, COM-
PARTMENTS and TISSUES resources by using the same gene identifiers.400

Through the Cytoscape app stringApp, it is thus possible to quickly re-
trieve a human protein network for any disease of interest [42]. To do this,
stringApp first queries the DISEASES database to obtain a list of genes
associated with the disease and subsequently queries STRING to obtain the
corresponding protein network.405

4 Conclusion

The DISEASES database has since 2014 provided the community with a
weekly updated resource of disease–gene associations. The latest version
features several important improvements compared to the original publica-
tion. In addition to text mining PubMed, which has meantime grown by410

another 8 million abstracts, the DISEASES text corpus now also includes
open access full-text articles from PubMed Central. Together with technical
improvements to the text-mining pipeline itself, this has led to a > 9-fold
increase in the number of disease–gene associations extracted at any con-
fidence cutoff. DISEASES has also been upgraded to use GWAS data via415

the new TIGA database [22], which increased the number of experimental
associations by more than 70%.

The database is freely available at https://diseases.jensenlab.org/
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where it can be browsed via a web interface as well as downloaded in its
entirety to facilitate large-scale analysis. Moreover, DISEASES is designed420

to integrate easily with other resources, and the disease–gene associations
are available through other resources, including the GeneCards/MalaCards
and TCRD/Pharos databases, Harmonizome, Geneshot, and the Cytoscape
stringApp.
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Response to reviewers
(Discussion)

The comments given by the reviewers of our manuscript are referred to in the following
manner: R1-C1 indicates the first comment of Reviewer1.

Reviewer 1:

We sincerely thank you for your positive feedback on our paper and for your careful review.

Reviewer 2:

We really appreciate your careful reading and we thank you for your thoughtful and
constructive comments, which helped improve the manuscript.. Below, we have addressed
all of them.

R2-C1: Besides for the [tagger](https://github.com/larsjuhljensen/tagger), the code to
generate DISEASES does not appear to be available. This makes it hard to get a
detailed look at the methods beyond what is described in the manuscript. It also
prevents the community from contributing and creating alternative datasets that reuse
parts of the DISEASES infrastructure. It's not clear what the reason is for keeping the
code private.

Response:

As mentioned by the reviewer, the tagger is indeed available. The same is true for the entire
Python codebase that runs the website (https://github.com/larsjuhljensen/mamba). However,
some other parts are not for a variety of reasons. Firstly, the other code bases are designed
specifically to populate the backend database within our local server setup. It would not be
easy to set up a clone of it elsewhere, and we would not have the resources to support
anyone attempting to do so. The code would thus be provided with limited documentation,
as-is, and with no support at all. We do not believe that would be of much use to others, and
it would more likely than not lead to angry people, when emails went unanswered.

There is also a second issue: the code used to make parts of the DISEASES database is a
shared codebase for several other resources, including COMPARTMENTS, TISSUES and
STRING. Parts of the code in the repository were thus developed as part of other projects by
people who are not authors on this paper (or on the earlier DISEASES paper), and parts of
the code is not even relevant to DISEASES, but is purely used by these other resources.
Making it available under an open source license would thus not be possible for us, as we
are not the owners of the code. It would thus require tracking down who made every single
part of the code in the repository and obtaining their permission first.
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If people have detailed questions for how something was done, we are happy to provide
them a copy of the relevant script. But making the entire codebase publicly available is not
feasible.

R2-C2: If the resource is regenerated weekly using continuous integration, it would also
be valuable to give the community read access to the logs. This would occur
automatically if the resource is built using a service like GitHub Actions. It's not clear
from the manuscript how or where the weekly builds occur.

Response:

The weekly builds occur on an in-house server, which runs update shell scripts as cron jobs.
These update scripts in turn run things such as the tagger, which is coded in C++. This plus
the sheer amount of data being processed in the text mining would make it very difficult to
migrate to e.g. GitHub actions.

R2-C3: Versioned permalinks would be extremely helpful, so users can pin their
analyses to old versions of the data without having to archive it themselves.

Response:

Making versioned permalinks would be a very inefficient use of resources. The reason is that
we update the entire database every weekend and that the text-mining scores for almost all
associations will change a bit due to the addition of new abstracts to PubMed. We would
thus have to archive a full version of the entire database every week, knowing that the vast
majority of these archived versions would not be the basis of any analysis. To not
unnecessarily waste resources, we thus believe that it is better that users archive the
specific versions that they actually used rather than us archiving every version ever made.

R2-C4: On the [downloads page]
(https://web.archive.org/web/20220110224835/https://diseases.jensenlab.org/Downloads
), the Figshare [archive link](https://figshare.com/authors/Lars_Juhl_Jensen/96428) is to
a user profile, and not an archive of DISEASES v2. On the user page, there are multiple
DISEASES v1 records, but the sigle [DISEASES v2]
(https://figshare.com/articles/dataset/DISEASES_v2_gold_standard_/17075708) record
contains only the gold standard data.
Ideally, there would be a Figshare record for DISEASES 2.0 (or multiple records for
different components, e.g. tagging dictionaries might be their own record.) Rather than
create a new record for each DISEASES v2 release, it would be best to create multiple
versions within the same record.

Response: This is a good point of using a Figshare record that includes all the components
related to DISEASES 2.0.

We have added a Figshare record for DISEASES 2.0 that includes the following
components: text mining, knowledge, experiment, integrated score and dictionaries
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R2-C5: The downloads page links to, but not to `human_dictionary.tar.gz` with the gene
dictionary. Perhaps it'd be less confusing to just link to , which already contains links to
all the predefined dictionaries?

Response: The intent was that the diseases_dictionary.tar.gz file should be self-contained
and have both disease and human gene names in it. However, it only contained disease
names. We have now fixed this.

R2-C6: I am left wondering what the difference between `diseases_tagger.tar.gz` is
compared to the software from the GitHub repository.

Response: The DISEASES tagger is a specific version of the tagger software allowing users
to easily run named-entity recognition on a directory of text files. It is based on the
full-fledged tagger available from GitHub, which is intended to be run on much bigger
corpora and have more functionality, but also requires more work to prepare the corpus in
the specific format required to process it efficiently (i.e. each document is not a separate
file).

We have edited the DISEASES website to also link to the full version of tagger.

R2-C7: The association score TSV downloads don't contain column names as the first
row, nor are the columns documented on the downloads page. It's best to keep column
names with the data.

Response: We agree that it would have been a good idea to have column names in the files
from the start. However, at this stage it is too late to add them, since many people have
workflows that we risk breaking by changing the file format now. We have instead added the
format to the downloads page and as a documentation file on Figshare.

R2-C8: `excluded_documents.txt` provides a list of 826 publications from paper mills that
should be excluded by T&DM approaches. This is a useful resource beyond this project.
Is the source of this file tracked with collaborative version control? It could be beneficial
to have this file in a GitHub repo where the community could suggest additional
exclusions in the future.

Response: We fully agree that this file would be useful for text-mining projects in general,
which is precisely why we make it available. To the best of our knowledge, there is not a
version-controlled community resource that gathers all the paper mill publications that have
been discovered to date. We very much wish that there would be one, since it would make
our work much easier — the list of 826 publications was made by combining lists from
several different spreadsheets shared by different people in the community, some of which
had PubMed IDs and others DOIs that we had to map. However, since we are not involved
in discovering the paper mills, it would really not be appropriate for us to be the ones
managing such a resource and thereby be the gatekeepers. However, we do have our own
file in version control, so if there were ever the need to go back or see when a certain
publication was added to the list, we can do that.
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R2-C9: Many users might be interested in an integrated score that combines the
knowledge, experiments, and text mining channels. We've discussed methods for this [in
the past] (https://think-lab.github.io/d/91/#7). DISEASES v1 included an integrated score
([archived here]
(https://github.com/dhimmel/diseases/blob/60f955165e297caaba86d2f3d370fba71d3b26
bc/download/human_disease_integrated_full.tsv.gz)), but it looks like DISEASES v2
removes this score. What is the reason for the removal of the integrated score?

Response: We agree that having an integrated score that combines all the different types of
evidence can be useful. Like DISEASES v1, DISEASES v2 is not showing or using such a
score anywhere in the web resource; however, it does exist in the backend database and we
do have a download file with it. The reason why we do not show it, use it, or mention it in the
manuscript is that the way scores are combined is very ad hoc; while the scores may be
useful, we have no way to scientifically justify that the way we combine confidence scores is
the right way to do it. It thus should not be thought of as a feature of the DISEASES
database or something that is part of a scientific publication. That being said, we are happy
to share the scores if people nonetheless find them useful.

As a compromise, we have thus added a link on the Downloads to the already existing file
with the integrated scores, but have marked it as an “experimental” feature to warn users
that it is not something they should rely on.

R2-C10: The methods for producing the filtered datasets that "contain only the
non-redundant associations" are not clear to me. Is this related to backtracking of
evidence to parent diseases?

Response:

This is difficult to explain briefly beyond what was already stated on the download page. It
relates to backtracking, but it is not generally as simple as not including parent terms.

The filtered files are available for download to allow other resources, notably GeneCards, to
get a non-redundant list of diseases for a gene of interest, which is consistent with what is
shown in the DISEASES web interface.

For the knowledge channel, we have the explicitly annotated terms and infer parent terms
from those. In this case, the filtered set is indeed simply the explicitly annotated terms, thus
excluding the inferred parents.

However, especially for text mining, it is a lot more complex. If you look at a gene like
LRRK2, a famous gene in Parkinson’s disease, it will of course be mentioned a lot in the
literature with this disease. And these co-occurrences will be backtracked to parent terms
like neurodegenerative disease. However, LRRK2 will also explicitly co-occur a lot in the
literature with the term neurodegenerative disease, since many papers about Parkinson’s
disease will mention that it is a neurodegenerative disease. One can thus not simply filter out
inferred parent terms to fix this problem. We thus need to make a clever decision about
which term to show: Parkinson’s disease or neurodegenerative disease. Our solution is to
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show the highest scoring term, exclude all its parents and children, show the second-highest
scoring (not excluded) term, exclude all its parents and children, etc.

Again, the filtered purely exist to be able to provide a non-redundant summary of the
diseases for a gene of interest. Anyone who wants to do systematic analysis of the
gene–disease network or wants to get the list of all genes relevant to a disease should use
the full files. Given how niche the use case for the filtered files is and how much text it takes
to explain how precisely they are made and why, we do not believe it makes sense to go into
this in the manuscript.

We are considering removing the links to these files from the download page, because they
cause confusion and 99% users should not use them. Instead we would purely provide these
files to the small number of users (e.g. GeneCards) for whom they are intended.

R2-C11: There's a missing word in the following sentence: "The Experiments channel
has **CHANGED** in many ways between the two versions".

Response: Thanks for spotting this — we have added the missing word.

Reviewer 3:

Thank you for going through our work with great interest. We really appreciate your feedback
on our paper. Below, we have addressed your comments.

R3-C1: Indeed, a brief perusal of the resource for “Alzheimer's disease [DOID:10652]”, a
well-studied disease, showed that there was a good agreement between the “Evidence”
and the “Text Mining” tracks. However, the top genes in the “Experimental track” did not
include any of the well-known genes associated with the disease (e.g. APOE -
https://www.nature.com/articles/mp201152,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463297/, the stronger genetic risk for
AD). The reason could be that APOE’s signal is so strong that it is often removed from
GWAS analyses. This leads me to wonder about the quality of the experimental channel
in this case and similar, or the validity of GWAS for generating gene based annotation. I
think a ROC curve for the experimental channel, as well as an overlap diagram, looking
at the comparison between the experimental channel and the evidence channel would
be an important addition, with the associated caveats.

Response: Thank you for looking into this specific disease and noticing this problem. As
GWAS-based associations are imported into DISEASES from the TIGA database, it is a
problem that would have to be solved in that resource. The overall quality of TIGA
gene—disease associations was already evaluated and published recently in the TIGA
paper https://academic.oup.com/bioinformatics/article-abstract/37/21/3865/6292081, which
includes the ROC curve suggested by the reviewer and yielded an AUC of 0.73. Adding an
overlap diagram between the experimental channel and the knowledge channel would
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require choosing an arbitrary confidence cutoff and would be redundant with the ROC curve,
as the gold standard is based on the knowledge channel.

We have added a short section mentioning this to the end of Materials and Methods.

R3-C2: I could not find an explanation for the calculation of the confidence score, in the
paper or the resource itself. For example – what is the strategy when there’s conflicting
evidence from curated data vs Text-mined data (meaning the disease gene pair exists in
both, but not the association). Since this is an update, it doesn't have to be in the paper
itself, but I'd expect for it to be mentioned on the website.

Response: Given a disease--gene pair, the confidence score is computed for every channel
independently, and is comparable across evidence types. A detailed description of the
confidence scores for text mining is given in the original publication of DISEASES.

We have added a section to the end of Materials and Methods, which briefly summarizes
how confidence scores for text mining are calculated and, more importantly, describe how
comparable confidence scores for TIGA were derived (which was not described in the earlier
papers.

R3-C3:The paper does not discuss the meaning of “associated”. Are they trying to
aggregate causal genes ? Genes that change in expression? Genes that are drug
targets ? Any gene ? This needs to at least be discussed, even if the goal is to cast a
wide net to serve exploratory analyses.

Response: While it is always dangerous to claim causality, the intended scope of
DISEASES is causal associations between genes and diseases, without limiting it to drug
targets. The gold standard that we specifically consists of manually curated genetic
associations that are believed to be causal, and as such our confidence scores reflect that.
This is also the reason why we do not include expression data as evidence in the
experiments channel. However, since we have confidence scores, we obviously do not
expect all associations in DISEASES to be true causal associations.

We have added a couple of sentences on this to the first section of Results & Discussion.

R3-C4: The focus on AmyCo is unclear. It seems that resources could be put to a better
use by including broader databases rather than this specific class of conditions. I wonder
what led the authors to choose this specific one, over, for example Orphanet, which
contains a large set of gene disease associations, and is also freely available.

Response: We fully agree that AmyCo is a fairly narrow database, covering only
amyloidoses. It was added to DISEASES as part of a specific research project focused on
these diseases, and as it contains high quality manually curated associations, we see no
reason to remove it. Regarding Orphanet, it is indeed a resource that we are considering to
add to DISEASES. However, it would take a significant amount of work to combine Disease
Ontology and Orphanet, since some diseases in Orphanet have Disease Ontology terms
whereas most do not. One would thus have to assign all Orphanet diseases that are not
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already in Disease Ontology as child terms of the appropriate Disease Ontology term. That
work is simply beyond the scope of this release of the database and would require dedicated
funding for the project given the very large number of diseases in Orphanet.

We now mention in the text that AmyCo database is a manually curated database.
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