Skip to content
This repository
Fetching contributors…

Cannot retrieve contributors at this time

file 736 lines (615 sloc) 30.171 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
"""Extract information from alignment objects.

In order to try and avoid huge alignment objects with tons of functions,
functions which return summary type information about alignments should
be put into classes in this module.

classes:
o SummaryInfo
o PSSM
"""

# standard library
import math
import sys

# biopython modules
from Bio import Alphabet
from Bio.Alphabet import IUPAC
from Bio.Seq import Seq
from Bio.SubsMat import FreqTable

# Expected random distributions for 20-letter protein, and
# for 4-letter nucleotide alphabets
Protein20Random = 0.05
Nucleotide4Random = 0.25


class SummaryInfo(object):
    """Calculate summary info about the alignment.

This class should be used to caclculate information summarizing the
results of an alignment. This may either be straight consensus info
or more complicated things.
"""
    def __init__(self, alignment):
        """Initialize with the alignment to calculate information on.
ic_vector attribute. A dictionary. Keys: column numbers. Values:
"""
        self.alignment = alignment
        self.ic_vector = {}

    def dumb_consensus(self, threshold = .7, ambiguous = "X",
                       consensus_alpha = None, require_multiple = 0):
        """Output a fast consensus sequence of the alignment.

This doesn't do anything fancy at all. It will just go through the
sequence residue by residue and count up the number of each type
of residue (ie. A or G or T or C for DNA) in all sequences in the
alignment. If the percentage of the most common residue type is
greater then the passed threshold, then we will add that residue type,
otherwise an ambiguous character will be added.

This could be made a lot fancier (ie. to take a substitution matrix
into account), but it just meant for a quick and dirty consensus.

Arguments:
o threshold - The threshold value that is required to add a particular
atom.
o ambiguous - The ambiguous character to be added when the threshold is
not reached.
o consensus_alpha - The alphabet to return for the consensus sequence.
If this is None, then we will try to guess the alphabet.
o require_multiple - If set as 1, this will require that more than
1 sequence be part of an alignment to put it in the consensus (ie.
not just 1 sequence and gaps).
"""
        # Iddo Friedberg, 1-JUL-2004: changed ambiguous default to "X"
        consensus = ''

        # find the length of the consensus we are creating
        con_len = self.alignment.get_alignment_length()

        # go through each seq item
        for n in range(con_len):
            # keep track of the counts of the different atoms we get
            atom_dict = {}
            num_atoms = 0

            for record in self.alignment._records:
                # make sure we haven't run past the end of any sequences
                # if they are of different lengths
                if n < len(record.seq):
                    if record.seq[n] != '-' and record.seq[n] != '.':
                        if record.seq[n] not in atom_dict:
                            atom_dict[record.seq[n]] = 1
                        else:
                            atom_dict[record.seq[n]] += 1

                        num_atoms = num_atoms + 1

            max_atoms = []
            max_size = 0

            for atom in atom_dict:
                if atom_dict[atom] > max_size:
                    max_atoms = [atom]
                    max_size = atom_dict[atom]
                elif atom_dict[atom] == max_size:
                    max_atoms.append(atom)

            if require_multiple and num_atoms == 1:
                consensus += ambiguous
            elif (len(max_atoms) == 1) and ((float(max_size)/float(num_atoms))
                                         >= threshold):
                consensus += max_atoms[0]
            else:
                consensus += ambiguous

        # we need to guess a consensus alphabet if one isn't specified
        if consensus_alpha is None:
            consensus_alpha = self._guess_consensus_alphabet(ambiguous)

        return Seq(consensus, consensus_alpha)

    def gap_consensus(self, threshold = .7, ambiguous = "X",
                       consensus_alpha = None, require_multiple = 0):
        """Same as dumb_consensus(), but allows gap on the output.

Things to do: Let the user define that with only one gap, the result
character in consensus is gap. Let the user select gap character, now
it takes the same is input.
"""
        # Iddo Friedberg, 1-JUL-2004: changed ambiguous default to "X"
        consensus = ''

        # find the length of the consensus we are creating
        con_len = self.alignment.get_alignment_length()

        # go through each seq item
        for n in range(con_len):
            # keep track of the counts of the different atoms we get
            atom_dict = {}
            num_atoms = 0

            for record in self.alignment._records:
                # make sure we haven't run past the end of any sequences
                # if they are of different lengths
                if n < len(record.seq):
                    if record.seq[n] not in atom_dict:
                        atom_dict[record.seq[n]] = 1
                    else:
                        atom_dict[record.seq[n]] += 1

                    num_atoms += 1

            max_atoms = []
            max_size = 0

            for atom in atom_dict:
                if atom_dict[atom] > max_size:
                    max_atoms = [atom]
                    max_size = atom_dict[atom]
                elif atom_dict[atom] == max_size:
                    max_atoms.append(atom)

            if require_multiple and num_atoms == 1:
                consensus += ambiguous
            elif (len(max_atoms) == 1) and ((float(max_size)/float(num_atoms))
                                         >= threshold):
                consensus += max_atoms[0]
            else:
                consensus += ambiguous

        # we need to guess a consensus alphabet if one isn't specified
        if consensus_alpha is None:
            #TODO - Should we make this into a Gapped alphabet?
            consensus_alpha = self._guess_consensus_alphabet(ambiguous)

        return Seq(consensus, consensus_alpha)

    def _guess_consensus_alphabet(self, ambiguous):
        """Pick an (ungapped) alphabet for an alignment consesus sequence.

This just looks at the sequences we have, checks their type, and
returns as appropriate type which seems to make sense with the
sequences we've got.
"""
        #Start with the (un-gapped version of) the alignment alphabet
        a = Alphabet._get_base_alphabet(self.alignment._alphabet)

        #Now check its compatible with all the rest of the sequences
        for record in self.alignment:
            #Get the (un-gapped version of) the sequence's alphabet
            alt = Alphabet._get_base_alphabet(record.seq.alphabet)
            if not isinstance(alt, a.__class__):
                raise ValueError("Alignment contains a sequence with \
an incompatible alphabet.")

        #Check the ambiguous character we are going to use in the consensus
        #is in the alphabet's list of valid letters (if defined).
        if hasattr(a, "letters") and a.letters is not None \
        and ambiguous not in a.letters:
            #We'll need to pick a more generic alphabet...
            if isinstance(a, IUPAC.IUPACUnambiguousDNA):
                if ambiguous in IUPAC.IUPACUnambiguousDNA().letters:
                    a = IUPAC.IUPACUnambiguousDNA()
                else:
                    a = Alphabet.generic_dna
            elif isinstance(a, IUPAC.IUPACUnambiguousRNA):
                if ambiguous in IUPAC.IUPACUnambiguousRNA().letters:
                    a = IUPAC.IUPACUnambiguousRNA()
                else:
                    a = Alphabet.generic_rna
            elif isinstance(a, IUPAC.IUPACProtein):
                if ambiguous in IUPAC.ExtendedIUPACProtein().letters:
                    a = IUPAC.ExtendedIUPACProtein()
                else:
                    a = Alphabet.generic_protein
            else:
                a = Alphabet.single_letter_alphabet
        return a

    def replacement_dictionary(self, skip_chars = []):
        """Generate a replacement dictionary to plug into a substitution matrix

This should look at an alignment, and be able to generate the number
of substitutions of different residues for each other in the
aligned object.

Will then return a dictionary with this information:
{('A', 'C') : 10, ('C', 'A') : 12, ('G', 'C') : 15 ....}

This also treats weighted sequences. The following example shows how
we calculate the replacement dictionary. Given the following
multiple sequence alignments:

GTATC 0.5
AT--C 0.8
CTGTC 1.0

For the first column we have:
('A', 'G') : 0.5 * 0.8 = 0.4
('C', 'G') : 0.5 * 1.0 = 0.5
('A', 'C') : 0.8 * 1.0 = 0.8

We then continue this for all of the columns in the alignment, summing
the information for each substitution in each column, until we end
up with the replacement dictionary.

Arguments:
o skip_chars - A list of characters to skip when creating the dictionary.
For instance, you might have Xs (screened stuff) or Ns, and not want
to include the ambiguity characters in the dictionary.
"""
        # get a starting dictionary based on the alphabet of the alignment
        rep_dict, skip_items = self._get_base_replacements(skip_chars)

        # iterate through each record
        for rec_num1 in range(len(self.alignment._records)):
            # iterate through each record from one beyond the current record
            # to the end of the list of records
            for rec_num2 in range(rec_num1 + 1, len(self.alignment._records)):
                # for each pair of records, compare the sequences and add
                # the pertinent info to the dictionary
                rep_dict = self._pair_replacement(
                    self.alignment._records[rec_num1].seq,
                    self.alignment._records[rec_num2].seq,
                    self.alignment._records[rec_num1].annotations.get('weight',1.0),
                    self.alignment._records[rec_num2].annotations.get('weight',1.0),
                    rep_dict, skip_items)

        return rep_dict

    def _pair_replacement(self, seq1, seq2, weight1, weight2,
                          start_dict, ignore_chars):
        """Compare two sequences and generate info on the replacements seen.

Arguments:
o seq1, seq2 - The two sequences to compare.
o weight1, weight2 - The relative weights of seq1 and seq2.
o start_dict - The dictionary containing the starting replacement
info that we will modify.
o ignore_chars - A list of characters to ignore when calculating
replacements (ie. '-').

Returns:
o A replacment dictionary which is modified from initial_dict with
the information from the sequence comparison.
"""
        # loop through each residue in the sequences
        for residue_num in range(len(seq1)):
            residue1 = seq1[residue_num]
            try:
                residue2 = seq2[residue_num]
            # if seq2 is shorter, then we just stop looking at replacements
            # and return the information
            except IndexError:
                return start_dict

            # if the two residues are characters we want to count
            if (residue1 not in ignore_chars) and (residue2 not in ignore_chars):
                try:
                    # add info about the replacement to the dictionary,
                    # modified by the sequence weights
                    start_dict[(residue1, residue2)] += weight1 * weight2

                # if we get a key error, then we've got a problem with alphabets
                except KeyError:
                    raise ValueError("Residues %s, %s not found in alphabet %s"
                                     % (residue1, residue2,
                                        self.alignment._alphabet))

        return start_dict

    def _get_all_letters(self):
        """Returns a string containing the expected letters in the alignment."""
        all_letters = self.alignment._alphabet.letters
        if all_letters is None \
        or (isinstance(self.alignment._alphabet, Alphabet.Gapped)
        and all_letters == self.alignment._alphabet.gap_char):
            #We are dealing with a generic alphabet class where the
            #letters are not defined! We must build a list of the
            #letters used...
            set_letters = set()
            for record in self.alignment:
                #Note the built in set does not have a union_update
                #which was provided by the sets module's Set
                set_letters = set_letters.union(record.seq)
            list_letters = list(set_letters)
            list_letters.sort()
            all_letters = "".join(list_letters)
        return all_letters

    def _get_base_replacements(self, skip_items = []):
        """Get a zeroed dictionary of all possible letter combinations.

This looks at the type of alphabet and gets the letters for it.
It then creates a dictionary with all possible combinations of these
letters as keys (ie. ('A', 'G')) and sets the values as zero.

Returns:
o The base dictionary created
o A list of alphabet items to skip when filling the dictionary.Right
now the only thing I can imagine in this list is gap characters, but
maybe X's or something else might be useful later. This will also
include any characters that are specified to be skipped.
"""
        base_dictionary = {}
        all_letters = self._get_all_letters()

        # if we have a gapped alphabet we need to find the gap character
        # and drop it out
        if isinstance(self.alignment._alphabet, Alphabet.Gapped):
            skip_items.append(self.alignment._alphabet.gap_char)
            all_letters = all_letters.replace(self.alignment._alphabet.gap_char,'')

        # now create the dictionary
        for first_letter in all_letters:
            for second_letter in all_letters:
                if first_letter not in skip_items and \
                   second_letter not in skip_items:
                    base_dictionary[(first_letter, second_letter)] = 0

        return base_dictionary, skip_items

    def pos_specific_score_matrix(self, axis_seq = None,
                                  chars_to_ignore = []):
        """Create a position specific score matrix object for the alignment.

This creates a position specific score matrix (pssm) which is an
alternative method to look at a consensus sequence.

Arguments:
o chars_to_ignore - A listing of all characters not to include in
the pssm. If the alignment alphabet declares a gap character,
then it will be excluded automatically.
o axis_seq - An optional argument specifying the sequence to
put on the axis of the PSSM. This should be a Seq object. If nothing
is specified, the consensus sequence, calculated with default
parameters, will be used.

Returns:
o A PSSM (position specific score matrix) object.
"""
        # determine all of the letters we have to deal with
        all_letters = self._get_all_letters()
        assert all_letters

        if not isinstance(chars_to_ignore, list):
            raise TypeError("chars_to_ignore should be a list.")

        # if we have a gap char, add it to stuff to ignore
        if isinstance(self.alignment._alphabet, Alphabet.Gapped):
            chars_to_ignore.append(self.alignment._alphabet.gap_char)

        for char in chars_to_ignore:
            all_letters = all_letters.replace(char, '')

        if axis_seq:
            left_seq = axis_seq
            assert len(axis_seq) == self.alignment.get_alignment_length()
        else:
            left_seq = self.dumb_consensus()

        pssm_info = []
        # now start looping through all of the sequences and getting info
        for residue_num in range(len(left_seq)):
            score_dict = self._get_base_letters(all_letters)
            for record in self.alignment._records:
                try:
                    this_residue = record.seq[residue_num]
                # if we hit an index error we've run out of sequence and
                # should not add new residues
                except IndexError:
                    this_residue = None

                if this_residue and this_residue not in chars_to_ignore:
                    weight = record.annotations.get('weight', 1.0)
                    try:
                        score_dict[this_residue] += weight
                    # if we get a KeyError then we have an alphabet problem
                    except KeyError:
                        raise ValueError("Residue %s not found in alphabet %s"
                                     % (this_residue,
                                        self.alignment._alphabet))

            pssm_info.append((left_seq[residue_num],
                              score_dict))

        return PSSM(pssm_info)

    def _get_base_letters(self, letters):
        """Create a zeroed dictionary with all of the specified letters.
"""
        base_info = {}
        for letter in letters:
            base_info[letter] = 0

        return base_info

    def information_content(self, start = 0,
                            end = None,
                            e_freq_table = None, log_base = 2,
                            chars_to_ignore = []):
        """Calculate the information content for each residue along an alignment.

Arguments:
o start, end - The starting an ending points to calculate the
information content. These points should be relative to the first
sequence in the alignment, starting at zero (ie. even if the 'real'
first position in the seq is 203 in the initial sequence, for
the info content, we need to use zero). This defaults to the entire
length of the first sequence.
o e_freq_table - A FreqTable object specifying the expected frequencies
for each letter in the alphabet we are using (e.g. {'G' : 0.4,
'C' : 0.4, 'T' : 0.1, 'A' : 0.1}). Gap characters should not be
included, since these should not have expected frequencies.
o log_base - The base of the logathrim to use in calculating the
information content. This defaults to 2 so the info is in bits.
o chars_to_ignore - A listing of characterw which should be ignored
in calculating the info content.

Returns:
o A number representing the info content for the specified region.

Please see the Biopython manual for more information on how information
content is calculated.
"""
        # if no end was specified, then we default to the end of the sequence
        if end is None:
            end = len(self.alignment._records[0].seq)

        if start < 0 or end > len(self.alignment._records[0].seq):
            raise ValueError("Start (%s) and end (%s) are not in the \
range %s to %s"
                    % (start, end, 0, len(self.alignment._records[0].seq)))
        # determine random expected frequencies, if necessary
        random_expected = None
        if not e_freq_table:
            #TODO - What about ambiguous alphabets?
            base_alpha = Alphabet._get_base_alphabet(self.alignment._alphabet)
            if isinstance(base_alpha, Alphabet.ProteinAlphabet):
                random_expected = Protein20Random
            elif isinstance(base_alpha, Alphabet.NucleotideAlphabet):
                random_expected = Nucleotide4Random
            else:
                errstr = "Error in alphabet: not Nucleotide or Protein, "
                errstr += "supply expected frequencies"
                raise ValueError(errstr)
            del base_alpha
        elif not isinstance(e_freq_table, FreqTable.FreqTable):
            raise ValueError("e_freq_table should be a FreqTable object")

        # determine all of the letters we have to deal with
        all_letters = self._get_all_letters()
        for char in chars_to_ignore:
            all_letters = all_letters.replace(char, '')

        info_content = {}
        for residue_num in range(start, end):
            freq_dict = self._get_letter_freqs(residue_num,
                                               self.alignment._records,
                                               all_letters, chars_to_ignore)
            # print freq_dict,
            column_score = self._get_column_info_content(freq_dict,
                                                         e_freq_table,
                                                         log_base,
                                                         random_expected)

            info_content[residue_num] = column_score
        # sum up the score
        total_info = sum(info_content.itervalues())
        # fill in the ic_vector member: holds IC for each column
        for i in info_content:
            self.ic_vector[i] = info_content[i]
        return total_info

    def _get_letter_freqs(self, residue_num, all_records, letters, to_ignore):
        """Determine the frequency of specific letters in the alignment.

Arguments:
o residue_num - The number of the column we are getting frequencies
from.
o all_records - All of the SeqRecords in the alignment.
o letters - The letters we are interested in getting the frequency
for.
o to_ignore - Letters we are specifically supposed to ignore.

This will calculate the frequencies of each of the specified letters
in the alignment at the given frequency, and return this as a
dictionary where the keys are the letters and the values are the
frequencies.
"""
        freq_info = self._get_base_letters(letters)

        total_count = 0
        # collect the count info into the dictionary for all the records
        for record in all_records:
            try:
                if record.seq[residue_num] not in to_ignore:
                    weight = record.annotations.get('weight',1.0)
                    freq_info[record.seq[residue_num]] += weight
                    total_count += weight
            # getting a key error means we've got a problem with the alphabet
            except KeyError:
                raise ValueError("Residue %s not found in alphabet %s"
                                 % (record.seq[residue_num],
                                    self.alignment._alphabet))

        if total_count == 0:
            # This column must be entirely ignored characters
            for letter in freq_info:
                assert freq_info[letter] == 0
                #TODO - Map this to NA or NaN?
        else:
            # now convert the counts into frequencies
            for letter in freq_info:
                freq_info[letter] = freq_info[letter] / total_count

        return freq_info

    def _get_column_info_content(self, obs_freq, e_freq_table, log_base,
                                 random_expected):
        """Calculate the information content for a column.

Arguments:
o obs_freq - The frequencies observed for each letter in the column.
o e_freq_table - An optional argument specifying the expected
frequencies for each letter. This is a SubsMat.FreqTable instance.
o log_base - The base of the logathrim to use in calculating the
info content.
"""
        try:
            gap_char = self.alignment._alphabet.gap_char
        except AttributeError:
            #The alphabet doesn't declare a gap - there could be none
            #in the sequence... or just a vague alphabet.
            gap_char = "-" # Safe?

        if e_freq_table:
            if not isinstance(e_freq_table, FreqTable.FreqTable):
                raise ValueError("e_freq_table should be a FreqTable object")
            # check the expected freq information to make sure it is good
            for key in obs_freq:
                if (key != gap_char and key not in e_freq_table):
                    raise ValueError("Expected frequency letters %s "
                                     "do not match observed %s"
                                     % (e_freq_table.keys(),
                                        obs_freq.keys() - [gap_char]))

        total_info = 0.0

        for letter in obs_freq:
            inner_log = 0.0
            # if we have expected frequencies, modify the log value by them
            # gap characters do not have expected frequencies, so they
            # should just be the observed frequency.
            if letter != gap_char:
                if e_freq_table:
                    inner_log = obs_freq[letter] / e_freq_table[letter]
                else:
                    inner_log = obs_freq[letter] / random_expected
            # if the observed frequency is zero, we don't add any info to the
            # total information content
            if inner_log > 0:
                letter_info = (obs_freq[letter] *
                               math.log(inner_log) / math.log(log_base))
                total_info += letter_info
        return total_info

    def get_column(self,col):
        return self.alignment.get_column(col)


class PSSM(object):
    """Represent a position specific score matrix.

This class is meant to make it easy to access the info within a PSSM
and also make it easy to print out the information in a nice table.

Let's say you had an alignment like this:
GTATC
AT--C
CTGTC

The position specific score matrix (when printed) looks like:

G A T C
G 1 1 0 1
T 0 0 3 0
A 1 1 0 0
T 0 0 2 0
C 0 0 0 3

You can access a single element of the PSSM using the following:

your_pssm[sequence_number][residue_count_name]

For instance, to get the 'T' residue for the second element in the
above alignment you would need to do:

your_pssm[1]['T']
"""
    def __init__(self, pssm):
        """Initialize with pssm data to represent.

The pssm passed should be a list with the following structure:

list[0] - The letter of the residue being represented (for instance,
from the example above, the first few list[0]s would be GTAT...
list[1] - A dictionary with the letter substitutions and counts.
"""
        self.pssm = pssm

    def __getitem__(self, pos):
        return self.pssm[pos][1]

    def __str__(self):
        out = " "
        all_residues = self.pssm[0][1].keys()
        all_residues.sort()

        # first print out the top header
        for res in all_residues:
            out += " %s" % res
        out += "\n"

        # for each item, write out the substitutions
        for item in self.pssm:
            out += "%s " % item[0]
            for res in all_residues:
                out += " %.1f" % item[1][res]

            out += "\n"
        return out

    def get_residue(self, pos):
        """Return the residue letter at the specified position.
"""
        return self.pssm[pos][0]


def print_info_content(summary_info,fout=None,rep_record=0):
    """ Three column output: position, aa in representative sequence,
ic_vector value"""
    fout = fout or sys.stdout
    if not summary_info.ic_vector:
        summary_info.information_content()
    rep_sequence = summary_info.alignment._records[rep_record].seq
    positions = summary_info.ic_vector.keys()
    positions.sort()
    for pos in positions:
        fout.write("%d %s %.3f\n" % (pos, rep_sequence[pos],
                   summary_info.ic_vector[pos]))

if __name__ == "__main__":
    print "Quick test"
    from Bio import AlignIO
    from Bio.Align.Generic import Alignment

    filename = "../../Tests/GFF/multi.fna"
    format = "fasta"
    expected = FreqTable.FreqTable({"A":0.25,"G":0.25,"T":0.25,"C":0.25},
                                   FreqTable.FREQ,
                                   IUPAC.unambiguous_dna)

    alignment = AlignIO.read(open(filename), format)
    for record in alignment:
        print str(record.seq)
    print "="*alignment.get_alignment_length()

    summary = SummaryInfo(alignment)
    consensus = summary.dumb_consensus(ambiguous="N")
    print consensus
    consensus = summary.gap_consensus(ambiguous="N")
    print consensus
    print
    print summary.pos_specific_score_matrix(chars_to_ignore=['-'],
                                            axis_seq=consensus)
    print
    #Have a generic alphabet, without a declared gap char, so must tell
    #provide the frequencies and chars to ignore explicitly.
    print summary.information_content(e_freq_table=expected,
                                      chars_to_ignore=['-'])
    print
    print "Trying a protein sequence with gaps and stops"

    alpha = Alphabet.HasStopCodon(Alphabet.Gapped(Alphabet.generic_protein, "-"), "*")
    a = Alignment(alpha)
    a.add_sequence("ID001", "MHQAIFIYQIGYP*LKSGYIQSIRSPEYDNW-")
    a.add_sequence("ID002", "MH--IFIYQIGYAYLKSGYIQSIRSPEY-NW*")
    a.add_sequence("ID003", "MHQAIFIYQIGYPYLKSGYIQSIRSPEYDNW*")
    print a
    print "="*a.get_alignment_length()

    s = SummaryInfo(a)
    c = s.dumb_consensus(ambiguous="X")
    print c
    c = s.gap_consensus(ambiguous="X")
    print c
    print
    print s.pos_specific_score_matrix(chars_to_ignore=['-', '*'], axis_seq=c)

    print s.information_content(chars_to_ignore=['-', '*'])

    print "Done"
Something went wrong with that request. Please try again.