Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

353 lines (324 sloc) 20.892 kb
#!/usr/bin/env python
# Copyright 2010 by Andrea Pierleoni
# Revisions copyright 2010-2013 by Peter Cock. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Test for the Uniprot parser on Uniprot XML files.
"""
import os
import unittest
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
#Left as None if the import within UniProtIO fails
if SeqIO.UniprotIO.ElementTree is None:
from Bio import MissingPythonDependencyError
raise MissingPythonDependencyError("No ElementTree module was found. "
"Use Python 2.5+, lxml or elementtree if you "
"want to use Bio.SeqIO.UniprotIO.")
from seq_tests_common import compare_reference, compare_record
class TestUniprot(unittest.TestCase):
def test_uni001(self):
"Parsing Uniprot file uni001"
filename = 'uni001'
# test the record parser
datafile = os.path.join('SwissProt', filename)
with open(datafile) as test_handle:
seq_record = SeqIO.read(test_handle, "uniprot-xml")
self.assertTrue(isinstance(seq_record, SeqRecord))
# test a couple of things on the record -- this is not exhaustive
self.assertEqual(seq_record.id, "Q91G55")
self.assertEqual(seq_record.name, "043L_IIV6")
self.assertEqual(seq_record.description, "Uncharacterized protein 043L")
self.assertEqual(repr(seq_record.seq), "Seq('MDLINNKLNIEIQKFCLDLEKKYNINYNNLIDLWFNKESTERLIKCEVNLENKI...IPI', ProteinAlphabet())")
# self.assertEqual(seq_record.accessions, ['Q91G55']) #seq_record.accessions does not exist
# self.assertEqual(seq_record.organism_classification, ['Eukaryota', 'Metazoa', 'Chordata', 'Craniata', 'Vertebrata', 'Mammalia', 'Eutheria', 'Primates', 'Catarrhini', 'Hominidae', 'Homo'])
# self.assertEqual(record.seqinfo, (348, 39676, '75818910'))
self.assertEqual(len(seq_record.features), 1)
self.assertEqual(repr(seq_record.features[0]), "SeqFeature(FeatureLocation(ExactPosition(0), ExactPosition(116)), type='chain', id='PRO_0000377969')")
self.assertEqual(len(seq_record.annotations['references']), 2)
self.assertEqual(seq_record.annotations['references'][0].authors, 'Jakob N.J., Mueller K., Bahr U., Darai G.')
self.assertEqual(seq_record.annotations['references'][0].title, 'Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus.')
self.assertEqual(seq_record.annotations['references'][0].journal, 'Virology 286:182-196(2001)')
self.assertEqual(seq_record.annotations['references'][0].comment, 'journal article | 2001 | Scope: NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA] | ')
self.assertEqual(len(seq_record.dbxrefs), 11)
self.assertEqual(seq_record.dbxrefs[0], 'DOI:10.1006/viro.2001.0963')
self.assertEqual(seq_record.annotations['sequence_length'], 116)
self.assertEqual(seq_record.annotations['sequence_checksum'], '4A29B35FB716523C')
self.assertEqual(seq_record.annotations['modified'], '2009-07-07')
self.assertEqual(seq_record.annotations['accessions'], ['Q91G55'])
self.assertEqual(seq_record.annotations['taxonomy'], ['Viruses', 'dsDNA viruses, no RNA stage', 'Iridoviridae', 'Iridovirus'])
self.assertEqual(seq_record.annotations['sequence_mass'], 13673)
self.assertEqual(seq_record.annotations['dataset'], 'Swiss-Prot')
self.assertEqual(seq_record.annotations['gene_name_ORF'], ['IIV6-043L'])
self.assertEqual(seq_record.annotations['version'], 21)
self.assertEqual(seq_record.annotations['sequence_modified'], '2001-12-01')
self.assertEqual(seq_record.annotations['keywords'], ['Complete proteome', 'Virus reference strain'])
self.assertEqual(seq_record.annotations['organism_host'], ['Acheta domesticus', 'House cricket', 'Chilo suppressalis', 'striped riceborer', 'Gryllus bimaculatus', 'Two-spotted cricket', 'Gryllus campestris', 'Spodoptera frugiperda', 'Fall armyworm'])
self.assertEqual(seq_record.annotations['created'], '2009-06-16')
self.assertEqual(seq_record.annotations['organism_name'], ['Chilo iridescent virus'])
self.assertEqual(seq_record.annotations['organism'], 'Invertebrate iridescent virus 6 (IIV-6)')
self.assertEqual(seq_record.annotations['recommendedName_fullName'], ['Uncharacterized protein 043L'])
self.assertEqual(seq_record.annotations['sequence_version'], 1)
self.assertEqual(seq_record.annotations['proteinExistence'], ['Predicted'])
def test_uni003(self):
"Parsing Uniprot file uni003"
filename = 'uni003'
# test the record parser
datafile = os.path.join('SwissProt', filename)
test_handle = open(datafile)
seq_record = SeqIO.read(test_handle, "uniprot-xml")
test_handle.close()
self.assertTrue(isinstance(seq_record, SeqRecord))
# test general record entries
self.assertEqual(seq_record.id, "O44185")
self.assertEqual(seq_record.name, "FLP13_CAEEL")
self.assertEqual(seq_record.description,
"FMRFamide-like neuropeptides 13")
self.assertEqual(repr(seq_record.seq),
"Seq('MMTSLLTISMFVVAIQAFDSSEIRMLDEQYDTKNPFFQFLENSKRSDRPTRAMD...GRK', ProteinAlphabet())")
self.assertEqual(len(seq_record.annotations['references']), 7)
self.assertEqual(seq_record.annotations['references'][5].authors,
'Kim K., Li C.')
self.assertEqual(seq_record.annotations['references'][5].title,
'Expression and regulation of an FMRFamide-related '
'neuropeptide gene family in Caenorhabditis elegans.')
self.assertEqual(seq_record.annotations['references'][5].journal,
'J. Comp. Neurol. 475:540-550(2004)')
self.assertEqual(seq_record.annotations['references'][5].comment,
'journal article | 2004 | Scope: TISSUE SPECIFICITY, '
'DEVELOPMENTAL STAGE | ')
self.assertEqual(seq_record.annotations["accessions"], ['O44185'])
self.assertEqual(seq_record.annotations["created"], "2004-05-10")
self.assertEqual(seq_record.annotations["dataset"], "Swiss-Prot")
self.assertEqual(seq_record.annotations["gene_name_ORF"], ['F33D4.3'])
self.assertEqual(seq_record.annotations["gene_name_primary"], "flp-13")
self.assertEqual(seq_record.annotations["keywords"],
['Amidation', 'Cleavage on pair of basic residues',
'Complete proteome', 'Direct protein sequencing',
'Neuropeptide', 'Reference proteome', 'Repeat',
'Secreted', 'Signal'])
self.assertEqual(seq_record.annotations["modified"], "2012-11-28")
self.assertEqual(seq_record.annotations["organism"],
"Caenorhabditis elegans")
self.assertEqual(seq_record.annotations["proteinExistence"],
['evidence at protein level'])
self.assertEqual(seq_record.annotations["recommendedName_fullName"],
['FMRFamide-like neuropeptides 13'])
self.assertEqual(seq_record.annotations["sequence_length"], 160)
self.assertEqual(seq_record.annotations["sequence_checksum"],
"BE4C24E9B85FCD11")
self.assertEqual(seq_record.annotations["sequence_mass"], 17736)
self.assertEqual(seq_record.annotations["sequence_modified"], "1998-06-01")
self.assertEqual(seq_record.annotations["sequence_precursor"], "true")
self.assertEqual(seq_record.annotations["sequence_version"], 1)
self.assertEqual(seq_record.annotations["taxonomy"],
['Eukaryota', 'Metazoa', 'Ecdysozoa', 'Nematoda',
'Chromadorea', 'Rhabditida', 'Rhabditoidea', 'Rhabditidae',
'Peloderinae', 'Caenorhabditis'])
self.assertEqual(seq_record.annotations["type"],
['ECO:0000006', 'ECO:0000001'])
self.assertEqual(seq_record.annotations["version"], 74)
# test comment entries
self.assertEqual(seq_record.annotations["comment_allergen"],
['Causes an allergic reaction in human.'])
self.assertEqual(seq_record.annotations["comment_alternativeproducts_isoform"],
['Q8W1X2-1', 'Q8W1X2-2'])
self.assertEqual(seq_record.annotations["comment_biotechnology"],
['Green fluorescent protein has been engineered to produce a '
'vast number of variously colored mutants, fusion proteins, '
'and biosensors. Fluorescent proteins and its mutated allelic '
'forms, blue, cyan and yellow have become a useful and '
'ubiquitous tool for making chimeric proteins, where they '
'function as a fluorescent protein tag. Typically they '
'tolerate N- and C-terminal fusion to a broad variety of '
'proteins. They have been expressed in most known cell types '
'and are used as a noninvasive fluorescent marker in living '
'cells and organisms. They enable a wide range of applications '
'where they have functioned as a cell lineage tracer, reporter '
'of gene expression, or as a measure of protein-protein '
'interactions.', 'Can also be used as a molecular thermometer, '
'allowing accurate temperature measurements in fluids. The '
'measurement process relies on the detection of the blinking '
'of GFP using fluorescence correlation spectroscopy.'])
self.assertEqual(seq_record.annotations["comment_catalyticactivity"],
['ATP + acetyl-CoA + HCO(3)(-) = ADP + phosphate + malonyl-CoA.',
'ATP + biotin-[carboxyl-carrier-protein] + CO(2) = ADP + '
'phosphate + carboxy-biotin-[carboxyl-carrier-protein].'])
self.assertEqual(seq_record.annotations["comment_caution"],
['Could be the product of a pseudogene. The existence of a '
'transcript at this locus is supported by only one sequence '
'submission (PubMed:2174397).'])
self.assertEqual(seq_record.annotations["comment_cofactor"],
['Biotin (By similarity).', 'Binds 2 manganese ions per '
'subunit (By similarity).'])
self.assertEqual(seq_record.annotations["comment_developmentalstage"],
['Expressed from the comma stage of embryogenesis, during all '
'larval stages, and in low levels in adults.'])
self.assertEqual(seq_record.annotations["comment_disease"],
['Defects in MC2R are the cause of glucocorticoid deficiency '
'type 1 (GCCD1) [MIM:202200]; also known as familial '
'glucocorticoid deficiency type 1 (FGD1). GCCD1 is an '
'autosomal recessive disorder due to congenital '
'insensitivity or resistance to adrenocorticotropin (ACTH). '
'It is characterized by progressive primary adrenal '
'insufficiency, without mineralocorticoid deficiency.'])
self.assertEqual(seq_record.annotations["comment_disruptionphenotype"],
['Mice display impaired B-cell development which does not '
'progress pass the progenitor stage.'])
self.assertEqual(seq_record.annotations["comment_domain"],
['Two regions, an N-terminal (aa 96-107) and a C-terminal '
'(aa 274-311) are required for binding FGF2.'])
self.assertEqual(seq_record.annotations["comment_enzymeregulation"],
['By phosphorylation. The catalytic activity is inhibited by '
'soraphen A, a polyketide isolated from the myxobacterium '
'Sorangium cellulosum and a potent inhibitor of fungal growth.'])
self.assertEqual(seq_record.annotations["comment_function"],
['FMRFamides and FMRFamide-like peptides are neuropeptides. '
'AADGAPLIRF-amide and APEASPFIRF-amide inhibit muscle tension '
'in somatic muscle. APEASPFIRF-amide is a potent inhibitor of '
'the activity of dissected pharyngeal myogenic muscle system.'])
self.assertEqual(seq_record.annotations["comment_induction"],
['Repressed in presence of fatty acids. Repressed 3-fold by '
'lipid precursors, inositol and choline, and also controlled '
'by regulatory factors INO2, INO4 and OPI1.'])
self.assertEqual(seq_record.annotations["comment_interaction_intactId"],
['EBI-356720', 'EBI-746969', 'EBI-720116'])
self.assertEqual(seq_record.annotations["comment_massspectrometry"],
['88..98:1032|MALDI', '100..110:1133.7|MALDI'])
self.assertEqual(seq_record.annotations["comment_miscellaneous"],
['Present with 20200 molecules/cell in log phase SD medium.'])
self.assertEqual(seq_record.annotations["comment_onlineinformation"],
['NIEHS-SNPs@http://egp.gs.washington.edu/data/api5/'])
self.assertEqual(seq_record.annotations["comment_pathway"],
['Lipid metabolism; malonyl-CoA biosynthesis; malonyl-CoA '
'from acetyl-CoA: step 1/1.'])
self.assertEqual(seq_record.annotations["comment_RNAediting"],
['Partially edited. RNA editing generates receptor isoforms '
'that differ in their ability to interact with the '
'phospholipase C signaling cascade in a transfected cell '
'line, suggesting that this RNA processing event may '
'contribute to the modulation of serotonergic '
'neurotransmission in the central nervous system.'])
self.assertEqual(seq_record.annotations["comment_PTM"],
['Acetylation at Lys-251 impairs antiapoptotic function.'])
self.assertEqual(seq_record.annotations["comment_pharmaceutical"],
['Could be used as a possible therapeutic agent for treating '
'rheumatoid arthritis.'])
self.assertEqual(seq_record.annotations["comment_polymorphism"],
['Position 23 is polymorphic; the frequencies in unrelated '
'Caucasians are 0.87 for Cys and 0.13 for Ser.'])
self.assertEqual(seq_record.annotations["comment_similarity"],
['Belongs to the FARP (FMRFamide related peptide) family.'])
self.assertEqual(seq_record.annotations["comment_subcellularlocation_location"],
['Secreted'])
self.assertEqual(seq_record.annotations["comment_subunit"],
['Homodimer.'])
self.assertEqual(seq_record.annotations["comment_tissuespecificity"],
['Each flp gene is expressed in a distinct set of neurons. '
'Flp-13 is expressed in the ASE sensory neurons, the DD motor '
'neurons, the 15, M3 and M5 cholinergic pharyngeal '
'motoneurons, and the ASG, ASK and BAG neurons.'])
self.assertEqual(seq_record.annotations["comment_toxicdose"],
['LD(50) is 50 ug/kg in mouse by intracerebroventricular '
'injection and 600 ng/g in Blatella germanica.'])
def compare_txt_xml(self, old, new):
self.assertEqual(old.id, new.id)
self.assertEqual(old.name, new.name)
self.assertEqual(len(old), len(new))
self.assertEqual(str(old.seq), str(new.seq))
for key in set(old.annotations).intersection(new.annotations):
if key == "references":
self.assertEqual(len(old.annotations[key]),
len(new.annotations[key]))
for r1, r2 in zip(old.annotations[key], new.annotations[key]):
#Tweak for line breaks in plain text SwissProt
r1.title = r1.title.replace("- ", "-")
r2.title = r2.title.replace("- ", "-")
r1.journal = r1.journal.rstrip(".") # Should parser do this?
r1.medline_id = "" # Missing in UniPort XML? TODO - check
#Lots of extra comments in UniProt XML
r1.comment = ""
r2.comment = ""
if not r2.journal:
r1.journal = ""
compare_reference(r1, r2)
elif old.annotations[key] == new.annotations[key]:
pass
elif key in ["date"]:
#TODO - Why is this a list vs str?
pass
elif type(old.annotations[key]) != type(new.annotations[key]):
raise TypeError("%s gives %s vs %s" %
(key, old.annotations[key], new.annotations[key]))
elif key in ["organism"]:
if old.annotations[key] == new.annotations[key]:
pass
elif old.annotations[key].startswith(new.annotations[key]+" "):
pass
else:
raise ValueError(key)
elif isinstance(old.annotations[key], list) \
and sorted(old.annotations[key]) == sorted(new.annotations[key]):
pass
else:
raise ValueError("%s gives %s vs %s" %
(key, old.annotations[key], new.annotations[key]))
self.assertEqual(len(old.features), len(new.features),
"Features in %s, %i vs %i" %
(old.id, len(old.features), len(new.features)))
for f1, f2 in zip(old.features, new.features):
"""
self.assertEqual(f1.location.nofuzzy_start, f2.location.nofuzzy_start,
"%s %s vs %s %s" %
(f1.location, f1.type, f2.location, f2.type))
self.assertEqual(f1.location.nofuzzy_end, f2.location.nofuzzy_end,
"%s %s vs %s %s" %
(f1.location, f1.type, f2.location, f2.type))
"""
self.assertEqual(repr(f1.location), repr(f2.location),
"%s %s vs %s %s" %
(f1.location, f1.type, f2.location, f2.type))
def test_Q13639(self):
"""Compare SwissProt text and uniprot XML versions of Q13639."""
old = SeqIO.read("SwissProt/Q13639.txt", "swiss")
new = SeqIO.read("SwissProt/Q13639.xml", "uniprot-xml")
self.compare_txt_xml(old, new)
def test_multi_ex(self):
"""Compare SwissProt text and uniprot XML versions of several examples."""
txt_list = list(SeqIO.parse("SwissProt/multi_ex.txt", "swiss"))
xml_list = list(SeqIO.parse("SwissProt/multi_ex.xml", "uniprot-xml"))
fas_list = list(SeqIO.parse("SwissProt/multi_ex.fasta", "fasta"))
with open("SwissProt/multi_ex.list") as handle:
ids = [x.strip() for x in handle]
self.assertEqual(len(txt_list), len(ids))
self.assertEqual(len(txt_list), len(fas_list))
self.assertEqual(len(txt_list), len(xml_list))
for txt, xml, fas, id in zip(txt_list, xml_list, fas_list, ids):
self.assertEqual(txt.id, id)
self.assertTrue(txt.id in fas.id.split("|"))
self.assertEqual(str(txt.seq), str(fas.seq))
self.compare_txt_xml(txt, xml)
def test_multi_ex_index(self):
"""Index SwissProt text and uniprot XML versions of several examples."""
txt_list = list(SeqIO.parse("SwissProt/multi_ex.txt", "swiss"))
xml_list = list(SeqIO.parse("SwissProt/multi_ex.xml", "uniprot-xml"))
with open("SwissProt/multi_ex.list") as handle:
ids = [x.strip() for x in handle]
txt_index = SeqIO.index("SwissProt/multi_ex.txt", "swiss")
xml_index = SeqIO.index("SwissProt/multi_ex.xml", "uniprot-xml")
self.assertEqual(sorted(txt_index), sorted(ids))
self.assertEqual(sorted(xml_index), sorted(ids))
#Check SeqIO.parse() versus SeqIO.index() for plain text "swiss"
for old in txt_list:
new = txt_index[old.id]
compare_record(old, new)
#Check SeqIO.parse() versus SeqIO.index() for XML "uniprot-xml"
for old in xml_list:
new = xml_index[old.id]
compare_record(old, new)
txt_index.close()
xml_index.close()
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity = 2)
unittest.main(testRunner=runner)
Jump to Line
Something went wrong with that request. Please try again.