
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

29
5

35
0

B
1

TEPZZ¥ 95¥5ZB_T
(11) EP 3 295 350 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
11.07.2018 Bulletin 2018/28

(21) Application number: 17724645.1

(22) Date of filing: 12.05.2017

(51) Int Cl.:
G06F 21/10 (2013.01) G06F 21/60 (2013.01)

G06F 21/51 (2013.01)

(86) International application number:
PCT/IB2017/052804

(87) International publication number:
WO 2017/195164 (16.11.2017 Gazette 2017/46)

(54) A METHOD AND SYSTEM FOR VERIFYING OWNERSHIP OF A DIGITAL ASSET USING A
DISTRIBUTED HASH TABLE AND A PEER-TO-PEER DISTRIBUTED LEDGER

VERFAHREN UND SYSTEM ZUM VERIFIZIEREN DER EIGENTÜMERSCHAFT VON DIGITALEN
VERMÖGENSWERTEN UNTER VERWENDUNG EINER VERTEILTEN HASH-TABELLE UND EINES
VERTEILTEN PEER-TO-PEER-KONTOS

PROCÉDÉ ET SYSTÈME PERMETTANT DE VÉRIFIER LA PROPRIÉTÉ D’UN ACTIF NUMÉRIQUE
À L’AIDE D’UNE TABLE DE HACHAGE DISTRIBUÉE ET D’UN REGISTRE DISTRIBUÉ DE POSTE
À POSTE

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 13.05.2016 GB 201608463
13.05.2016 GB 201608456
13.05.2016 GB 201608454

(43) Date of publication of application:
21.03.2018 Bulletin 2018/12

(73) Proprietor: Nchain Holdings Limited
St. John’s (AG)

(72) Inventors:
• SAVANAH, Stephane

Cardiff CF10 2HH (GB)
• WRIGHT, Craig Steven

Cardiff CF10 2HH (GB)

(74) Representative: Jones, Cerian
Urquhart-Dykes & Lord LLP
7th Floor, Churchill House
Churchill Way
Cardiff CF10 2HH (GB)

(56) References cited:
WO-A1-03/058451 US-A- 5 715 403

• Jeff Herbert ET AL: "A Novel Method for
Decentralised Peer-to-Peer Software License
Validation Using Cryptocurrency Blockchain
Technology", , 27 January 2015 (2015-01-27),
XP055358639, Retrieved from the Internet:
URL:http://crpit.com/confpapers/CRPITV159H
erbert.pdf [retrieved on 2017-03-24]

• Anonymous: "Contract - Bitcoin Wiki", , 22
October 2015 (2015-10-22), XP055361462,
Retrieved from the Internet:
URL:https://en.bitcoin.it/w/index.php?titl
e=Contract&oldid=59172 [retrieved on
2017-04-04]

EP 3 295 350 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

Technical Field

[0001] The present disclosure relates to security, control and verification methods for ensuring authorised control of
a digital asset. The invention is particularly suited for verifying ownership or authorised use/control of an item of computer
software. This may comprise using a distributed hash table and a peer-to-peer distributed ledger (blockchain).

Background

[0002] In this document we use the term ’blockchain’ to include all forms of electronic, computer-based, distributed
ledgers. These include consensus-based blockchain and transaction-chain technologies, permissioned and un-permis-
sioned ledgers, shared ledgers and variations thereof. The most widely known application of blockchain technology is
the Bitcoin ledger, although other blockchain implementations have been proposed and developed. While Bitcoin may
be referred to herein for the purpose of convenience and illustration, it should be noted that the invention is not limited
to use with the Bitcoin blockchain and alternative blockchain implementations and protocols fall within the scope of the
present invention. The term "user" may refer herein to a human or a processor-based resource.
[0003] A blockchain is a peer-to-peer, electronic ledger which is implemented as a computer-based decentralised,
distributed system made up of blocks which in turn are made up of transactions. Each transaction is a data structure
that encodes the transfer of control of a digital asset between participants in the blockchain system, and includes at
least one input and at least one output. Each block contains a hash of the previous block to that blocks become chained
together to create a permanent, unalterable record of all transactions which have been written to the blockchain since
its inception. Transactions contain small programs known as scripts embedded into their inputs and outputs, which
specify how and by whom the outputs of the transactions can be accessed. On the Bitcoin platform, these scripts are
written using a stack-based scripting language.
[0004] In order for a transaction to be written to the blockchain, it must be "validated". Network nodes (miners) perform
work to ensure that each transaction is valid, with invalid transactions rejected from the network. Software clients installed
on the nodes perform this validation work on an unspent transaction (UTXO) by executing its locking and unlocking
scripts. If execution of the locking and unlocking scripts evaluate to TRUE, the transaction is valid and the transaction
is written to the blockchain. Thus, in order for a transaction to be written to the blockchain, it must be i) validated by the
first node that receives the transaction - if the transaction is validated, the node relays it to the other nodes in the network;
and ii) added to a new block built by a miner; and iii) mined, i.e. added to the public ledger of past transactions.
[0005] Although blockchain technology is most widely known for the use of cryptocurrency implementation, digital
entrepreneurs have begun exploring the use of both the cryptographic security system Bitcoin is based on and the data
that can be stored on the Blockchain to implement new systems. It would be highly advantageous if the blockchain could
be used for automated tasks and processes which are not limited to the realm of cryptocurrency. Such solutions would
be able to harness the benefits of the blockchain (e.g. a permanent, tamper proof records of events, distributed processing
etc) while being more versatile in their applications.
[0006] One area of current research is the use of the blockchain for the implementation of "smart contracts". These
are computer programs designed to automate the execution of the terms of a machine-readable contract or agreement.
Unlike a traditional contract which would be written in natural language, a smart contract is a machine executable program
which comprises rules that can process inputs in order to produce results, which can then cause actions to be performed
dependent upon those results.
[0007] Another area of blockchain-related interest is the use of ’tokens’ (or ’coloured coins’) to represent and transfer
real-world entities via the blockchain. A potentially sensitive or secret item can be represented by the token which has
no discernible meaning or value. The token thus serves as an identifier that allows the real-world item to be referenced
from the blockchain.
[0008] Due to the tamper-proof record which they provide, blockchains are well suited for applications in which control,
visibility of events and secure transactions/exchanges are important. One such suitable application area is the exchange
or transfer of digital assets such as, for example, software. Traditional approaches to securing the integrity and sharing
of computer software involve the digital signing of the executables of the computer software. For instance, signing the
executable or other associated code with a cryptographic pair of keys, such as a public key and a private key. The public
key is often obtained from a trusted central authority such as a certification authority.
[0009] Computer software is often accompanied by a licence containing contractual obligations. The licence may
contain the terms that govern the use or redistribution of the software. However, an issue may arise where the computer
software or the associated licence is transferred to another user in an unauthorised or undesired manner. It is imperative
to verify ownership, authorisation and legitimate control of the software. This is to ensure that, for example, the software
has not been transferred to the wrong owner or contrary to authorisation. Therefore, it is desirable to provide a solution

EP 3 295 350 B1

3

5

10

15

20

25

30

35

40

45

50

55

which facilitates or enables the verification of ownership and/or transfer of a controlled digital asset or resource such as
software. This, in turn would aid in ensuring the integrity of the software and the electronic transfer process.
[0010] Any discussion of documents, acts, materials, devices, articles or the like which have been included in the
present specification is not to be taken as an admission that any or all of these matters form part of the prior art base
or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date
of each claim of this application.
[0011] Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be
understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not
the exclusion of any other element, integer or step, or group of elements, integers or steps. Jeff Herbert, Alan Litchfield:
A novel Method of decentralised peer-to-peer Software License Validation using Cryptocurrency Blockchain Technology,
27-30 January 2015, XP055358639 and Anonymous: Contract- Bitcoin Wiki, 22.October 2015, retrieved from ht-
tps://en.bitcoin.it/w/index.php? title=Contract&oldid=59172 , XP055361462 suggest to implement licensing schemes
over the blockchain.

Summary

[0012] The invention provides method(s) and corresponding system(s) as defined in the appended claims. The inven-
tion may provide a computer-implemented control and verification method/system. It may enable or facilitate the transfer
of a controlled asset between users on a computer-based network. The asset may be a digital asset. Herein, the term
"user" may be used to refer to a computer-based resourced. The controlled asset may be a portion or item of software.
The invention may provide a computer-implemented method of verifying a controlled asset e.g. a portion of computer
software. It may be a method of verifying ownership or authorisation of the software. The software may be verified for
installation on a computer-based resource.
[0013] The method may comprise a computer-implemented method of verifying ownership or authorised use/control
of an item of computer software after installation and prior to execution using a distributed hash table and a peer-to-peer
distributed ledger (blockchain). The method may comprise determining a second user public key (PU2) associated with
a second user (U2) from a transaction record stored on the peer-to-peer distributed ledger; determining a second public
key (P2) associated with the second user (U2) from an entry stored on the distributed hash table; comparing the second
user public key (PU2) and the second public key (P2); and verifying the ownership of the computer software based on
the comparing of the second user public key (PU2) and the second public key (P2).
[0014] It should be noted that the second user public key (PU2) and the second public key (P2) may be stored in, and
retrieved from, separate technical sources i.e. a blockchain and a DHT respectively. Thus, the invention may comprise
the use of different and distinct storage resources, with intercommunication and transfer of data between them. By
searching, processing and retrieving data from the DHT and the blockchain, the invention is able to achieve the enhanced
control, security and verification effects which result in a more secure approach to digital asset (e.g. software) installation,
transfer and authorisation.
[0015] In the method, comparing the second user public key (PU2) and the second public key (P2) may comprise
determining whether the second user public key (PU2) and the second public key (P2) match. The term "match" may
comprise a correspondence, equality or association between the second user public key (PU2) and the second public
key (P2).
[0016] In the method, the computer software may comprise a header and a body. The header may comprise a hash
value of the body of the computer software. The header may further comprise a hash value (H2) of a data associated
with the computer software or a licence. The body of the computer software may comprise an executable of the computer
software.
[0017] In the method, before determining the second user public key (PU2) the method may comprise installing the
executable of the computer software on a processing device associated with the second user (U2). In the method, before
installing the executable of the computer software, the method may comprise encrypting the executable of the computer
software.
[0018] Encrypting the executable of the computer software may comprise determining a generator value (GV); deter-
mining a second user second public key (P2U2) based on the second user public key (PU2) and the generator value
(GV), wherein the second user second public key (P2U2) forms a cryptographic pair with a second user second private
key (V2U2); determining a first user second public key (P2U1) based on a first user public key (PU1) and the generator
value (GV), wherein the first user second public key (P2U1) forms a cryptographic pair with a first user second private
key (V2U1); determining a common secret (CS) based on the second user second public key (P2U2) and the first user
second private key (V2U1); and encrypting the computer software with the common secret (CS) to generate an encrypted
executable of the computer software.
[0019] In the method, the encrypted executable of the computer software may be decrypted by determining the common
secret (CS) based on the first user second public key (P2U1) and the second user second private key (V2U2); and

EP 3 295 350 B1

4

5

10

15

20

25

30

35

40

45

50

55

decrypting the executable of the computer software with the common secret (CS) to generate a decrypted executable
of the computer software.
[0020] The method may further comprise executing instructions of the decrypted executable of the computer software
on the processing device associated with the second user (U2). The method may further comprise determining an
activation key (AK) from the second user (U2); and executing instructions of the decrypted executable of the computer
software based on the activation key (AK) on the processing device associated with the second user (U2).
[0021] In the method, before encrypting the executable of the computer software, the method may comprise determining
a data (D1) associated with the computer software; determining a first hash value (H1) of the computer software;
determining a second hash value (H2) based on the data (D1) and the computer software; sending, over a communications
network, the data (D1), the first hash value and the second hash value (H2) to an entry for storage in the distributed
hash table, wherein the second hash value (H2) is a key of a key-value pair and the data (D1) and the first hash value
(H1) are a value in the key-value pair; and determining the metadata (M) comprising the second hash value (H2) for
storage on the peer-to-peer distributed ledger.
[0022] A computer software program comprising machine-readable instructions to cause a processing device to im-
plement the method described above.
[0023] A computer system for verifying ownership of a computer software after installation and prior to execution using
a distributed hash table and a peer-to-peer distributed ledger, the system comprising a processing device associated
with a node on a peer-to-peer network of nodes, configured to determine a second user public key (PU2) associated
with a second user (U2) from a transaction record stored on the peer-to-peer distributed ledger; determine a second
public key (P2) associated with the second user (U2) from an entry stored on the distributed hash table; compare the
second user public key (PU2) and the second public key (P2); and verify the ownership of the computer software based
on the compare of the second user public key (PU2) and the second public key (P2).

Brief Description of Drawings

[0024]

Fig. 1 illustrates an example of a hash table.
Examples of the present disclosure will be described with reference to:

Fig. 2 illustrates a schematic diagram of an example system for determining a metadata (M) for securing computer
software of a computer software after installation and prior to execution using a distributed hash table;

Fig. 3 illustrates a flow chart of a computer-implemented method for determining a metadata (M) for securing a
computer software using a distributed hash table;

Fig. 4 illustrates an example of a Merkle tree;

Fig. 5 illustrates an example of a Merkle tree with reference to a computer software and a licence associated with
a computer software;

Fig. 6 illustrates a flow chart of a computer-implemented method for determining an identifier indicative of the location
of a computer software using a distributed hash table;

Fig. 7 illustrates a flow chart of a computer-implemented method for verifying ownership of a computer software for
installation using a distributed hash table and a peer-to-peer distributed ledger;

Fig. 8 illustrates a flow chart of computer-implemented methods for determining a common secret;

Fig. 9 illustrates a flow chart of computer-implemented methods for encrypting an executable of a computer software;

Fig. 10 illustrates a schematic of an example processing device.

Description of Embodiments

[0025] The present disclosure generally relates to methods and systems for utilising a distributed hash table and a
peer-to-peer (P2P) distributed ledger, such as the Bitcoin blockchain, to enable verifying a computer software after
installation and prior to execution.

EP 3 295 350 B1

5

5

10

15

20

25

30

35

40

45

50

55

[0026] While embodiments described below may refer specifically to transactions that occur on the Bitcoin blockchain
(referred to herein as the blockchain), it will be appreciated that the present invention may be implemented using other
P2P distributed ledgers. The blockchain is used below to describe aspects of the invention for simplicity only due to its
high level of standardisation and large quantity of associated public documentation.

Distributed hash table

[0027] In a typical client/server model a central server may be in charge of the majority of resources. This means that
in the event of an attack or failure on the central server, the majority of the resources stored on the central server may
be compromised. On the contrary, in a distributed model the resources are shared ("distributed") between participating
nodes. In this way, the capacity of all participating nodes is utilised and the failure of one server will not compromise the
majority of the resources.
[0028] Fig. 1 illustrates an example of a hash table. The hash table is comprised of key-value pairs. The key of each
key-value pair is mapped, by way of a hash function, to an index. The index defines the location of stored values of the
key-value pairs.
[0029] A DHT is an example of applying the distributed model to a hash table. Similar to a hash table, a DHT comprises
key-value pairs and provides an efficient method to locate ("lookup") a value of a key-value pair given just the key.
However, in contrast to the hash table, the key-value pairs are distributed and stored by a number of participating nodes.
In this way, responsibility for storing and maintaining the key-value pairs is shared by the participating nodes.
[0030] In the same way as a hash table, each key-value pair in the DHT is mapped to an index. The index is determined
for each key-value pair by performing a hash function on the key. For example, the cryptographic Secure Hash Algorithm
SHA-1 may be used to determine the index.
[0031] Each participating node is assigned at least one index by keyspace partitioning. For each index that the par-
ticipating node is assigned, the participating node stores the value of that key-value pair.
[0032] It is an advantage that values of the key-value pairs may be efficiently retrieved. To retrieve a value associated
with a key, a node may execute a "lookup" to determine the responsible node (via the index). The responsible node may
then be accessed to determine the value.

Bitcoin and the blockchain

[0033] As is well known in the art, the blockchain is a transaction type ledger of database where storage capacity is
distributed across networked nodes participating in a system based on the Bitcoin protocol. Each Bitcoin transaction is
broadcast to the network, the transactions are confirmed and then aggregated into blocks. The blocks are then included
on the blockchain by storing the blocks at multiple participating nodes.
[0034] A full copy of a cryptocurrency’s P2P distributed ledger contains every transaction ever executed in the crypto-
currency. Thus, a continuously growing list of transactional data records is provided. Since each transaction entered
onto the blockchain is cryptographically enforced, the blockchain is hardened against tampering and revision, even by
operators of the participating nodes.
[0035] Due to the transparency of the blockchain, histories are publicly available for each transaction.
[0036] It is a further advantage of the blockchain that the transaction and the record of the transaction are the same.
[0037] In this way, the information relating to the transaction is captured in the actual transaction. This record is
permanent and immutable and therefore removes the requirement for a third party to keep the transaction record on a
separate database.

Pay-to-script-hash and multi-signature

[0038] While embodiments below may refer specifically to transactions that use the pay-to-script-hash (P2SH) method
of the Bitcoin protocol, it will be appreciated that the present invention may be implemented using another method of
the Bitcoin protocol such as the pay-to-public-key-hash method.
[0039] Each transaction record on the blockchain comprises a script including information indicative of the transaction
and a number of public keys. These public keys may be associated with the sender and recipient of the cryptocurrency.
A script can be considered as a list of instructions recorded with each transaction record on the blockchain that describes
how a user may gain access to the cryptocurrency specified in the transaction record.
[0040] As background, in a standard P2SH method of the Bitcoin protocol, the output script, or redeem script, may
take the form:

 <NumSigs PubK1 PubK2 ... PubK15 NumKeys OP_CHECKMULTISIG>

EP 3 295 350 B1

6

5

10

15

20

25

30

35

40

45

50

55

[0041] where NumSigs is the number "m" of valid signatures required to satisfy the redeem script to unlock the trans-
action; PubK1, PubK2 ... PubK15 are the public keys that correspond to signatures that unlock the transaction (up to a
maximum of 15 public keys) and NumKeys is the number "n" of public keys.
[0042] In the Bitcoin protocol, signatures based on a user’s private key may be generated using the Elliptic Curve
Digital Signature Algorithm. The signatures are then used for redemption of the cryptocurrency associated with the
output script or redeem script. When a user redeems an output script or redeem script, the user provides their signature
and public key. The output script or redeem script then verifies the signature against the public key.
[0043] To redeem the above redeem script, at least a number "m" of signatures corresponding to the public keys are
required. In some examples, the order of the public keys is important and the number "m" out of "n" signatures for signing
must be done in sequence. For example, consider where "m" is 2 and "n" is 15. If there are two signatures are available
for use, Sig1 (corresponding to PubK1) and Sig 15 (corresponding to PubK15), the redeem script must be signed by
Sig1 first followed by Sig15.

Overview of the system

[0044] A method, device and system for determining a metadata (M) for securing a computer software and verifying
ownership of a computer software after installation and prior to execution will now be described.
[0045] Fig. 2 illustrates a system 1 that includes a first node 3 that is in communication with, over a communications
network 5, a second node 7. The first node 3 has an associated first processing device 21 and the second node 5 has
an associated second processing device 27. Examples of the first and second nodes 3, 7 include an electronic device,
such as a computer, tablet computer, mobile communication device, computer server etc.
[0046] A DHT 13 to record and store key-value pairs is also illustrated in Fig. 2. The DHT 13 may be associated with
one or more processing devices 19 to receive, record and store the values of the key-value pairs. The processing devices
19 may be used by participating nodes of the DHT 13. As described above, the DHT 13 provides an efficient method to
locate values of key-value pairs.
[0047] Fig. 2 also illustrates a P2P distributed ledger 14 to record transactions. The P2P distributed ledger 14 may be
associated with one or more processing devices 20 to receive and record transactions. As described above, an example
of a P2P distributed ledger 14 is the Bitcoin blockchain. Therefore, in the context of the blockchain, the processing
devices 20 associated with the P2P distributed ledger 14 may be processing devices referred to as "miners".
[0048] The first node 3 is associated with a first user 23 and the second node 7 is associated with a second user 24.
In one example, the first node 3 may represent a vendor of the computer software. In another example, the first node 3
may represent an agent or service provider. In yet another example, the first node 3 may represent a user of the computer
software.
[0049] The second node 7 may represent a user of the computer system. In another example, the second node 7 may
represent an agent, service provider or vendor of the computer software .
[0050] In one example, the first node 3 performs the method 100, 300, 400, 500, 600, 700, 800 as illustrated by Fig.
3, Fig. 6, Fig. 7, Fig. 8 and Fig. 9. In another example, the second node 7 performs the method 100, 300, 400, 500, 600,
700, 800.
[0051] While the exemplary embodiments below may refer to the first node 3 as performing the methods or the second
node 7 as performing the methods, it is to be understood the disclosure may also be adapted or modified to be performed
by other nodes.
[0052] The method 100 as illustrated by Fig. 3 secures computer software and includes determining 110 a data (D1)
associated with the computer software. The data (D1) may further comprise a licence associated with the computer
software. The method 100 also includes determining 120 a first hash value (H1) based on the computer software. In
one example, the first hash value (H1) may be in relation to an executable of the computer software.
[0053] The method 100 also includes determining 130 a second hash value (H2) based on the data (D1) and the
computer software. In one example, the second hash value (H2) may be representative of the details of the computer
software and the licence associated with the computer software. In a further example, the second hash value (H2) may
comprise additional information.
[0054] The method 100 further includes sending 140, over a communications network 5, the data (D1), the first hash
value (H1) and the second hash value (H2) to an entry on a distributed hash table 13, wherein the second hash value
(H2) is assigned to a key of a key-value pair and the data (D1) and the first hash value (H1) are assigned to the value
in the key-value pair. The value in the key-value pair may further comprise an identifier indicative of the location of the
computer software or licence.
[0055] The method 100 also includes determining 150 a metadata (M) that is based on the second hash value (H2)
for inclusion on the peer-to-peer distributed ledger 14. In one example, the metadata (M) may be included in a first
redeem script (RS1) for inclusion on the peer-to-peer distributed ledger 14.
[0056] The method 600 as illustrated by Fig. 7 verifies ownership of computer software after installation of the computer

EP 3 295 350 B1

7

5

10

15

20

25

30

35

40

45

50

55

software and is performed after the method described above. This is shown as the optional step 100 in Fig. 7. The
method 600 includes determining 610 a second user public key (PU2) associated with a second user (U2) from a
transaction record stored on the peer-to-peer distributed ledger 14. The second user public key (PU2) may be included
in an output script of the transaction record. In another example, the second user public key (PU2) may be included in
the metadata (M) that is on the peer-to-peer distributed ledger 14 as described above.
[0057] The method 600 also includes determining 620 a second public key (P2) associated with the second user (U2)
from an entry stored on the distributed hash table 13. The second public key (P2) may be the same as the second user
public key (PU2). The entry on the distributed hash table 13 may comprise a key-value pair.
[0058] The method 600 further includes comparing 630 the second user public key (PU2) and the second public key
(P2). The method 600 also includes verifying 640 the ownership of the computer software based on the comparing of
the second user public key (PU2) and the second public key (P2). In one example, verifying the ownership may indicate
that the second user public key (PU2) and the second public key (P2) match.
[0059] A detailed example of the method 100, 600 will now be described.

Determining a data associated with the computer software 110

[0060] As described above the method 100 includes determining 110 a data (D1) associated with the computer software.
Determining 110 a data (D1) may comprise receiving the data (D1) from a user, node or data store. Determining 110 a
data (D1) may further comprise generating the data (D1) at the first node 3.
[0061] In one example, the first node 3 may receive the data (D1) from the first user 23 via the user interface 15. In
another example, the first node 3 may receive the data (D1) from the second user 24. In yet another example, the first
node 3 may receive the data (D1) from a data store 17.
[0062] Data (D1) is associated with the computer software where data (D1) may identify the computer software,
additional information, a licence of the computer software or be indicative of the location of the computer software. For
example, the data (D1) may comprise a string or data structure that identifies the computer software. The string or data
structure may comprise a collection of identifying keywords and/or additional information about the computer software.
An example of additional information may be an identifier of the version of the computer software, for example a numeral.
For instance, if the computer software is entitled BobSoftware and the version is 3.0, the string or data structure (D1)
may comprise "Bob Software/3.0".
[0063] In a further example, the data (D1) may comprise an identifier of a licence associated with the computer software.
This may be a software licence identification number (ID) or a software licence key. In another example, the identifier
of the licence may comprise a cryptographic hash of the contents of the licence.
[0064] The data (D1) may further comprise an identifier indicative of the storage location of the computer software. In
one example, the identifier may comprise a URL for an object on the Internet. In a further example, a link to the storage
location of the computer software on a repository such as a hash table or distributed hash table may be provided.
[0065] In yet a further example the data (D1) may comprise information that identifies the vendor of the computer
software. This may include personal details such as name, address, contact details or a public key associated with the
vendor.

Determining a first hash value (H1) based on the computer software 120

[0066] As also described above the method 100 further includes determining 120 a first hash value (H1) of the computer
software. Determining 120 a first hash value (H1) may comprise receiving the first hash value (H1) from a user or
accessing the first hash value (H1) from a data store. Determining 120 a first hash value (H1) may further comprise
calculating the hash value at the first node 3.
[0067] In one example, the first node 3 may receive the first hash value (H1) from the first user 23 via the user interface
15. In another example, the first node 3 may receive the first hash value (H1) from the second user 24. In yet another
example, the first node 3 may access the first hash value (H1) from a local data store 17 or remote data store.
[0068] In one example, the first hash value (H1) is of an executable of the computer software. The executable of the
computer software may be retrieved from the communications network 5 such as the Internet. In another example, the
executable may be provided by the first user 23 or the second user 24. In yet another example, the executable may be
retrieved from the data store 17. In yet a further example, the executable may be retrievable from a repository such as
a hash table or a DHT.
[0069] The hash of the executable of the software may be determined using the SHA-256 algorithm to create a 256-
bit representation of the information. It is to be appreciated that other hash algorithms may be used, including other
algorithms in the Secure Hash Algorithm (SHA) family. Some particular examples include instances in the SHA-3 subset,
including SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, SHAKE256. Other hash algorithms may include
those in the RACE Integrity Primitives Evaluation Message Digest (RIPEMD) family. A particular example may include

EP 3 295 350 B1

8

5

10

15

20

25

30

35

40

45

50

55

RIPEMD-160. Other hash functions may include families based on Zémor-Tillich hash function and knapsack-based
hash functions.

Determining a second hash value (H2) based on the data (D1) and the computer software 130

[0070] The method 100 also includes determining 130 a second hash value (H2) based on the data (D1) and the
computer software.
[0071] In one example, the second hash value (H2) may be determined based on the hash of the concatenation of
the data (D1) and the executable (or hash of the executable, that is, the first hash value (H1)) of the computer software.
In a further example, the second hash value (H2) may be determined based on the hash of the concatenation of the
data (D1), the executable (or hash of the executable) of the computer software and additional information.
[0072] Additional information may comprise a public key of the first user 23 (PU1) or second user 24 (PU2). In a further
example the additional information may comprise an identifier of an entity associated with the first user 23 or second
user 24. For instance, the entity may be an employer of the first user 23 or second user 24. In another example, the
entity may be a service provider of the first user 23 or second user 24.
[0073] The additional information may further comprise a device identifier of a device associated with the first node
3, second node 7, first user 23 or second user 24. An example of a device is the first processing device 21 as illustrated
in Fig. 2. The device identifier may comprise at least one of the following: a MAC address, motherboard serial number
or a device identification number. The device identifier may further be a concatenation of at least two of the MAC address,
motherboard serial number or device identification number. In a further example the device identifier may comprise a
hash value associated with the MAC address, motherboard serial number or device identification number, or the con-
catenation described above.
[0074] In yet a further example the additional information may comprise an expiry date of the licence associated with
the computer software.

Licence associated with the computer software

[0075] In a further example, the second hash value (H2) may be determined based on the concatenation of the data
(D1), the executable (or hash of the executable) of the computer software, additional information or the licence that
relates to the computer software.
[0076] The representation of the licence may be a file or document which specifies the content of the licence. For
example, a plain ASCII text, PDF document or Word document. The second hash value (H2) may include the licence
in its original form, or for example it may provide a link to the location of the licence on a publicly accessible communications
network such as the Internet. In a further example, a link to the location of the licence on a repository such as a hash
table or DHT may be provided. In yet a further example, a link to the location of the licence on a computer-based resource,
such as the data store 17 may be provided.
[0077] In one example, the licence may comprise the first hash value (H1) associated with the computer software.
[0078] The licence associated with the computer software may further comprise additional information as described
above. In one example, the licence may be associated with a first user 23 or second user 24. The licence may comprise
the public key of the first user 23 (PU1) or second user 24 (PU2). In a further example the licence may comprise an
identifier of an entity associated with the first user 23 or second user 24.
[0079] The licence associated with the computer software may further comprise a device identifier of a device asso-
ciated with the first node 3, second node 7, first user 23 or second user 24. An example of a device is the first processing
device 21 as illustrated in Fig. 2. The device identifier may comprise at least one of the following: a MAC address,
motherboard serial number or a device identification number. The device identifier may further be a concatenation of at
least two of the MAC address, motherboard serial number or device identification number. In a further example the
device identifier may comprise a hash value associated with the MAC address, motherboard serial number or device
identification number, or the concatenation described above.
[0080] The first user 23 may be the vendor of the computer software and the second user 24 may be the recipient
("end user") of the computer software. In another example the second user 24 may be the vendor of the computer
software and the first user 23 may be the end user of the computer software.
[0081] In one example the licence associated with the computer software may authorise only one end user (a "single-
user licence"). In a further example, the licence associated with the computer software may authorise one device of the
end user (a "single-device licence"). In another example the licence associated with the computer software may authorise
more than one device of the end user (a "multi-device licence").
[0082] In another example, there may be more than one end user (a "multi-user licence"). In a further example, the
licence associated with the computer software may authorise one device per end user. In another example the licence
associated with the computer software may authorise more than one device per end user.

EP 3 295 350 B1

9

5

10

15

20

25

30

35

40

45

50

55

[0083] In the event that the licence is associated with a first user 23 or a second user 24, the licence may comprise
the first user public key (PU1) associated with the first user 23 and the second user public key (PU2) associated with
the second user 24.

Merkle tree

[0084] In another example, the licence may be the top hash value of a Merkle tree. An example of a Merkle tree is
illustrated in Fig. 4. In a Merkle tree, the hash value at each node are hashes of their respective "child" nodes. For
example, the hash value Hash-A 305 is the hash of the hash values at the two "child" nodes 309 and 311. It can be seen
that the top hash value of the Merkle tree, Hash-AB 303, comprises all the hash values in the Merkle tree. That is, it
captures the hash values of the four "leaves" at the bottom of the tree, A1 317, A2 319, B1 321 and B2 323.
[0085] In an example of the present disclosure, each "leaf’ of the Merkle tree may represent an aspect of the information
of the licence. An exemplary licence is illustrated in Fig. 5. The data (D1) 417 is captured in the hash value Hash-D 409,
the executable of the software 419 is captured in the hash value Hash-S 411 (HI), the public keys 421 of users 23 and/or
24 are captured in the hash value Hash-P 413 and the expiry date 423 is captured in the hash value Hash-E 415. It can
be seen that the nodes 405 and 407 capture the hash values associated with the leaves for data (D1) 417 and software
419, and public keys 421 and expiry date 423 respectively.
[0086] It is to be appreciated that other information not otherwise described above may comprise the additional infor-
mation that the hash value (H2) is based on.

Sending the data (D1), first hash value (H1) and second hash value (H2) to a distributed hash table 140

[0087] The method 100 also includes sending 140, over a communications network 5, the data (D1), first hash value
(H1) and the second hash value (H2) to an entry on a distributed hash table 13.
[0088] In one example, the second hash value (H2) may be a key of a key-value pair, and the data (D1) and the first
hash value (H1) may be a value in the key-value pair.
[0089] In a further example, additional information as described above may also be part of the value in the key-value
pair. This includes but is not limited to: public keys of the first user 23 or second user 24, a device identifier of a device
associated with the first node 3, second node 7, first user 23 or second user 24, an identifier indicative of the location
of the computer software or licence, or further additional information associated with the licence.
[0090] As described above, a DHT 13 is comprised of key-value pairs, where each key-value pair is assigned to an
index. In one example, the second hash value (H2) may be used to generate the index. A hash function or cryptographic
hash function may be performed on the second hash value (H2). For instance, the cryptographic function SHA-1 may
be used:

[0091] For the second hash value (H2) to be the key of a key-value pair in the DHT 13, and the data (D1) and the first
hash value (H1) to be the value in the key-value pair, the key and value are sent to any participating node of the DHT 13.
[0092] In one example, a message such as put(key, value) may be sent to a participating node of the DHT 13, where
key is the second hash value (H2) and value is the data (D1) and the first hash value (H1). The message may be sent
around all participating nodes until it is received by the participating node that is assigned to the index as indicated by
the keyspace partitioning. The participating node assigned to the index indicated in the message may then store the
key-value pair on the DHT 13 and assume responsibility for maintaining the entry associated with the key-value pair.
[0093] It is an advantage that the value of any given key may be retrieved from the DHT 13. In one example, the first
user 23 or second user 24 may wish to retrieve the value. The first user 23 or second user 24, via the first node 3, second
node 7 or another node not otherwise illustrated, may provide any participating node of the DHT 13 a request message
such as get(key). The request message may then be sent around all participating nodes until it is received by the
participating node that is assigned to the index as indicated by the keyspace partitioning.

Determining a metadata (M) 150

[0094] The method 100 further includes determining 150 a metadata (M) that comprises the second hash value (H2).
Determining 150 a metadata (M) may comprise receiving the metadata (M) from a user, node or data store. The metadata
(M) may be included in, for example, in one or more of the 15 places available for the public keys in a P2SH multi-
signature first redeem script (RS1) of a transaction on the P2P distributed ledger 14.
[0095] The first redeem script (RS1) of the transaction on the P2P distributed ledger 14 may represent an issuance,

EP 3 295 350 B1

10

5

10

15

20

25

30

35

40

45

50

55

or creation, of a tokenised transaction ("issuance token") that represents the content included in the metadata (M). In
one example, the token may be issued by an agent (A).
[0096] In the P2SH method of the Bitcoin protocol, metadata may be included in a redeem script by way of the method
provided below.

Metadata

[0097] Metadata (M) may be embedded in one or more of the 15 places available for the public keys in a P2SH multi-
signature redeem script (RS1). For example, the redeem script (RS1) may take the form of:

 <NumSigs Metadata1 Metadata2... PubK1 PubK2... NumKeys OP_CHECKMULTISIG>

where Metadata1 and Metadata2 each include metadata that takes the place of a public key in the redeem script and
PubK1 and PubK2 are public keys.
[0098] Metadata (M) may comprise the second hash value (H2). The metadata (M) may further comprise a description
or keyword describing conditions associated with the computer software or licence. For example, the date of the licence,
name, date of birth, address, contact details, or other details of the user associated with the licence. In a further example,
information associated with the quantity of cryptocurrency may be included.
[0099] The metadata (M) may include the information in a number of ways. In one example, the contents of the
information may be included. In a further example, a cryptographic hash of the information may be included. The hash
of the information may be determined using the SHA-256 algorithm to create a 256-bit representation of the information.
It is to be appreciated that other hash algorithms may be used, including other algorithms in the Secure Hash Algorithm
(SHA) family. Some particular examples include instances in the SHA-3 subset, including SHA3-224, SHA3-256,
SHA3-384, SHA3-512, SHAKE128, SHAKE256. Other hash algorithms may include those in the RACE Integrity Primitives
Evaluation Message Digest (RIPEMD) family. A particular example may include RIPEMD-160. Other hash functions
may include families based on Zémor-Tillich hash function and knapsack-based hash functions.
[0100] In further embodiments of the present disclosure, combinations including one or more of the above may be
included in the metadata (M). Since the metadata (M) may be made public by way of the P2P distributed ledger 14 such
as the blockchain, or transmitted over an unsecure network, it may be desirable that specific details of the metadata (M)
be veiled or hidden for privacy reasons.
[0101] Therefore, the use of multi-signature P2SH Bitcoin transactions in embodiments of the present disclosure offers
an advantage as it enables the transfer and permanent record of information associated with the computer software and
the licence. This record is achieved by including the metadata in the output script of a transaction, for example, a redeem
script.

First redeem script

[0102] As described above, a redeem script is an example of an output script in the standard P2SH method of the
Bitcoin protocol and describes how a user may gain access to the cryptocurrency specified in the transaction record.
[0103] In the present disclosure the first redeem script (RS1) for the issuance token may be based on the metadata
(M). The first redeem script (RS1) may further comprise an agent public key (PA) that forms a cryptographic pair with
an agent private key (VA). In this way, the agent private key (VA) is required to "unlock" or spend cryptocurrency that
is associated with the transaction.
[0104] In one example, the first redeem script (RS1) for the issuance token may include the metadata (M). The first
redeem script (RS1) may further comprise an agent public key (PA). In this example, the first redeem script (RS1) may
be of the form:

 <OP_1 PA Metadata1 Metadata2 OP_3 OP_CHECKMULTISIG>

where OP_1 denotes the number of signatures required to satisfy the first redeem script (RS1) to unlock the transaction
("NumSigs"), and OP_3 denotes the number of public keys in the redeem script ("NumKeys").
[0105] In this example, the first redeem script (RS1) may comprise two designated fields for the metadata, Metadata1
and Metadata2. A specific example of the Metadata1 and Metadata2 is illustrated in Table 1 below.

Table 1

Field Sub-field Bytes Comments

Metadata1 LicenceType 4 Coded value indicates type of licence.

EP 3 295 350 B1

11

5

10

15

20

25

30

35

40

45

50

55

[0106] This example includes providing a pointer to the licence in Metadata1 which may be useful where the size of
the licence precludes including such details in the metadata (M). Furthermore, since the metadata (M) may be made
public, or transmitted over an unsecure network, it may be desirable that specific details of the token be veiled or hidden
for privacy reasons.
[0107] The first 4 bytes of Metadata1 indicates the type of licence. For example, the licence type may denote the name
of the computer software such as BobSoftware. In a further example the licence type may denote the authorisation type
of the licence, such as "single-user" or "multi-device" as described above. The next 16 bytes holds the IP address of
the location of the actual electronic licence file, making allowance for IPv6 addresses. Note that in some embodiments,
this value may point to the seed of a torrent file such that the licence file can be distributed over the cloud rather than
being centralised. The following 12 bytes contains data specific to the type of licence.
[0108] The first 20 bytes of Metadata2 is a hash of the actual licence file using RIPEMD-160 over SHA256 applied to
the actual contents of the licence file. As the actual licence file may be retrievable this allows validation of the transaction
against the contract. Note that the licence file itself may be completely public (unencrypted and human readable) or may
be encrypted for privacy, depending on the requirements of the specific embodiment. The content of the remaining 12
bytes of Metadata2 may be used depending on the type of licence.
[0109] It can be seen from the example of the first redeem script (RS1) provided above that the issuance token must
be signed by the agent (A) in order to be spent. An example of the transaction for the issuance token is provided in Table
2, where for brevity the miner’s fee is not shown.

[0110] Lines 4 to 8 of Table 2 represent the input to the transaction which is the first quantity of cryptocurrency (C1)
that is to be included in the issuance token (i.e. "tokenised"). In this example, the first quantity of cryptocurrency (C1)
was the result of a previous transaction (ID-110) that transferred the first quantity of cryptocurrency to the benefit of the
agent (A), and therefore the previous transaction (ID-110) output script (redeem script ID-110) includes the agent’s public
key (PA). Accordingly, to unlock this previous output the script (redeem script ID-110) must be signed with the first user’s
private key (VA). Finally, line 8 of Table 2 indicates that the first quantity of cryptocurrency (C1) will be the first output
in this transaction (ID-600).

(continued)

Field Sub-field Bytes Comments

LicencePointer 16 IPv6 address identifying the DHT.

LicenceTypeData1 12 Format depends on value of LicenceType. Padded with zeros.

Metadata2 LicenceHash 20 RIPEMD-160(SHA256(actual licence file addressed by LicencePointer))

LicenceTypeData2 12 Format depends on value of LicenceType. Padded with zeros.

Table 2

ID-600 Transaction- ID

Version number Version number

1 Number of inputs

ID-110 Prev Trans Output

IDX-00 Prev Trans Output index

Script length Script length

OP_0 Sig-VA < redeem script ID-110 > ScriptSig

0000 0000 0000 0001 Sequence number

1 Number of outputs

C1 Output value

Output script length Output script length

OP_HASH160 < hash of redeem script (RS1) > OP_EQUAL Output script

LockTime LockTime

EP 3 295 350 B1

12

5

10

15

20

25

30

35

40

45

50

55

[0111] Lines 9 to 13 of Table 2 represent the first (and only) output of the transaction (ID-600), which in this case is
representative of the issuance token being created and transferred back to the agent. Line 10 shows the output value,
which is the first quantity of cryptocurrency (C1). Line 11 shows the output script, which includes a "< hash of redeem
script >" as is used in the P2SH method of the Bitcoin protocol. In this example, the redeem script is the first redeem
script (RS1) in the form as described above.
[0112] The output of the transaction (ID-600) shown in Table 2 is then recorded, with the first data output (O1), on the
P2P distributed ledger 14. In particular, the first data output (O1) may comprise an indication of the first quantity of
cryptocurrency (C1) that was transferred in the transaction. The first data output (O1) may further comprise a hash of
the first redeem script (RS1).
[0113] In future transactions of the first quantity of cryptocurrency (C1), for example the transfer of the token to a first
user 23 or second user 24, the script to unlock the first quantity of cryptocurrency (C1) (e.g. the input ScriptSig of the
future transaction) may be in the form:

 OP_0 Sig-VA Sig-VU1 <OP_1 PA PU1 Metadata1 Metadata2 OP_4
 OP_CHECKMULTISIG>

where Sig-VU1 indicates the signature of the first user 23. Note that the above script assumes that only one signature
from the agent (A) or the first user 23 is required to unlock the first quantity of cryptocurrency (C1).
[0114] The issuance token may be transferred to another user by way of a second redeem script (RS2).

Variations

Second redeem script

[0115] The token that is associated with the computer software and licence may be transferred from the agent (A) to
another user, for example the first user 23 or second user 24. In one example, the transfer of the token may be repre-
sentative as authorising access to the user for the computer software or licence. The transfer may be implemented by
a second redeem script (RS2).
[0116] In one example, the agent (A) wishes to transfer the issuance token to a first user 23. The first user 23 may
represent, for example, a vendor of the computer software.
[0117] In this example, the second redeem script (RS2) may be based on the metadata (M), the agent public key (PA)
associated with the agent (A) and the first user public key (PU1) associated with the first user 23.
[0118] The second redeem script (RS2) may be of the form:

 <OP_1 PA PU1 Metadata1 Metadata2 OP_4 OP_CHECKMULTISIG>

[0119] In this example, the second redeem script (RS2) comprises the same two metadata fields as the first redeem
script (RS1). The second redeem script (RS2) further comprises the agent public key (PA) associated with the agent
and the first user public key (PU1) associated with the first user.
[0120] It can be seen from the example of the second redeem script (RS2) provided above that the token that is
transferred must be signed by the agent (A) or the first user 23 in order to be spent. An example of the transaction for
this transfer of the issuance token is provided in Table 3, where again for brevity the miner’s fee is not shown.

Table 3

ID-610 Transaction- ID

Version number Version number

1 Number of inputs

ID-600 Prev Trans Output

IDX-00 Prev Trans Output index

Script length Script length

Sig-VA < OP_1 PA Metadata1 Metadata2 OP_3 OP_CHECKMULTISIG > ScriptSig

0000 0000 0000 0001 Sequence number

1 Number of outputs

EP 3 295 350 B1

13

5

10

15

20

25

30

35

40

45

50

55

[0121] Similar to Table 2, lines 4 to 8 of Table 3 represent the input to the transaction (ID-610). In this example, the
input is the issuance token, i.e. the output of the transaction (ID-600) that is illustrated in Table 2. It can be seen that
the redeem script in line 7 corresponds to the redeem script of the issuance token, i.e. the first redeem script (RS1).
Accordingly, to unlock the output of the transaction (ID-600) the first redeem script (RS1) must be signed with the agent’s
public key (PA).
[0122] Lines 9 to 13 of Table 3 represent the output of the transaction (ID-610), which in this case is representative
of the issuance token being transferred to either the agent (A) or the first user 23 (U1). Line 10 shows the output value,
which is the first quantity of cryptocurrency (C1). Line 12 shows the output script, which includes a "< hash of redeem
script >" as is used in the P2SH method of the Bitcoin protocol. In this example, the redeem script is the second redeem
script (RS2) in the form as described above.
[0123] The output of the transaction (ID-610) is then recorded, with a second data output (O2), on the P2P distributed
ledger 14. The second data output (O2) may comprise an indication that the first quantity of cryptocurrency (C1) from
the first data output (O1) is to be transferred in the transaction. The second data output (O2) may further comprise a
hash of the second redeem script (RS2).

Identifier indicative of the location of the computer software or licence

[0124] As described above the data (D1) or licence may comprise an identifier indicative of the location of the computer
software or licence respectively.
[0125] In one example, the identifier may be determined independently to the data (D1) or the licence and remain
separate to the data (D1) or licence. The identifier may further be assigned to the value of the key-value pair together
with the data (D1) and the first hash value (H1) as described in the method 100 above. In this way, the identifier may
be included in the value field of the message put(key, value) and sent to a participating node in the DHT 13, as described
above.
[0126] In one example, the identifier indicative of the location may comprise a URL for an object on the Internet. In
another example, the identifier indicative of the location may comprise an address for a repository such as a hash table
or a DHT 13. In yet another example, the identifier indicative of the location may comprise an address for a computer-
based repository such as a server, database or storage facility provided on a computer-based resource, such as the
data store 17 associated with the first processing device 21 of the first node 3.
[0127] Fig. 6 illustrates a method 500 for determining location of the computer software or licence. The method 500
includes determining 510 the metadata (M) from the first redeem script (RS1). As described above, the metadata (M)
may be embedded in one or more of the 15 places available for the public keys in the first redeem script (RS1).
[0128] In the P2SH method of the Bitcoin protocol, when the output of a transaction is spent in a subsequent transaction,
the redeem script becomes visible in the subsequent transaction. As described above and with reference to Table 2,
the transaction (ID-600) for the issuance token is paid back to the agent (A). In this way, the agent (A) may spend this
issuance token to expose the first redeem script (RS1). The metadata (M) that is based on the second hash value (H2)
is therefore visible on the P2P distributed ledger 14. In this way, the second hash value (H2) is able to be retrieved 520
from the metadata (M) in the first redeem script (RS1). In one example, the value associated with the key of the key-
value pair is able to be retrieved from the DHT 13 using the request message get(key).
[0129] The method 500 further includes sending 530, over a communications network 5, the second hash value (H2)
to a processor associated with a participating node of the DHT 13. As described above, the second hash value (H2)
may be the key of the key-value pair. As also described above, the value for a given key may be retrieved by providing
a message containing the key to any participating node of the DHT 13. Therefore, in the example where the identifier
is included in the value field of the key-value pair, the method 500 is able to determine 540, from the processor of the
participating node, the identifier indicative of the location of the computer software or licence.

Verifying ownership of a computer software after installation 600

[0130] As described above the method 600 verifies the ownership of computer software after installation of the computer

(continued)

C1 Output value

Output script length Output script length

OP _HASH160 < hash of redeem script (RS2) > OP_EQUAL Output script

LockTime LockTime

EP 3 295 350 B1

14

5

10

15

20

25

30

35

40

45

50

55

software. In one example, a user of the computer software such as the second user 24, may redeem the token that is
associated with the computer software and licence. In a further example the token may be received by the second user
24 using the second redeem script as described above.
[0131] The second user 24 may determine the identifier indicative of the location of the computer software from the
entry on the DHT 13 by using the method 500 as described above. In this way, the second user 24 is able to determine
the location of the computer software and retrieve it. In one example, the computer software may be stored at a URL
on the Internet. In another example, the computer software may be stored on a computer-based repository such as a
server, database or storage facility provided on a computer-based resource.
[0132] After the second user 24 has retrieved the computer software the computer software may be installed on a
processing device 27 associated with the second user 24. In one example the executable of the computer software is
also the installer of the computer software. In another example the installer of the computer software may be a boot loader.
[0133] After the computer software has been installed on the processing device 17 the ownership of the computer
software may be verified. The verification of ownership may use a transaction record, where the transaction may be
determined as described in Table 2 or Table 3 above, and the information stored on the value field of the entry on the
DHT 13.

Determining a second user public key (PU2) associated with a second user (U2) 610

[0134] As described above the method 600 includes determining 610 a second user public key (PU2) associated with
a second user (U2) from a transaction record stored on the P2P distributed ledger 14. Determining a second user public
key (PU2) from a transaction record may comprise receiving the transaction record from a user, node or data store and
querying the transaction record for the second user public key (PU2). Determining a second user public key (PU2) from
a transaction record may further comprise accessing the transaction record at a user, node or data store and querying
the transaction record for the second user public key (PU2).
[0135] In one example, the second node 7 associated with the second user 24 may receive the transaction record
from the first node 3 or a data store 17 associated with the first node 3. In another example, the second node 7 may
receive the transaction record from the first user 23 or second user 24. The transaction record may be related to the
transactions as described in Tables 2 and 3 above.
[0136] In yet another example, the second node 7 may access the transaction record at the second node 7 or at a
data store associated with the second node 7. In a further example, the transaction record may be accessed by the
second node 7 using a publicly available facility such as www.blockchain.info.
[0137] The transaction record stored on the P2P distributed ledger 14 may comprise information that identifies the
transaction or users associated with the transaction. An example of the information comprised in a transaction record
is shown in Table 4.

[0138] Each transaction output includes information on the amount of cryptocurrency transferred and an output script
that defines the conditions required to be satisfied to spend the cryptocurrency. The output script typically includes a
public key associated with a recipient of the cryptocurrency.
[0139] In one example, the public key associated with the recipient of the cryptocurrency in the output script may be
the second user public key (PU2). In this way, the second user public key (PU2) associated with the second user (U2)
is determined from the output script on the transaction record stored on the P2P distributed ledger 14.
[0140] As described above, in the P2SH method of the Bitcoin protocol the output script is the redeem script. The
redeem script may include a number of public keys associated with the sender and recipient of the cryptocurrency. In
one example, the second user public key (PU2) associated with the second user (U2) may be determined from the
redeem script of the transaction record.

Table 4

Field Description

Version number Indicates which rules of the Bitcoin protocol the transaction will follow

Number of inputs Number of inputs

Inputs At least one input

Number of outputs Number of outputs

Outputs At least one output

LockTime A timestamp

EP 3 295 350 B1

15

5

10

15

20

25

30

35

40

45

50

55

[0141] In another example, the second user public key (PU2) may be stored in the metadata (M) of the redeem script.
As described above, in the P2SH method when the output of the transaction is spent in a subsequent transaction, the
redeem script becomes visible on the P2P distributed ledger 14. In this way, the second user public key (PU2) is able
to be retrieved from the metadata (M) in the redeem script.

Determining a second public key (P2) associated with the second user (U2) 620

[0142] The method 600 further includes determining 620 a second public key (P2) associated with the second user
(U2) from an entry stored on the DHT 13. Determining a second public key (P2) may comprise retrieving a value of the
key-value pair associated with the entry stored on the DHT 13. Determining a second public key (P2) may also comprise
receiving the value of the key-value pair from another node.
[0143] In one example, the value of the key-value pair associated with the entry on the DHT 13 may be retrieved by
sending a request message to a participating node of the DHT 13. As described above, the request message may
comprise get(key), where key is the key for the key-value pair associated with the entry on the DHT 13.
[0144] In a further example, the key of the key-value pair is the second hash value (H2).
[0145] In another example, the second node 7 may receive the value stored on the DHT 13 from the first node 3 or
another node not otherwise illustrated. The first node 3 or other node may provide a participating node of the DHT 13
the request message get(key). The first node 3 or other node may then receive the value of the key-value pair associated
with the entry on the DHT 13. The value of the key-value pair may then be sent to the second node 7 from the first node
3 or other node over the communications network 5.

Comparing the second user public key (PU2) and the second public key (P2) 630

[0146] The method further includes comparing 630 the second user public key (PU2) and the second public key (P2).
Comparing may comprise determining whether the second user public key (PU2) and the second public key (P2) match.
[0147] In one example, a match may indicate that the second user public key (PU2) and the second public key (P2)
are equivalent.
[0148] In another example, a match may indicate that the second user public key (PU2) and the second public key
(P2) belong to the same cryptocurrency wallet.
[0149] In a further example, the cryptocurrency wallet may be a deterministic wallet and a match may indicate that
the second user public key (PU2) and the second public key (P2) are derived from a common seed. The common seed
may be a sequence of characters.

Verifying the ownership of the computer software based on the comparing 640

[0150] The method 600 further includes verifying 640 the ownership of the computer software based on the comparing
of the second user public key (PU2) and the second public key (P2).
[0151] In one example, verifying the ownership of the computer software occurs if the comparing determines the
second user public key (PU2) and the second public key (P2) match. Verification may involve permitting or enabling a
user to use or interact with the software or otherwise perform some act in relation to the software if a match has been
established.

Variations

Computer software

[0152] The computer software may comprise a header and a body. In one example, the header may comprise infor-
mation associated with the computer software. In a further example, the header may comprise a hash value of the body
of the computer software. In yet a further example, the header may comprise the second hash value (H2) as described
above. The body of the computer software may comprise an executable of the computer software.

Installing the computer software

[0153] The executable of the computer software may comprise instructions that cause a second processing device
27 associated with the second user 24 to install the computer software. In one example, the computer software is installed
on the second processing device 27 before determining 610 the second user public key (PU2).

EP 3 295 350 B1

16

5

10

15

20

25

30

35

40

45

50

55

Encrypting the executable of the computer software

[0154] In the method 600 described above, before installing the executable of the computer software, the method 600
may comprise encrypting the executable of the computer software. The executable of the computer software may be
encrypted after the method 100 described above.
[0155] In one example, the executable of the computer software is encrypted with a public key associated with the
first user 23 or second user 24. In another example, the executable of the computer software is encrypted with a public
key associated with the first node 3 or second node 7. In yet another example, the executable of the computer software
is encrypted with a public key associated with a third party or a node not otherwise illustrated.
[0156] In another example, the executable of the computer software may be encrypted using a common secret sharing
approach similar to the technique described provided below.

Determining the common secret (CS)

[0157] A common secret for encryption may be determined at the nodes 3, 7 by the users 23, 24 associated with the
nodes by performing the steps of the methods 300, 400 respectively as illustrated in Fig. 8. In this way, the common
secret may be independently determined without communicating private keys associated with the users 23, 24 over the
communications network 5.
[0158] As illustrated in Fig. 8, the method 300 performed by the first user 23 includes determining 300 a first user
second private key (V2U1) based on at least a first user private key (VU1) and a generator value (GV). The first user
private key (VU1) forms a cryptographic pair with the first user public key (PU1).
[0159] The generator value may be based on a message that is shared between the first user 23 and second user
24, which may include sharing the message over the communications network 5. The method 300 also includes deter-
mining 370 a second user second public key (P2U2) based on at least the second user public key (PU2) and the generator
value (GV). The method 300 further includes determining 380, at the first user 23, the common secret (CS) based on
the second user second public key (P2U2) and the first user second private key (V2U1).
[0160] Significantly, the same common secret (CS) can be determined by the second user 24 associated with the
second node 7 by method 400. The method 400 includes determining 430 a first user second public key (P2U1) based
on the first user public key (PU1) and the generator value (GV). The method 400 further includes determining 470 a
second user second private key (V2U2) based on the second user private key (VU2) and the generator value (GV). The
second user private key (VU2) forms a cryptographic pair with the second user public key (PU2).
[0161] The method 400 further includes determining 480, at the second user 24, the common secret (CS) based on
the first user second public key (P2U1) and the second user second private key (V2U2). The methods 300, 400 may be
repeated to yield first user additional public keys or second user additional public keys.

Encrypting the executable of the computer software

[0162] The common secret (CS) may be used as the basis to generate a symmetric-key for encryption. In one example,
the common secret (CS) may be in the form of an elliptic curve point (xs, ys). This may be converted into a standard key
format using standard operations agreed by nodes 3, 7. For example, the xs value may be a 256-bit integer that could
be used as a key for AES256 (Advanced Encryption Standard) encryption. It could also be converted into a 160-bit integer
using RIPEMD160. Methods 700, 800 of secure communication with encryption by the first user 23 will now be described
with reference to Fig. 9.
[0163] In the exemplary embodiment provided below, the first user 23 associated with the first node 3 performs the
method 700 of encrypting the executable of the computer software. It is to be understood that the method 700 can equally
be applied to the second user 24 at the second node 7.
[0164] The first user 23 determines 710 a symmetric-key based on the common secret (CS) determined in the method
300, 400 above. This may include converting the common secret (CS) to a standard key format as described above.
Similarly, the second user 24 can also determine 810 the symmetric-key based on the common secret (CS).
[0165] The symmetric-key may be used by the first user 23 for encrypting 720 the executable of the computer software
to form an encrypted executable of the computer software. The encrypted executable of the computer software is then
included 730 into the body of the computer software.
[0166] The computer software comprising the encrypted executable of the computer software may be sent 740, over
the communications network 5, to a storage location. In one example, the storage location may be a repository such as
a hash table or the DHT 13. In another location, the storage location may be on the Internet. In yet another example,
the storage location may be a computer-based repository such as a server, database or storage facility provided on a
computer-based resource, such as the data store 17 associated with the first processing device 21 of the first node 3.
[0167] The second user 24, in turn, determines the encrypted executable of the computer software. Determining the

EP 3 295 350 B1

17

5

10

15

20

25

30

35

40

45

50

55

encrypted executable of the computer software may comprise downloading the computer software from the storage
location as described above. In one example, the second user 24 downloads the encrypted executable of the computer
software from an entry on the DHT 13.
[0168] The second user 24 may decrypt 830 the encrypted executable of the computer software, with the symmetric-
key, to the executable of the computer software.

Processing device

[0169] As noted above, the first node 3 and second node 7 may be an electronic device, such as a computer, tablet
computer, mobile communication device, computer server etc. The electronic device may include a processing device
21, 27, a data store 17 and a user interface 15.
[0170] Fig. 10 illustrates an example of a processing device 21, 27. The processing device 21, 27 may be used at the
first node 3, second node 7 or other nodes not otherwise illustrated. The processing device 21, 27 includes a processor
1510, a memory 1520 and an interface device 1540 that communicate with each other via a bus 1530. The memory
1520 stores a computer software program comprising machine-readable instructions and data for implementing the
method 100, 300, 400, 600, 700 and 800 described above, and the processor 1510 performs the instructions from the
memory 1520 to implement the method 100, 300, 400, 600, 700 and 800. The interface device 1540 may include a
communications module that facilitates communication with the communications network 5, and in some examples, with
the user interface 15 and peripherals such as data store 17. It should be noted that although the processing device 1510
may be an independent network element, the processing device 1510 may also be part of another network element.
Further, some functions performed by the processing device 1510 may be distributed between multiple network elements.
For example, the first node 3 may have multiple processing devices 21 to perform method 100, 300, 400, 600, 700 and
800 in a secure local area network associated with the first node 3.
[0171] Where this disclosure describes that a user, employer, employee, issuer, merchant, provider or other entity
performs a particular action (including signing, issuing, determining, calculating, sending, receiving, creating etc), this
wording is used for the sake of clarity of presentation. It should be understood that these actions are performed by the
computing devices operated by these entities.
[0172] It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made
to the above-described embodiments, without departing from the broad general scope of the present disclosure. The
present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims

1. A computer-implemented method of verifying ownership of a computer software after installation and prior to exe-
cution of the computer software using a distributed hash table and a peer-to-peer distributed ledger, the method
comprising:

determining a second user public key (PU2) associated with a second user (U2) from a transaction record stored
on the peer-to-peer distributed ledger;
determining a second public key (P2) associated with the second user (U2) from an entry stored on the distributed
hash table;
comparing the second user public key (PU2) and the second public key (P2); and
verifying the ownership of the computer software based on the comparing of the second user public key (PU2)
and the second public key (P2).

2. The method of claim 1, wherein comparing the second user public key (PU2) and the second public key (P2)
comprises determining whether the second user public key (PU2) and the second public key (P2) match.

3. The method of claim 1 or 2 , wherein the computer software comprises a header and a body.

4. The method of claim 3, wherein the header comprises a hash value of the body of the computer software.

5. The method of claims 3 or 4, wherein the header further comprises a hash value (H2) of a data associated with the
computer software or a licence .

6. The method of claims 3, 4 or 5, wherein the body of the computer software comprises an executable of the computer
software.

EP 3 295 350 B1

18

5

10

15

20

25

30

35

40

45

50

55

7. The method of claim 5, wherein before determining the second user public key (PU2), the method comprises installing
the executable of the computer software on a processing device associated with the second user (U2).

8. The method of claim 7, wherein before installing the executable of the computer software, the method comprises
encrypting the executable of the computer software.

9. The method of claim 8, wherein encrypting the executable of the computer software comprises:

determining a generator value (GV);
determining a second user second public key (P2U2) based on the second user public key (PU2) and the
generator value (GV), wherein the second user second public key (P2U2) forms a cryptographic pair with a
second user second private key (V2U2);
determining a first user second public key (P2U1) based on a first user public key (PU1) and the generator
value (GV), wherein the first user second public key (P2U1) forms a cryptographic pair with a first user second
private key (V2U1);
determining a common secret (CS) based on the second user second public key (P2U2) and the first user
second private key (V2U1); and
encrypting the executable of the computer software with the common secret (CS) to generate an encrypted
executable of the computer software.

10. The method of claim 9, wherein the encrypted executable of the computer software is decrypted before installing
the executable of the computer software by:

determining the common secret (CS) based on the first user second public key (P2U1) and the second user
second private key (V2U2); and
decrypting the executable of the computer software with the common secret (CS) to generate a decrypted
executable of the computer software.

11. The method of claim 10, further comprising executing instructions of the decrypted executable of the computer
software on the processing device associated with the second user (U2) after verifying the ownership of the computer
software.

12. The method of claim 11, wherein before executing instructions the method further comprises:

determining an activation key (AK) from the second user (U2); and
executing instructions of the decrypted executable of the computer software based on the activation key (AK)
on the processing device associated with the second user (U2).

13. The method of any of claims 8 to 12, wherein before encrypting the executable of the computer software, the method
further comprises:

determining a data (D1) associated with the computer software;
determining a first hash value (H1) of the computer software;
determining a second hash value (H2) based on the data (D1) and the computer software;
sending, over a communications network, the data (D1), the first hash value (H1) and the second hash value
(H2) to an entry for storage in the distributed hash table, wherein the second hash value (H2) is a key of a key-
value pair and the data (D1) and the first hash value (H1) are a value in the key-value pair; and
determining the metadata (M) comprising the second hash value (H2) for storage on the peer-to-peer distributed
ledger.

14. A computer software program comprising machine-readable instructions to cause a processing device to implement
the method of any one of the preceding claims.

15. A computer system for verifying ownership of a computer software after installation and prior to execution using a
distributed hash table and a peer-to-peer distributed ledger, the system comprising a processing device associated
with a node on a peer-to-peer network of nodes, configured to:

determine a second user public key (PU2) associated with a second user (U2) from a transaction record stored

EP 3 295 350 B1

19

5

10

15

20

25

30

35

40

45

50

55

on the peer-to-peer distributed ledger;
determine a second public key (P2) associated with the second user (U2) from an entry stored on the distributed
hash table;
compare the second user public key (PU2) and the second public key (P2); and
verify the ownership of the computer software based on the compare of the second user public key (PU2) and
the second public key (P2).

Patentansprüche

1. Computerimplementiertes Verfahren zum Verifizieren der Eigentümerschaft einer Computersoftware nach dem
Installieren und vor dem Ausführen der Computersoftware unter Verwendung einer verteilten Hash-Tabelle und
eines Peer-to-Peer-Distributed-Ledger, wobei das Verfahren Folgendes umfasst:

Bestimmen eines zweiten öffentlichen Benutzerschlüssels (PU2), der einem zweiten Benutzer (U2) zugeordnet
ist, aus einem in dem Peer-to-Peer-Distributed-Ledger gespeicherten Transaktionsdatensatz;
Bestimmen eines zweiten öffentlichen Schlüssels (P2), der dem zweiten Benutzer (U2) zugeordnet ist, aus
einem in der verteilten Hash-Tabelle gespeicherten Eintrag;
Vergleichen des zweiten öffentlichen Benutzerschlüssels (PU2) und des zweiten öffentlichen Schlüssels (P2);
und
Verifizieren der Eigentümerschaft der Computersoftware auf der Basis des Vergleichens des zweiten öffentli-
chen Benutzerschlüssels (PU2) und des zweiten öffentlichen Schlüssels (P2).

2. Verfahren nach Anspruch 1, wobei Vergleichen des zweiten öffentlichen Benutzerschlüssels (PU2) und des zweiten
öffentlichen Schlüssels (P2) umfasst zu bestimmen, ob der zweite öffentliche Benutzerschlüssel (PU2) und der
zweite öffentliche Schlüssel (P2) übereinstimmen.

3. Verfahren nach Anspruch 1 oder 2, wobei die Computersoftware einen Kopfteil und einen Hauptteil umfasst.

4. Verfahren nach Anspruch 3, wobei der Kopfteil einen Hash-Wert des Hauptteils der Computersoftware umfasst.

5. Verfahren nach Anspruch 3 oder 4, wobei der Kopfteil ferner einen Hash-Wert (H2) von Daten, der Computersoftware
oder einer Lizenz zugeordnet, umfasst.

6. Verfahren nach Anspruch 3, 4 oder 5, wobei der Hauptteil der Computersoftware ein ausführbares Programm der
Computersoftware umfasst.

7. Verfahren nach Anspruch 5, wobei das Verfahren vor dem Bestimmen des zweiten öffentlichen Benutzerschlüssels
(PU2) Installieren des ausführbaren Programms der Computersoftware auf einer Verarbeitungsvorrichtung, die dem
zweiten Benutzer (U2) zugeordnet ist, umfasst.

8. Verfahren nach Anspruch 7, wobei das Verfahren vor dem Installieren des ausführbaren Programms der Compu-
tersoftware Verschlüsseln des ausführbaren Programms der Computersoftware umfasst.

9. Verfahren nach Anspruch 8, wobei Verschlüsseln des ausführbaren Programms der Computersoftware Folgendes
umfasst:

Bestimmen eines Generatorwerts (GV);
Bestimmen eines zweiten öffentlichen zweiten Benutzerschlüssels (P2U2) auf der Basis des zweiten öffentlichen
Benutzerschlüssels (PU2) und des Generatorwerts (GV), wobei der zweite öffentliche zweite Benutzerschlüssel
(P2U2) mit einem zweiten privaten zweiten Benutzerschlüssel (V2U2) ein kryptografisches Paar bildet;
Bestimmen eines ersten öffentlichen zweiten Benutzerschlüssels (P2U1) auf der Basis eines ersten öffentlichen
Benutzerschlüssels (PU1) und des Generatorwerts (GV), wobei der erste öffentliche zweite Benutzerschlüssel
(P2U1) mit einem ersten privaten zweiten Benutzerschlüssel (V2U1) ein kryptografisches Paar bildet;
Bestimmen eines gemeinsamen Geheimnisses (CS) auf der Basis des zweiten öffentlichen zweiten Benutzer-
schlüssels (P2U2) und des ersten privaten zweiten Benutzerschlüssels (V2U1); und
Verschlüsseln des ausführbaren Programms der Computersoftware mit dem gemeinsamen Geheimnis (CS),
um ein verschlüsseltes ausführbares Programm der Computersoftware zu erzeugen.

EP 3 295 350 B1

20

5

10

15

20

25

30

35

40

45

50

55

10. Verfahren nach Anspruch 9, wobei das verschlüsselte ausführbare Programm der Computersoftware vor dem In-
stallieren des ausführbaren Programms der Computersoftware entschlüsselt wird durch:

Bestimmen des gemeinsamen Geheimnisses (CS) auf der Basis des ersten öffentlichen zweiten Benutzer-
schlüssels (P2U1) und des zweiten privaten zweiten Benutzerschlüssels (V2U2); und
Entschlüsseln des ausführbaren Programms der Computersoftware mit dem gemeinsamen Geheimnis (CS),
um ein entschlüsseltes ausführbares Programm der Computersoftware zu erzeugen.

11. Verfahren nach Anspruch 10, ferner umfassend Ausführen von Anweisungen des entschlüsselten ausführbaren
Programms der Computersoftware auf der Verarbeitungsvorrichtung, die dem zweiten Benutzer (U2) zugeordnet
ist, nach Verifizieren der Eigentümerschaft der Computersoftware.

12. Verfahren nach Anspruch 11, wobei das Verfahren vor Ausführen von Anweisungen ferner Folgendes umfasst:

Bestimmen eines Aktivierungsschlüssels (AK) aus dem zweiten Benutzer (U2); und
Ausführen von Anweisungen des entschlüsselten ausführbaren Programms der Computersoftware auf der
Basis des Aktivierungsschlüssels (AK) auf der Verarbeitungsvorrichtung, die dem zweiten Benutzer (U2) zu-
geordnet ist.

13. Verfahren nach einem der Ansprüche 8 bis 12, wobei das Verfahren vor Entschlüsseln des ausführbaren Programms
der Computersoftware ferner Folgendes umfasst:

Bestimmen von der Computersoftware zugeordneten Daten (D1) ;
Bestimmen eines ersten Hash-Werts (H1) der Computersoftware;
Bestimmen eines zweiten Hash-Werts (H2) auf der Basis der Daten (D1) und der Computersoftware;
Senden der Daten (D1), des ersten Hash-Werts (H1) und des zweiten Hash-Werts (H2) über ein Kommunika-
tionsnetz zu einem Eintrag zur Speicherung in der verteilten Hash-Tabelle, wobei der zweite Hash-Wert (H2)
ein Schlüssel eines Schlüssel-Wert-Paars ist und die Daten (D1) und der erste Hash-Wert (H1) ein Wert in dem
Schlüssel-Wert-Paar sind; und
Bestimmen der Metadaten (M), die den zweiten Hash-Wert (H2) umfassen, zur Speicherung in dem Peer-to-
Peer-Distributed-Ledger.

14. Computer-Softwareprogramm, das maschinenlesbare Anweisungen umfasst, um zu bewirken, dass eine Verarbei-
tungsvorrichtung das Verfahren nach einem der vorhergehenden Ansprüche implementiert.

15. Computersystem zum Verifizieren der Eigentümerschaft einer Computersoftware nach dem Installieren und vor
dem Ausführen unter Verwendung einer verteilten Hash-Tabelle und eines Peer-to-Peer-Distributed-Ledger, wobei
das System eine Verarbeitungsvorrichtung umfasst, die einem Knoten in einem Peer-to-Peer-Netzwerk von Knoten
zugeordnet ist, ausgelegt zum:

Bestimmen eines zweiten öffentlichen Benutzerschlüssels (PU2), der einem zweiten Benutzer (U2) zugeordnet
ist, aus einem in dem Peer-to-Peer-Distributed-Ledger gespeicherten Transaktionsdatensatz;
Bestimmen eines zweiten öffentlichen Schlüssels (P2), der dem zweiten Benutzer (U2) zugeordnet ist, aus
einem in der verteilten Hash-Tabelle gespeicherten Eintrag;
Vergleichen des zweiten öffentlichen Benutzerschlüssels (PU2) und des zweiten öffentlichen Schlüssels (P2);
und
Verifizieren der Eigentümerschaft der Computersoftware auf der Basis des Vergleichens des zweiten öffentli-
chen Benutzerschlüssels (PU2) und des zweiten öffentlichen Schlüssels (P2).

Revendications

1. Procédé informatique pour vérifier le droit de propriété d’un logiciel informatique après l’installation et avant l’exé-
cution du logiciel informatique au moyen d’une table de hachage distribuée et d’un registre distribué pair-à-pair, le
procédé comprenant les étapes de :

détermination d’une deuxième clé publique utilisateur (PU2) associée à un deuxième utilisateur (U2) à partir
d’un enregistrement de transaction stocké dans le registre distribué pair-à-pair ;

EP 3 295 350 B1

21

5

10

15

20

25

30

35

40

45

50

55

détermination d’une deuxième clé publique (P2) associée au deuxième utilisateur (U2) à partir d’une entrée
stockée dans la table de hachage distribuée ;
comparaison de la deuxième clé publique utilisateur (PU2) à la deuxième clé publique (P2) ; et
vérification du droit de propriété du logiciel informatique d’après la comparaison de la deuxième clé publique
utilisateur (PU2) à la deuxième clé publique (P2) .

2. Procédé selon la revendication 1, dans lequel la comparaison de la deuxième clé publique utilisateur (PU2) à la
deuxième clé publique (P2) comprend la détermination du fait que de la deuxième clé publique utilisateur (PU2) et
la deuxième clé publique (P2) correspondent l’une à l’autre.

3. Procédé selon la revendication 1 ou 2, dans lequel le logiciel informatique comprend un en-tête et un corps.

4. Procédé selon la revendication 3, dans lequel l’en-tête comprend une valeur de hachage du corps du logiciel
informatique.

5. Procédé selon la revendication 3 ou 4, dans lequel l’en-tête comprend en outre une valeur de hachage (H2) d’une
donnée associée avec le logiciel informatique ou une licence.

6. Procédé selon la revendication 3, 4 ou 5, dans lequel le corps du logiciel informatique comprend un exécutable du
logiciel informatique.

7. Procédé selon la revendication 5, dans lequel, avant la détermination de la deuxième clé publique utilisateur (PU2),
le procédé comprend l’installation de l’exécutable du logiciel informatique sur un dispositif de traitement associé
avec le deuxième utilisateur (U2).

8. Procédé selon la revendication 7, dans lequel, avant l’installation de l’exécutable du logiciel informatique, le procédé
comprend le cryptage de l’exécutable du logiciel informatique.

9. Procédé selon la revendication 8, dans lequel le cryptage de l’exécutable du logiciel informatique comprend les
étapes de :

détermination d’une valeur génératrice (GV) ;
détermination d’une deuxième clé publique de deuxième utilisateur (P2U2) à partir de la deuxième clé publique
utilisateur (PU2) et de la valeur génératrice (GV), la deuxième clé publique de deuxième utilisateur (P2U2)
formant une paire cryptographique avec une deuxième clé privée de deuxième utilisateur (V2U2) ;
détermination d’une deuxième clé publique de premier utilisateur (P2U1) à partir d’une première clé publique
utilisateur (PU1) et de la valeur génératrice (GV), la deuxième clé publique de premier utilisateur (P2U1) formant
une paire cryptographique avec une deuxième clé privée de premier utilisateur (V2U1) ;
détermination d’un secret commun (CS) à partir de la deuxième clé publique de deuxième utilisateur (P2U2)
et de la deuxième clé privée de premier utilisateur (V2U1) ; et
cryptage de l’exécutable du logiciel informatique avec le secret commun (CS) pour générer un exécutable crypté
du logiciel informatique.

10. Procédé selon la revendication 9, dans lequel l’exécutable crypté du logiciel informatique est décrypté avant l’ins-
tallation de l’exécutable du logiciel informatique par :

détermination du secret commun (CS) à partir de la deuxième clé publique de premier utilisateur (P2U1) et de
la deuxième clé privée de deuxième utilisateur (V2U2) ; et
décryptage de l’exécutable du logiciel informatique avec le secret commun (CS) pour générer un exécutable
décrypté du logiciel informatique.

11. Procédé selon la revendication 10, comprenant en outre l’exécution d’instructions de l’exécutable décrypté do logiciel
informatique sur le dispositif de traitement associé avec le deuxième utilisateur (U2) après la vérification du droit
de propriété du logiciel informatique.

12. Procédé selon la revendication 11, dans lequel, avant l’exécution d’instructions, le procédé comprend en outre les
étapes de :

EP 3 295 350 B1

22

5

10

15

20

25

30

35

40

45

50

55

détermination d’une clé d’activation (AK) à partir du deuxième utilisateur (U2) ; et
exécution d’instructions de l’exécutable décrypté du logiciel informatique en fonction de la clé d’activation (AK)
sur le dispositif de traitement associé avec le deuxième utilisateur (U2).

13. Procédé selon l’une quelconque des revendications 8 à 12, dans lequel, avant le décryptage de l’exécutable du
logiciel informatique, le procédé comprend en outre les étapes de :

détermination d’une donnée (D1) associée au logiciel informatique ;
détermination d’une première valeur de hachage (H1) du logiciel informatique ;
détermination d’une deuxième valeur de hachage (H2) à partir de la donnée (D1) et du logiciel informatique ;
envoi, sur un réseau de communication, de la donnée (D1), de la première valeur de hachage (H1) et de la
deuxième valeur de hachage (H2) à une entrée à stocker dans la table de hachage distribuée, la deuxième
valeur de hachage (H2) étant une clé d’une paire clé-valeur et la donnée (D1) et la première valeur de hachage
(H1) étant une valeur de la paire clé-valeur ; et
déterminer la métadonnée (M) comprenant la deuxième valeur de hachage (H2) à stocker dans le registre
distribué pair-à-pair.

14. Programme logiciel informatique comprenant des instructions lisibles par une machine pour faire en sorte qu’un
dispositif de traitement mette en oeuvre le procédé selon l’une quelconque des revendications précédentes.

15. Système informatique pour vérifier le droit de propriété d’un logiciel informatique après l’installation et avant l’exé-
cution au moyen d’une table de hachage distribuée et d’un registre distribué pair-à-pair, le système comprenant un
dispositif de traitement associé à un noeud sur un réseau de noeuds pair-à-pair, configuré pour :

déterminer une deuxième clé publique utilisateur (PU2) associée à un deuxième utilisateur (U2) à partir d’un
enregistrement de transaction stocké dans le registre distribué pair-à-pair ;
déterminer une deuxième clé publique (P2) associée au deuxième utilisateur (U2) à partir d’une entrée stockée
dans la table de hachage distribuée ;
comparer la deuxième clé publique utilisateur (PU2) à la deuxième clé publique (P2) ; et
vérifier le droit de propriété du logiciel informatique d’après la comparaison de la deuxième clé publique utilisateur
(PU2) à la deuxième clé publique (P2) .

EP 3 295 350 B1

23

EP 3 295 350 B1

24

EP 3 295 350 B1

25

EP 3 295 350 B1

26

EP 3 295 350 B1

27

EP 3 295 350 B1

28

EP 3 295 350 B1

29

EP 3 295 350 B1

30

EP 3 295 350 B1

31

EP 3 295 350 B1

32

EP 3 295 350 B1

33

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

• JEFF HERBERT ; ALAN LITCHFIELD. A novel
Method of decentralised peer-to-peer Software Li-
cense Validation using Cryptocurrency Blockchain
Technology, 27 January 2015 [0011]

• ANONYMOUS. Contract- Bitcoin Wiki, 22 October
2015, https://en.bitcoin.it/w/index.php? title=Con-
tract&oldid=59172 [0011]

	bibliography
	description
	claims
	drawings
	cited references

