Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

3955 lines (3336 sloc) 133.656 kb
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "alert.h"
#include "checkpoints.h"
#include "db.h"
#include "net.h"
#include "init.h"
#include "ui_interface.h"
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
using namespace std;
using namespace boost;
//
// Global state
//
CCriticalSection cs_setpwalletRegistered;
set<CWallet*> setpwalletRegistered;
CCriticalSection cs_main;
CTxMemPool mempool;
unsigned int nTransactionsUpdated = 0;
map<uint256, CBlockIndex*> mapBlockIndex;
uint256 hashGenesisBlock("0x000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f");
static CBigNum bnProofOfWorkLimit(~uint256(0) >> 32);
CBlockIndex* pindexGenesisBlock = NULL;
int nBestHeight = -1;
CBigNum bnBestChainWork = 0;
CBigNum bnBestInvalidWork = 0;
uint256 hashBestChain = 0;
CBlockIndex* pindexBest = NULL;
int64 nTimeBestReceived = 0;
CMedianFilter<int> cPeerBlockCounts(5, 0); // Amount of blocks that other nodes claim to have
map<uint256, CBlock*> mapOrphanBlocks;
multimap<uint256, CBlock*> mapOrphanBlocksByPrev;
map<uint256, CDataStream*> mapOrphanTransactions;
map<uint256, map<uint256, CDataStream*> > mapOrphanTransactionsByPrev;
// Constant stuff for coinbase transactions we create:
CScript COINBASE_FLAGS;
const string strMessageMagic = "Bitcoin Signed Message:\n";
double dHashesPerSec;
int64 nHPSTimerStart;
// Settings
int64 nTransactionFee = 0;
//////////////////////////////////////////////////////////////////////////////
//
// dispatching functions
//
// These functions dispatch to one or all registered wallets
void RegisterWallet(CWallet* pwalletIn)
{
{
LOCK(cs_setpwalletRegistered);
setpwalletRegistered.insert(pwalletIn);
}
}
void UnregisterWallet(CWallet* pwalletIn)
{
{
LOCK(cs_setpwalletRegistered);
setpwalletRegistered.erase(pwalletIn);
}
}
// check whether the passed transaction is from us
bool static IsFromMe(CTransaction& tx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
if (pwallet->IsFromMe(tx))
return true;
return false;
}
// get the wallet transaction with the given hash (if it exists)
bool static GetTransaction(const uint256& hashTx, CWalletTx& wtx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
if (pwallet->GetTransaction(hashTx,wtx))
return true;
return false;
}
// erases transaction with the given hash from all wallets
void static EraseFromWallets(uint256 hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->EraseFromWallet(hash);
}
// make sure all wallets know about the given transaction, in the given block
void SyncWithWallets(const CTransaction& tx, const CBlock* pblock, bool fUpdate)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->AddToWalletIfInvolvingMe(tx, pblock, fUpdate);
}
// notify wallets about a new best chain
void static SetBestChain(const CBlockLocator& loc)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->SetBestChain(loc);
}
// notify wallets about an updated transaction
void static UpdatedTransaction(const uint256& hashTx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->UpdatedTransaction(hashTx);
}
// dump all wallets
void static PrintWallets(const CBlock& block)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->PrintWallet(block);
}
// notify wallets about an incoming inventory (for request counts)
void static Inventory(const uint256& hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->Inventory(hash);
}
// ask wallets to resend their transactions
void static ResendWalletTransactions()
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->ResendWalletTransactions();
}
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CDataStream& vMsg)
{
CTransaction tx;
CDataStream(vMsg) >> tx;
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
CDataStream* pvMsg = new CDataStream(vMsg);
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
if (pvMsg->size() > 5000)
{
printf("ignoring large orphan tx (size: %u, hash: %s)\n", pvMsg->size(), hash.ToString().substr(0,10).c_str());
delete pvMsg;
return false;
}
mapOrphanTransactions[hash] = pvMsg;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapOrphanTransactionsByPrev[txin.prevout.hash].insert(make_pair(hash, pvMsg));
printf("stored orphan tx %s (mapsz %u)\n", hash.ToString().substr(0,10).c_str(),
mapOrphanTransactions.size());
return true;
}
void static EraseOrphanTx(uint256 hash)
{
if (!mapOrphanTransactions.count(hash))
return;
const CDataStream* pvMsg = mapOrphanTransactions[hash];
CTransaction tx;
CDataStream(*pvMsg) >> tx;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
mapOrphanTransactionsByPrev[txin.prevout.hash].erase(hash);
if (mapOrphanTransactionsByPrev[txin.prevout.hash].empty())
mapOrphanTransactionsByPrev.erase(txin.prevout.hash);
}
delete pvMsg;
mapOrphanTransactions.erase(hash);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans)
{
unsigned int nEvicted = 0;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, CDataStream*>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
//////////////////////////////////////////////////////////////////////////////
//
// CTransaction and CTxIndex
//
bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout, CTxIndex& txindexRet)
{
SetNull();
if (!txdb.ReadTxIndex(prevout.hash, txindexRet))
return false;
if (!ReadFromDisk(txindexRet.pos))
return false;
if (prevout.n >= vout.size())
{
SetNull();
return false;
}
return true;
}
bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout)
{
CTxIndex txindex;
return ReadFromDisk(txdb, prevout, txindex);
}
bool CTransaction::ReadFromDisk(COutPoint prevout)
{
CTxDB txdb("r");
CTxIndex txindex;
return ReadFromDisk(txdb, prevout, txindex);
}
bool CTransaction::IsStandard() const
{
if (nVersion > CTransaction::CURRENT_VERSION)
return false;
BOOST_FOREACH(const CTxIn& txin, vin)
{
// Biggest 'standard' txin is a 3-signature 3-of-3 CHECKMULTISIG
// pay-to-script-hash, which is 3 ~80-byte signatures, 3
// ~65-byte public keys, plus a few script ops.
if (txin.scriptSig.size() > 500)
return false;
if (!txin.scriptSig.IsPushOnly())
return false;
}
BOOST_FOREACH(const CTxOut& txout, vout) {
if (!::IsStandard(txout.scriptPubKey))
return false;
if (txout.nValue == 0)
return false;
}
return true;
}
//
// Check transaction inputs, and make sure any
// pay-to-script-hash transactions are evaluating IsStandard scripts
//
// Why bother? To avoid denial-of-service attacks; an attacker
// can submit a standard HASH... OP_EQUAL transaction,
// which will get accepted into blocks. The redemption
// script can be anything; an attacker could use a very
// expensive-to-check-upon-redemption script like:
// DUP CHECKSIG DROP ... repeated 100 times... OP_1
//
bool CTransaction::AreInputsStandard(const MapPrevTx& mapInputs) const
{
if (IsCoinBase())
return true; // Coinbases don't use vin normally
for (unsigned int i = 0; i < vin.size(); i++)
{
const CTxOut& prev = GetOutputFor(vin[i], mapInputs);
vector<vector<unsigned char> > vSolutions;
txnouttype whichType;
// get the scriptPubKey corresponding to this input:
const CScript& prevScript = prev.scriptPubKey;
if (!Solver(prevScript, whichType, vSolutions))
return false;
int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions);
if (nArgsExpected < 0)
return false;
// Transactions with extra stuff in their scriptSigs are
// non-standard. Note that this EvalScript() call will
// be quick, because if there are any operations
// beside "push data" in the scriptSig the
// IsStandard() call returns false
vector<vector<unsigned char> > stack;
if (!EvalScript(stack, vin[i].scriptSig, *this, i, 0))
return false;
if (whichType == TX_SCRIPTHASH)
{
if (stack.empty())
return false;
CScript subscript(stack.back().begin(), stack.back().end());
vector<vector<unsigned char> > vSolutions2;
txnouttype whichType2;
if (!Solver(subscript, whichType2, vSolutions2))
return false;
if (whichType2 == TX_SCRIPTHASH)
return false;
int tmpExpected;
tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2);
if (tmpExpected < 0)
return false;
nArgsExpected += tmpExpected;
}
if (stack.size() != (unsigned int)nArgsExpected)
return false;
}
return true;
}
unsigned int
CTransaction::GetLegacySigOpCount() const
{
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTxIn& txin, vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
BOOST_FOREACH(const CTxOut& txout, vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
int CMerkleTx::SetMerkleBranch(const CBlock* pblock)
{
if (fClient)
{
if (hashBlock == 0)
return 0;
}
else
{
CBlock blockTmp;
if (pblock == NULL)
{
// Load the block this tx is in
CTxIndex txindex;
if (!CTxDB("r").ReadTxIndex(GetHash(), txindex))
return 0;
if (!blockTmp.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos))
return 0;
pblock = &blockTmp;
}
// Update the tx's hashBlock
hashBlock = pblock->GetHash();
// Locate the transaction
for (nIndex = 0; nIndex < (int)pblock->vtx.size(); nIndex++)
if (pblock->vtx[nIndex] == *(CTransaction*)this)
break;
if (nIndex == (int)pblock->vtx.size())
{
vMerkleBranch.clear();
nIndex = -1;
printf("ERROR: SetMerkleBranch() : couldn't find tx in block\n");
return 0;
}
// Fill in merkle branch
vMerkleBranch = pblock->GetMerkleBranch(nIndex);
}
// Is the tx in a block that's in the main chain
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
return pindexBest->nHeight - pindex->nHeight + 1;
}
bool CTransaction::CheckTransaction() const
{
// Basic checks that don't depend on any context
if (vin.empty())
return DoS(10, error("CTransaction::CheckTransaction() : vin empty"));
if (vout.empty())
return DoS(10, error("CTransaction::CheckTransaction() : vout empty"));
// Size limits
if (::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return DoS(100, error("CTransaction::CheckTransaction() : size limits failed"));
// Check for negative or overflow output values
int64 nValueOut = 0;
BOOST_FOREACH(const CTxOut& txout, vout)
{
if (txout.nValue < 0)
return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue negative"));
if (txout.nValue > MAX_MONEY)
return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue too high"));
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return DoS(100, error("CTransaction::CheckTransaction() : txout total out of range"));
}
// Check for duplicate inputs
set<COutPoint> vInOutPoints;
BOOST_FOREACH(const CTxIn& txin, vin)
{
if (vInOutPoints.count(txin.prevout))
return false;
vInOutPoints.insert(txin.prevout);
}
if (IsCoinBase())
{
if (vin[0].scriptSig.size() < 2 || vin[0].scriptSig.size() > 100)
return DoS(100, error("CTransaction::CheckTransaction() : coinbase script size"));
}
else
{
BOOST_FOREACH(const CTxIn& txin, vin)
if (txin.prevout.IsNull())
return DoS(10, error("CTransaction::CheckTransaction() : prevout is null"));
}
return true;
}
bool CTxMemPool::accept(CTxDB& txdb, CTransaction &tx, bool fCheckInputs,
bool* pfMissingInputs)
{
if (pfMissingInputs)
*pfMissingInputs = false;
if (!tx.CheckTransaction())
return error("CTxMemPool::accept() : CheckTransaction failed");
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return tx.DoS(100, error("CTxMemPool::accept() : coinbase as individual tx"));
// To help v0.1.5 clients who would see it as a negative number
if ((int64)tx.nLockTime > std::numeric_limits<int>::max())
return error("CTxMemPool::accept() : not accepting nLockTime beyond 2038 yet");
// Rather not work on nonstandard transactions (unless -testnet)
if (!fTestNet && !tx.IsStandard())
return error("CTxMemPool::accept() : nonstandard transaction type");
// Do we already have it?
uint256 hash = tx.GetHash();
{
LOCK(cs);
if (mapTx.count(hash))
return false;
}
if (fCheckInputs)
if (txdb.ContainsTx(hash))
return false;
// Check for conflicts with in-memory transactions
CTransaction* ptxOld = NULL;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (mapNextTx.count(outpoint))
{
// Disable replacement feature for now
return false;
// Allow replacing with a newer version of the same transaction
if (i != 0)
return false;
ptxOld = mapNextTx[outpoint].ptx;
if (ptxOld->IsFinal())
return false;
if (!tx.IsNewerThan(*ptxOld))
return false;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (!mapNextTx.count(outpoint) || mapNextTx[outpoint].ptx != ptxOld)
return false;
}
break;
}
}
if (fCheckInputs)
{
MapPrevTx mapInputs;
map<uint256, CTxIndex> mapUnused;
bool fInvalid = false;
if (!tx.FetchInputs(txdb, mapUnused, false, false, mapInputs, fInvalid))
{
if (fInvalid)
return error("CTxMemPool::accept() : FetchInputs found invalid tx %s", hash.ToString().substr(0,10).c_str());
if (pfMissingInputs)
*pfMissingInputs = true;
return false;
}
// Check for non-standard pay-to-script-hash in inputs
if (!tx.AreInputsStandard(mapInputs) && !fTestNet)
return error("CTxMemPool::accept() : nonstandard transaction input");
// Note: if you modify this code to accept non-standard transactions, then
// you should add code here to check that the transaction does a
// reasonable number of ECDSA signature verifications.
int64 nFees = tx.GetValueIn(mapInputs)-tx.GetValueOut();
unsigned int nSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
// Don't accept it if it can't get into a block
if (nFees < tx.GetMinFee(1000, true, GMF_RELAY))
return error("CTxMemPool::accept() : not enough fees");
// Continuously rate-limit free transactions
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
// be annoying or make others' transactions take longer to confirm.
if (nFees < MIN_RELAY_TX_FEE)
{
static CCriticalSection cs;
static double dFreeCount;
static int64 nLastTime;
int64 nNow = GetTime();
{
LOCK(cs);
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount > GetArg("-limitfreerelay", 15)*10*1000 && !IsFromMe(tx))
return error("CTxMemPool::accept() : free transaction rejected by rate limiter");
if (fDebug)
printf("Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize);
dFreeCount += nSize;
}
}
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
if (!tx.ConnectInputs(mapInputs, mapUnused, CDiskTxPos(1,1,1), pindexBest, false, false))
{
return error("CTxMemPool::accept() : ConnectInputs failed %s", hash.ToString().substr(0,10).c_str());
}
}
// Store transaction in memory
{
LOCK(cs);
if (ptxOld)
{
printf("CTxMemPool::accept() : replacing tx %s with new version\n", ptxOld->GetHash().ToString().c_str());
remove(*ptxOld);
}
addUnchecked(hash, tx);
}
///// are we sure this is ok when loading transactions or restoring block txes
// If updated, erase old tx from wallet
if (ptxOld)
EraseFromWallets(ptxOld->GetHash());
printf("CTxMemPool::accept() : accepted %s (poolsz %u)\n",
hash.ToString().substr(0,10).c_str(),
mapTx.size());
return true;
}
bool CTransaction::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs, bool* pfMissingInputs)
{
return mempool.accept(txdb, *this, fCheckInputs, pfMissingInputs);
}
bool CTxMemPool::addUnchecked(const uint256& hash, CTransaction &tx)
{
// Add to memory pool without checking anything. Don't call this directly,
// call CTxMemPool::accept to properly check the transaction first.
{
mapTx[hash] = tx;
for (unsigned int i = 0; i < tx.vin.size(); i++)
mapNextTx[tx.vin[i].prevout] = CInPoint(&mapTx[hash], i);
nTransactionsUpdated++;
}
return true;
}
bool CTxMemPool::remove(CTransaction &tx)
{
// Remove transaction from memory pool
{
LOCK(cs);
uint256 hash = tx.GetHash();
if (mapTx.count(hash))
{
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapNextTx.erase(txin.prevout);
mapTx.erase(hash);
nTransactionsUpdated++;
}
}
return true;
}
void CTxMemPool::clear()
{
LOCK(cs);
mapTx.clear();
mapNextTx.clear();
++nTransactionsUpdated;
}
void CTxMemPool::queryHashes(std::vector<uint256>& vtxid)
{
vtxid.clear();
LOCK(cs);
vtxid.reserve(mapTx.size());
for (map<uint256, CTransaction>::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi)
vtxid.push_back((*mi).first);
}
int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet) const
{
if (hashBlock == 0 || nIndex == -1)
return 0;
// Find the block it claims to be in
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
// Make sure the merkle branch connects to this block
if (!fMerkleVerified)
{
if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot)
return 0;
fMerkleVerified = true;
}
pindexRet = pindex;
return pindexBest->nHeight - pindex->nHeight + 1;
}
int CMerkleTx::GetBlocksToMaturity() const
{
if (!IsCoinBase())
return 0;
return max(0, (COINBASE_MATURITY+20) - GetDepthInMainChain());
}
bool CMerkleTx::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs)
{
if (fClient)
{
if (!IsInMainChain() && !ClientConnectInputs())
return false;
return CTransaction::AcceptToMemoryPool(txdb, false);
}
else
{
return CTransaction::AcceptToMemoryPool(txdb, fCheckInputs);
}
}
bool CMerkleTx::AcceptToMemoryPool()
{
CTxDB txdb("r");
return AcceptToMemoryPool(txdb);
}
bool CWalletTx::AcceptWalletTransaction(CTxDB& txdb, bool fCheckInputs)
{
{
LOCK(mempool.cs);
// Add previous supporting transactions first
BOOST_FOREACH(CMerkleTx& tx, vtxPrev)
{
if (!tx.IsCoinBase())
{
uint256 hash = tx.GetHash();
if (!mempool.exists(hash) && !txdb.ContainsTx(hash))
tx.AcceptToMemoryPool(txdb, fCheckInputs);
}
}
return AcceptToMemoryPool(txdb, fCheckInputs);
}
return false;
}
bool CWalletTx::AcceptWalletTransaction()
{
CTxDB txdb("r");
return AcceptWalletTransaction(txdb);
}
int CTxIndex::GetDepthInMainChain() const
{
// Read block header
CBlock block;
if (!block.ReadFromDisk(pos.nFile, pos.nBlockPos, false))
return 0;
// Find the block in the index
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(block.GetHash());
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
return 1 + nBestHeight - pindex->nHeight;
}
// Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock
bool GetTransaction(const uint256 &hash, CTransaction &tx, uint256 &hashBlock)
{
{
LOCK(cs_main);
{
LOCK(mempool.cs);
if (mempool.exists(hash))
{
tx = mempool.lookup(hash);
return true;
}
}
CTxDB txdb("r");
CTxIndex txindex;
if (tx.ReadFromDisk(txdb, COutPoint(hash, 0), txindex))
{
CBlock block;
if (block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false))
hashBlock = block.GetHash();
return true;
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
static CBlockIndex* pblockindexFBBHLast;
CBlockIndex* FindBlockByHeight(int nHeight)
{
CBlockIndex *pblockindex;
if (nHeight < nBestHeight / 2)
pblockindex = pindexGenesisBlock;
else
pblockindex = pindexBest;
if (pblockindexFBBHLast && abs(nHeight - pblockindex->nHeight) > abs(nHeight - pblockindexFBBHLast->nHeight))
pblockindex = pblockindexFBBHLast;
while (pblockindex->nHeight > nHeight)
pblockindex = pblockindex->pprev;
while (pblockindex->nHeight < nHeight)
pblockindex = pblockindex->pnext;
pblockindexFBBHLast = pblockindex;
return pblockindex;
}
bool CBlock::ReadFromDisk(const CBlockIndex* pindex, bool fReadTransactions)
{
if (!fReadTransactions)
{
*this = pindex->GetBlockHeader();
return true;
}
if (!ReadFromDisk(pindex->nFile, pindex->nBlockPos, fReadTransactions))
return false;
if (GetHash() != pindex->GetBlockHash())
return error("CBlock::ReadFromDisk() : GetHash() doesn't match index");
return true;
}
uint256 static GetOrphanRoot(const CBlock* pblock)
{
// Work back to the first block in the orphan chain
while (mapOrphanBlocks.count(pblock->hashPrevBlock))
pblock = mapOrphanBlocks[pblock->hashPrevBlock];
return pblock->GetHash();
}
int64 static GetBlockValue(int nHeight, int64 nFees)
{
int64 nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210000 blocks, which will occur approximately every 4 years
nSubsidy >>= (nHeight / 210000);
return nSubsidy + nFees;
}
static const int64 nTargetTimespan = 14 * 24 * 60 * 60; // two weeks
static const int64 nTargetSpacing = 10 * 60;
static const int64 nInterval = nTargetTimespan / nTargetSpacing;
//
// minimum amount of work that could possibly be required nTime after
// minimum work required was nBase
//
unsigned int ComputeMinWork(unsigned int nBase, int64 nTime)
{
// Testnet has min-difficulty blocks
// after nTargetSpacing*2 time between blocks:
if (fTestNet && nTime > nTargetSpacing*2)
return bnProofOfWorkLimit.GetCompact();
CBigNum bnResult;
bnResult.SetCompact(nBase);
while (nTime > 0 && bnResult < bnProofOfWorkLimit)
{
// Maximum 400% adjustment...
bnResult *= 4;
// ... in best-case exactly 4-times-normal target time
nTime -= nTargetTimespan*4;
}
if (bnResult > bnProofOfWorkLimit)
bnResult = bnProofOfWorkLimit;
return bnResult.GetCompact();
}
unsigned int static GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlock *pblock)
{
unsigned int nProofOfWorkLimit = bnProofOfWorkLimit.GetCompact();
// Genesis block
if (pindexLast == NULL)
return nProofOfWorkLimit;
// Only change once per interval
if ((pindexLast->nHeight+1) % nInterval != 0)
{
// Special difficulty rule for testnet:
if (fTestNet)
{
// If the new block's timestamp is more than 2* 10 minutes
// then allow mining of a min-difficulty block.
if (pblock->nTime > pindexLast->nTime + nTargetSpacing*2)
return nProofOfWorkLimit;
else
{
// Return the last non-special-min-difficulty-rules-block
const CBlockIndex* pindex = pindexLast;
while (pindex->pprev && pindex->nHeight % nInterval != 0 && pindex->nBits == nProofOfWorkLimit)
pindex = pindex->pprev;
return pindex->nBits;
}
}
return pindexLast->nBits;
}
// Go back by what we want to be 14 days worth of blocks
const CBlockIndex* pindexFirst = pindexLast;
for (int i = 0; pindexFirst && i < nInterval-1; i++)
pindexFirst = pindexFirst->pprev;
assert(pindexFirst);
// Limit adjustment step
int64 nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime();
printf(" nActualTimespan = %"PRI64d" before bounds\n", nActualTimespan);
if (nActualTimespan < nTargetTimespan/4)
nActualTimespan = nTargetTimespan/4;
if (nActualTimespan > nTargetTimespan*4)
nActualTimespan = nTargetTimespan*4;
// Retarget
CBigNum bnNew;
bnNew.SetCompact(pindexLast->nBits);
bnNew *= nActualTimespan;
bnNew /= nTargetTimespan;
if (bnNew > bnProofOfWorkLimit)
bnNew = bnProofOfWorkLimit;
/// debug print
printf("GetNextWorkRequired RETARGET\n");
printf("nTargetTimespan = %"PRI64d" nActualTimespan = %"PRI64d"\n", nTargetTimespan, nActualTimespan);
printf("Before: %08x %s\n", pindexLast->nBits, CBigNum().SetCompact(pindexLast->nBits).getuint256().ToString().c_str());
printf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString().c_str());
return bnNew.GetCompact();
}
bool CheckProofOfWork(uint256 hash, unsigned int nBits)
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
// Check range
if (bnTarget <= 0 || bnTarget > bnProofOfWorkLimit)
return error("CheckProofOfWork() : nBits below minimum work");
// Check proof of work matches claimed amount
if (hash > bnTarget.getuint256())
return error("CheckProofOfWork() : hash doesn't match nBits");
return true;
}
// Return maximum amount of blocks that other nodes claim to have
int GetNumBlocksOfPeers()
{
return std::max(cPeerBlockCounts.median(), Checkpoints::GetTotalBlocksEstimate());
}
bool IsInitialBlockDownload()
{
if (pindexBest == NULL || nBestHeight < Checkpoints::GetTotalBlocksEstimate())
return true;
static int64 nLastUpdate;
static CBlockIndex* pindexLastBest;
if (pindexBest != pindexLastBest)
{
pindexLastBest = pindexBest;
nLastUpdate = GetTime();
}
return (GetTime() - nLastUpdate < 10 &&
pindexBest->GetBlockTime() < GetTime() - 24 * 60 * 60);
}
void static InvalidChainFound(CBlockIndex* pindexNew)
{
if (pindexNew->bnChainWork > bnBestInvalidWork)
{
bnBestInvalidWork = pindexNew->bnChainWork;
CTxDB().WriteBestInvalidWork(bnBestInvalidWork);
uiInterface.NotifyBlocksChanged();
}
printf("InvalidChainFound: invalid block=%s height=%d work=%s date=%s\n",
pindexNew->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->nHeight,
pindexNew->bnChainWork.ToString().c_str(), DateTimeStrFormat("%x %H:%M:%S",
pindexNew->GetBlockTime()).c_str());
printf("InvalidChainFound: current best=%s height=%d work=%s date=%s\n",
hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, bnBestChainWork.ToString().c_str(),
DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()).c_str());
if (pindexBest && bnBestInvalidWork > bnBestChainWork + pindexBest->GetBlockWork() * 6)
printf("InvalidChainFound: Warning: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade.\n");
}
void CBlock::UpdateTime(const CBlockIndex* pindexPrev)
{
nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime());
// Updating time can change work required on testnet:
if (fTestNet)
nBits = GetNextWorkRequired(pindexPrev, this);
}
bool CTransaction::DisconnectInputs(CTxDB& txdb)
{
// Relinquish previous transactions' spent pointers
if (!IsCoinBase())
{
BOOST_FOREACH(const CTxIn& txin, vin)
{
COutPoint prevout = txin.prevout;
// Get prev txindex from disk
CTxIndex txindex;
if (!txdb.ReadTxIndex(prevout.hash, txindex))
return error("DisconnectInputs() : ReadTxIndex failed");
if (prevout.n >= txindex.vSpent.size())
return error("DisconnectInputs() : prevout.n out of range");
// Mark outpoint as not spent
txindex.vSpent[prevout.n].SetNull();
// Write back
if (!txdb.UpdateTxIndex(prevout.hash, txindex))
return error("DisconnectInputs() : UpdateTxIndex failed");
}
}
// Remove transaction from index
// This can fail if a duplicate of this transaction was in a chain that got
// reorganized away. This is only possible if this transaction was completely
// spent, so erasing it would be a no-op anyway.
txdb.EraseTxIndex(*this);
return true;
}
bool CTransaction::FetchInputs(CTxDB& txdb, const map<uint256, CTxIndex>& mapTestPool,
bool fBlock, bool fMiner, MapPrevTx& inputsRet, bool& fInvalid)
{
// FetchInputs can return false either because we just haven't seen some inputs
// (in which case the transaction should be stored as an orphan)
// or because the transaction is malformed (in which case the transaction should
// be dropped). If tx is definitely invalid, fInvalid will be set to true.
fInvalid = false;
if (IsCoinBase())
return true; // Coinbase transactions have no inputs to fetch.
for (unsigned int i = 0; i < vin.size(); i++)
{
COutPoint prevout = vin[i].prevout;
if (inputsRet.count(prevout.hash))
continue; // Got it already
// Read txindex
CTxIndex& txindex = inputsRet[prevout.hash].first;
bool fFound = true;
if ((fBlock || fMiner) && mapTestPool.count(prevout.hash))
{
// Get txindex from current proposed changes
txindex = mapTestPool.find(prevout.hash)->second;
}
else
{
// Read txindex from txdb
fFound = txdb.ReadTxIndex(prevout.hash, txindex);
}
if (!fFound && (fBlock || fMiner))
return fMiner ? false : error("FetchInputs() : %s prev tx %s index entry not found", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str());
// Read txPrev
CTransaction& txPrev = inputsRet[prevout.hash].second;
if (!fFound || txindex.pos == CDiskTxPos(1,1,1))
{
// Get prev tx from single transactions in memory
{
LOCK(mempool.cs);
if (!mempool.exists(prevout.hash))
return error("FetchInputs() : %s mempool Tx prev not found %s", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str());
txPrev = mempool.lookup(prevout.hash);
}
if (!fFound)
txindex.vSpent.resize(txPrev.vout.size());
}
else
{
// Get prev tx from disk
if (!txPrev.ReadFromDisk(txindex.pos))
return error("FetchInputs() : %s ReadFromDisk prev tx %s failed", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str());
}
}
// Make sure all prevout.n indexes are valid:
for (unsigned int i = 0; i < vin.size(); i++)
{
const COutPoint prevout = vin[i].prevout;
assert(inputsRet.count(prevout.hash) != 0);
const CTxIndex& txindex = inputsRet[prevout.hash].first;
const CTransaction& txPrev = inputsRet[prevout.hash].second;
if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size())
{
// Revisit this if/when transaction replacement is implemented and allows
// adding inputs:
fInvalid = true;
return DoS(100, error("FetchInputs() : %s prevout.n out of range %d %d %d prev tx %s\n%s", GetHash().ToString().substr(0,10).c_str(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString().substr(0,10).c_str(), txPrev.ToString().c_str()));
}
}
return true;
}
const CTxOut& CTransaction::GetOutputFor(const CTxIn& input, const MapPrevTx& inputs) const
{
MapPrevTx::const_iterator mi = inputs.find(input.prevout.hash);
if (mi == inputs.end())
throw std::runtime_error("CTransaction::GetOutputFor() : prevout.hash not found");
const CTransaction& txPrev = (mi->second).second;
if (input.prevout.n >= txPrev.vout.size())
throw std::runtime_error("CTransaction::GetOutputFor() : prevout.n out of range");
return txPrev.vout[input.prevout.n];
}
int64 CTransaction::GetValueIn(const MapPrevTx& inputs) const
{
if (IsCoinBase())
return 0;
int64 nResult = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
nResult += GetOutputFor(vin[i], inputs).nValue;
}
return nResult;
}
unsigned int CTransaction::GetP2SHSigOpCount(const MapPrevTx& inputs) const
{
if (IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
const CTxOut& prevout = GetOutputFor(vin[i], inputs);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(vin[i].scriptSig);
}
return nSigOps;
}
bool CTransaction::ConnectInputs(MapPrevTx inputs,
map<uint256, CTxIndex>& mapTestPool, const CDiskTxPos& posThisTx,
const CBlockIndex* pindexBlock, bool fBlock, bool fMiner, bool fStrictPayToScriptHash)
{
// Take over previous transactions' spent pointers
// fBlock is true when this is called from AcceptBlock when a new best-block is added to the blockchain
// fMiner is true when called from the internal bitcoin miner
// ... both are false when called from CTransaction::AcceptToMemoryPool
if (!IsCoinBase())
{
int64 nValueIn = 0;
int64 nFees = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
COutPoint prevout = vin[i].prevout;
assert(inputs.count(prevout.hash) > 0);
CTxIndex& txindex = inputs[prevout.hash].first;
CTransaction& txPrev = inputs[prevout.hash].second;
if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size())
return DoS(100, error("ConnectInputs() : %s prevout.n out of range %d %d %d prev tx %s\n%s", GetHash().ToString().substr(0,10).c_str(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString().substr(0,10).c_str(), txPrev.ToString().c_str()));
// If prev is coinbase, check that it's matured
if (txPrev.IsCoinBase())
for (const CBlockIndex* pindex = pindexBlock; pindex && pindexBlock->nHeight - pindex->nHeight < COINBASE_MATURITY; pindex = pindex->pprev)
if (pindex->nBlockPos == txindex.pos.nBlockPos && pindex->nFile == txindex.pos.nFile)
return error("ConnectInputs() : tried to spend coinbase at depth %d", pindexBlock->nHeight - pindex->nHeight);
// Check for negative or overflow input values
nValueIn += txPrev.vout[prevout.n].nValue;
if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return DoS(100, error("ConnectInputs() : txin values out of range"));
}
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
for (unsigned int i = 0; i < vin.size(); i++)
{
COutPoint prevout = vin[i].prevout;
assert(inputs.count(prevout.hash) > 0);
CTxIndex& txindex = inputs[prevout.hash].first;
CTransaction& txPrev = inputs[prevout.hash].second;
// Check for conflicts (double-spend)
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
if (!txindex.vSpent[prevout.n].IsNull())
return fMiner ? false : error("ConnectInputs() : %s prev tx already used at %s", GetHash().ToString().substr(0,10).c_str(), txindex.vSpent[prevout.n].ToString().c_str());
// Skip ECDSA signature verification when connecting blocks (fBlock=true)
// before the last blockchain checkpoint. This is safe because block merkle hashes are
// still computed and checked, and any change will be caught at the next checkpoint.
if (!(fBlock && (nBestHeight < Checkpoints::GetTotalBlocksEstimate())))
{
// Verify signature
if (!VerifySignature(txPrev, *this, i, fStrictPayToScriptHash, 0))
{
// only during transition phase for P2SH: do not invoke anti-DoS code for
// potentially old clients relaying bad P2SH transactions
if (fStrictPayToScriptHash && VerifySignature(txPrev, *this, i, false, 0))
return error("ConnectInputs() : %s P2SH VerifySignature failed", GetHash().ToString().substr(0,10).c_str());
return DoS(100,error("ConnectInputs() : %s VerifySignature failed", GetHash().ToString().substr(0,10).c_str()));
}
}
// Mark outpoints as spent
txindex.vSpent[prevout.n] = posThisTx;
// Write back
if (fBlock || fMiner)
{
mapTestPool[prevout.hash] = txindex;
}
}
if (nValueIn < GetValueOut())
return DoS(100, error("ConnectInputs() : %s value in < value out", GetHash().ToString().substr(0,10).c_str()));
// Tally transaction fees
int64 nTxFee = nValueIn - GetValueOut();
if (nTxFee < 0)
return DoS(100, error("ConnectInputs() : %s nTxFee < 0", GetHash().ToString().substr(0,10).c_str()));
nFees += nTxFee;
if (!MoneyRange(nFees))
return DoS(100, error("ConnectInputs() : nFees out of range"));
}
return true;
}
bool CTransaction::ClientConnectInputs()
{
if (IsCoinBase())
return false;
// Take over previous transactions' spent pointers
{
LOCK(mempool.cs);
int64 nValueIn = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
// Get prev tx from single transactions in memory
COutPoint prevout = vin[i].prevout;
if (!mempool.exists(prevout.hash))
return false;
CTransaction& txPrev = mempool.lookup(prevout.hash);
if (prevout.n >= txPrev.vout.size())
return false;
// Verify signature
if (!VerifySignature(txPrev, *this, i, true, 0))
return error("ConnectInputs() : VerifySignature failed");
///// this is redundant with the mempool.mapNextTx stuff,
///// not sure which I want to get rid of
///// this has to go away now that posNext is gone
// // Check for conflicts
// if (!txPrev.vout[prevout.n].posNext.IsNull())
// return error("ConnectInputs() : prev tx already used");
//
// // Flag outpoints as used
// txPrev.vout[prevout.n].posNext = posThisTx;
nValueIn += txPrev.vout[prevout.n].nValue;
if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return error("ClientConnectInputs() : txin values out of range");
}
if (GetValueOut() > nValueIn)
return false;
}
return true;
}
bool CBlock::DisconnectBlock(CTxDB& txdb, CBlockIndex* pindex)
{
// Disconnect in reverse order
for (int i = vtx.size()-1; i >= 0; i--)
if (!vtx[i].DisconnectInputs(txdb))
return false;
// Update block index on disk without changing it in memory.
// The memory index structure will be changed after the db commits.
if (pindex->pprev)
{
CDiskBlockIndex blockindexPrev(pindex->pprev);
blockindexPrev.hashNext = 0;
if (!txdb.WriteBlockIndex(blockindexPrev))
return error("DisconnectBlock() : WriteBlockIndex failed");
}
return true;
}
bool CBlock::ConnectBlock(CTxDB& txdb, CBlockIndex* pindex, bool fJustCheck)
{
// Check it again in case a previous version let a bad block in
if (!CheckBlock(!fJustCheck, !fJustCheck))
return false;
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
// This rule applies to all blocks whose timestamp is after March 15, 2012, 0:00 UTC.
int64 nBIP30SwitchTime = 1331769600;
bool fEnforceBIP30 = (pindex->nTime > nBIP30SwitchTime);
// BIP16 didn't become active until Apr 1 2012
int64 nBIP16SwitchTime = 1333238400;
bool fStrictPayToScriptHash = (pindex->nTime >= nBIP16SwitchTime);
//// issue here: it doesn't know the version
unsigned int nTxPos;
if (fJustCheck)
// FetchInputs treats CDiskTxPos(1,1,1) as a special "refer to memorypool" indicator
// Since we're just checking the block and not actually connecting it, it might not (and probably shouldn't) be on the disk to get the transaction from
nTxPos = 1;
else
nTxPos = pindex->nBlockPos + ::GetSerializeSize(CBlock(), SER_DISK, CLIENT_VERSION) - 1 + GetSizeOfCompactSize(vtx.size());
map<uint256, CTxIndex> mapQueuedChanges;
int64 nFees = 0;
unsigned int nSigOps = 0;
BOOST_FOREACH(CTransaction& tx, vtx)
{
uint256 hashTx = tx.GetHash();
if (fEnforceBIP30) {
CTxIndex txindexOld;
if (txdb.ReadTxIndex(hashTx, txindexOld)) {
BOOST_FOREACH(CDiskTxPos &pos, txindexOld.vSpent)
if (pos.IsNull())
return false;
}
}
nSigOps += tx.GetLegacySigOpCount();
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("ConnectBlock() : too many sigops"));
CDiskTxPos posThisTx(pindex->nFile, pindex->nBlockPos, nTxPos);
if (!fJustCheck)
nTxPos += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION);
MapPrevTx mapInputs;
if (!tx.IsCoinBase())
{
bool fInvalid;
if (!tx.FetchInputs(txdb, mapQueuedChanges, true, false, mapInputs, fInvalid))
return false;
if (fStrictPayToScriptHash)
{
// Add in sigops done by pay-to-script-hash inputs;
// this is to prevent a "rogue miner" from creating
// an incredibly-expensive-to-validate block.
nSigOps += tx.GetP2SHSigOpCount(mapInputs);
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("ConnectBlock() : too many sigops"));
}
nFees += tx.GetValueIn(mapInputs)-tx.GetValueOut();
if (!tx.ConnectInputs(mapInputs, mapQueuedChanges, posThisTx, pindex, true, false, fStrictPayToScriptHash))
return false;
}
mapQueuedChanges[hashTx] = CTxIndex(posThisTx, tx.vout.size());
}
if (vtx[0].GetValueOut() > GetBlockValue(pindex->nHeight, nFees))
return false;
if (fJustCheck)
return true;
// Write queued txindex changes
for (map<uint256, CTxIndex>::iterator mi = mapQueuedChanges.begin(); mi != mapQueuedChanges.end(); ++mi)
{
if (!txdb.UpdateTxIndex((*mi).first, (*mi).second))
return error("ConnectBlock() : UpdateTxIndex failed");
}
// Update block index on disk without changing it in memory.
// The memory index structure will be changed after the db commits.
if (pindex->pprev)
{
CDiskBlockIndex blockindexPrev(pindex->pprev);
blockindexPrev.hashNext = pindex->GetBlockHash();
if (!txdb.WriteBlockIndex(blockindexPrev))
return error("ConnectBlock() : WriteBlockIndex failed");
}
// Watch for transactions paying to me
BOOST_FOREACH(CTransaction& tx, vtx)
SyncWithWallets(tx, this, true);
return true;
}
bool static Reorganize(CTxDB& txdb, CBlockIndex* pindexNew)
{
printf("REORGANIZE\n");
// Find the fork
CBlockIndex* pfork = pindexBest;
CBlockIndex* plonger = pindexNew;
while (pfork != plonger)
{
while (plonger->nHeight > pfork->nHeight)
if (!(plonger = plonger->pprev))
return error("Reorganize() : plonger->pprev is null");
if (pfork == plonger)
break;
if (!(pfork = pfork->pprev))
return error("Reorganize() : pfork->pprev is null");
}
// List of what to disconnect
vector<CBlockIndex*> vDisconnect;
for (CBlockIndex* pindex = pindexBest; pindex != pfork; pindex = pindex->pprev)
vDisconnect.push_back(pindex);
// List of what to connect
vector<CBlockIndex*> vConnect;
for (CBlockIndex* pindex = pindexNew; pindex != pfork; pindex = pindex->pprev)
vConnect.push_back(pindex);
reverse(vConnect.begin(), vConnect.end());
printf("REORGANIZE: Disconnect %i blocks; %s..%s\n", vDisconnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexBest->GetBlockHash().ToString().substr(0,20).c_str());
printf("REORGANIZE: Connect %i blocks; %s..%s\n", vConnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->GetBlockHash().ToString().substr(0,20).c_str());
// Disconnect shorter branch
vector<CTransaction> vResurrect;
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect)
{
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("Reorganize() : ReadFromDisk for disconnect failed");
if (!block.DisconnectBlock(txdb, pindex))
return error("Reorganize() : DisconnectBlock %s failed", pindex->GetBlockHash().ToString().substr(0,20).c_str());
// Queue memory transactions to resurrect
BOOST_FOREACH(const CTransaction& tx, block.vtx)
if (!tx.IsCoinBase())
vResurrect.push_back(tx);
}
// Connect longer branch
vector<CTransaction> vDelete;
for (unsigned int i = 0; i < vConnect.size(); i++)
{
CBlockIndex* pindex = vConnect[i];
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("Reorganize() : ReadFromDisk for connect failed");
if (!block.ConnectBlock(txdb, pindex))
{
// Invalid block
return error("Reorganize() : ConnectBlock %s failed", pindex->GetBlockHash().ToString().substr(0,20).c_str());
}
// Queue memory transactions to delete
BOOST_FOREACH(const CTransaction& tx, block.vtx)
vDelete.push_back(tx);
}
if (!txdb.WriteHashBestChain(pindexNew->GetBlockHash()))
return error("Reorganize() : WriteHashBestChain failed");
// Make sure it's successfully written to disk before changing memory structure
if (!txdb.TxnCommit())
return error("Reorganize() : TxnCommit failed");
// Disconnect shorter branch
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect)
if (pindex->pprev)
pindex->pprev->pnext = NULL;
// Connect longer branch
BOOST_FOREACH(CBlockIndex* pindex, vConnect)
if (pindex->pprev)
pindex->pprev->pnext = pindex;
// Resurrect memory transactions that were in the disconnected branch
BOOST_FOREACH(CTransaction& tx, vResurrect)
tx.AcceptToMemoryPool(txdb, false);
// Delete redundant memory transactions that are in the connected branch
BOOST_FOREACH(CTransaction& tx, vDelete)
mempool.remove(tx);
printf("REORGANIZE: done\n");
return true;
}
// Called from inside SetBestChain: attaches a block to the new best chain being built
bool CBlock::SetBestChainInner(CTxDB& txdb, CBlockIndex *pindexNew)
{
uint256 hash = GetHash();
// Adding to current best branch
if (!ConnectBlock(txdb, pindexNew) || !txdb.WriteHashBestChain(hash))
{
txdb.TxnAbort();
InvalidChainFound(pindexNew);
return false;
}
if (!txdb.TxnCommit())
return error("SetBestChain() : TxnCommit failed");
// Add to current best branch
pindexNew->pprev->pnext = pindexNew;
// Delete redundant memory transactions
BOOST_FOREACH(CTransaction& tx, vtx)
mempool.remove(tx);
return true;
}
bool CBlock::SetBestChain(CTxDB& txdb, CBlockIndex* pindexNew)
{
uint256 hash = GetHash();
if (!txdb.TxnBegin())
return error("SetBestChain() : TxnBegin failed");
if (pindexGenesisBlock == NULL && hash == hashGenesisBlock)
{
txdb.WriteHashBestChain(hash);
if (!txdb.TxnCommit())
return error("SetBestChain() : TxnCommit failed");
pindexGenesisBlock = pindexNew;
}
else if (hashPrevBlock == hashBestChain)
{
if (!SetBestChainInner(txdb, pindexNew))
return error("SetBestChain() : SetBestChainInner failed");
}
else
{
// the first block in the new chain that will cause it to become the new best chain
CBlockIndex *pindexIntermediate = pindexNew;
// list of blocks that need to be connected afterwards
std::vector<CBlockIndex*> vpindexSecondary;
// Reorganize is costly in terms of db load, as it works in a single db transaction.
// Try to limit how much needs to be done inside
while (pindexIntermediate->pprev && pindexIntermediate->pprev->bnChainWork > pindexBest->bnChainWork)
{
vpindexSecondary.push_back(pindexIntermediate);
pindexIntermediate = pindexIntermediate->pprev;
}
if (!vpindexSecondary.empty())
printf("Postponing %i reconnects\n", vpindexSecondary.size());
// Switch to new best branch
if (!Reorganize(txdb, pindexIntermediate))
{
txdb.TxnAbort();
InvalidChainFound(pindexNew);
return error("SetBestChain() : Reorganize failed");
}
// Connect further blocks
BOOST_REVERSE_FOREACH(CBlockIndex *pindex, vpindexSecondary)
{
CBlock block;
if (!block.ReadFromDisk(pindex))
{
printf("SetBestChain() : ReadFromDisk failed\n");
break;
}
if (!txdb.TxnBegin()) {
printf("SetBestChain() : TxnBegin 2 failed\n");
break;
}
// errors now are not fatal, we still did a reorganisation to a new chain in a valid way
if (!block.SetBestChainInner(txdb, pindex))
break;
}
}
// Update best block in wallet (so we can detect restored wallets)
bool fIsInitialDownload = IsInitialBlockDownload();
if (!fIsInitialDownload)
{
const CBlockLocator locator(pindexNew);
::SetBestChain(locator);
}
// New best block
hashBestChain = hash;
pindexBest = pindexNew;
pblockindexFBBHLast = NULL;
nBestHeight = pindexBest->nHeight;
bnBestChainWork = pindexNew->bnChainWork;
nTimeBestReceived = GetTime();
nTransactionsUpdated++;
printf("SetBestChain: new best=%s height=%d work=%s date=%s\n",
hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, bnBestChainWork.ToString().c_str(),
DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()).c_str());
// Check the version of the last 100 blocks to see if we need to upgrade:
if (!fIsInitialDownload)
{
int nUpgraded = 0;
const CBlockIndex* pindex = pindexBest;
for (int i = 0; i < 100 && pindex != NULL; i++)
{
if (pindex->nVersion > CBlock::CURRENT_VERSION)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
printf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, CBlock::CURRENT_VERSION);
if (nUpgraded > 100/2)
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
strMiscWarning = _("Warning: This version is obsolete, upgrade required!");
}
std::string strCmd = GetArg("-blocknotify", "");
if (!fIsInitialDownload && !strCmd.empty())
{
boost::replace_all(strCmd, "%s", hashBestChain.GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
return true;
}
bool CBlock::AddToBlockIndex(unsigned int nFile, unsigned int nBlockPos)
{
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return error("AddToBlockIndex() : %s already exists", hash.ToString().substr(0,20).c_str());
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(nFile, nBlockPos, *this);
if (!pindexNew)
return error("AddToBlockIndex() : new CBlockIndex failed");
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
map<uint256, CBlockIndex*>::iterator miPrev = mapBlockIndex.find(hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
}
pindexNew->bnChainWork = (pindexNew->pprev ? pindexNew->pprev->bnChainWork : 0) + pindexNew->GetBlockWork();
CTxDB txdb;
if (!txdb.TxnBegin())
return false;
txdb.WriteBlockIndex(CDiskBlockIndex(pindexNew));
if (!txdb.TxnCommit())
return false;
// New best
if (pindexNew->bnChainWork > bnBestChainWork)
if (!SetBestChain(txdb, pindexNew))
return false;
txdb.Close();
if (pindexNew == pindexBest)
{
// Notify UI to display prev block's coinbase if it was ours
static uint256 hashPrevBestCoinBase;
UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = vtx[0].GetHash();
}
uiInterface.NotifyBlocksChanged();
return true;
}
bool CBlock::CheckBlock(bool fCheckPOW, bool fCheckMerkleRoot) const
{
// These are checks that are independent of context
// that can be verified before saving an orphan block.
// Size limits
if (vtx.empty() || vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return DoS(100, error("CheckBlock() : size limits failed"));
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(GetHash(), nBits))
return DoS(50, error("CheckBlock() : proof of work failed"));
// Check timestamp
if (GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60)
return error("CheckBlock() : block timestamp too far in the future");
// First transaction must be coinbase, the rest must not be
if (vtx.empty() || !vtx[0].IsCoinBase())
return DoS(100, error("CheckBlock() : first tx is not coinbase"));
for (unsigned int i = 1; i < vtx.size(); i++)
if (vtx[i].IsCoinBase())
return DoS(100, error("CheckBlock() : more than one coinbase"));
// Check transactions
BOOST_FOREACH(const CTransaction& tx, vtx)
if (!tx.CheckTransaction())
return DoS(tx.nDoS, error("CheckBlock() : CheckTransaction failed"));
// Check for duplicate txids. This is caught by ConnectInputs(),
// but catching it earlier avoids a potential DoS attack:
set<uint256> uniqueTx;
BOOST_FOREACH(const CTransaction& tx, vtx)
{
uniqueTx.insert(tx.GetHash());
}
if (uniqueTx.size() != vtx.size())
return DoS(100, error("CheckBlock() : duplicate transaction"));
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTransaction& tx, vtx)
{
nSigOps += tx.GetLegacySigOpCount();
}
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("CheckBlock() : out-of-bounds SigOpCount"));
// Check merkle root
if (fCheckMerkleRoot && hashMerkleRoot != BuildMerkleTree())
return DoS(100, error("CheckBlock() : hashMerkleRoot mismatch"));
return true;
}
bool CBlock::AcceptBlock()
{
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return error("AcceptBlock() : block already in mapBlockIndex");
// Get prev block index
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashPrevBlock);
if (mi == mapBlockIndex.end())
return DoS(10, error("AcceptBlock() : prev block not found"));
CBlockIndex* pindexPrev = (*mi).second;
int nHeight = pindexPrev->nHeight+1;
// Check proof of work
if (nBits != GetNextWorkRequired(pindexPrev, this))
return DoS(100, error("AcceptBlock() : incorrect proof of work"));
// Check timestamp against prev
if (GetBlockTime() <= pindexPrev->GetMedianTimePast())
return error("AcceptBlock() : block's timestamp is too early");
// Check that all transactions are finalized
BOOST_FOREACH(const CTransaction& tx, vtx)
if (!tx.IsFinal(nHeight, GetBlockTime()))
return DoS(10, error("AcceptBlock() : contains a non-final transaction"));
// Check that the block chain matches the known block chain up to a checkpoint
if (!Checkpoints::CheckBlock(nHeight, hash))
return DoS(100, error("AcceptBlock() : rejected by checkpoint lock-in at %d", nHeight));
// Reject block.nVersion=1 blocks when 95% (75% on testnet) of the network has upgraded:
if (nVersion < 2)
{
if ((!fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 950, 1000)) ||
(fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 75, 100)))
{
return error("AcceptBlock() : rejected nVersion=1 block");
}
}
// Enforce block.nVersion=2 rule that the coinbase starts with serialized block height
if (nVersion >= 2)
{
// if 750 of the last 1,000 blocks are version 2 or greater (51/100 if testnet):
if ((!fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 750, 1000)) ||
(fTestNet && CBlockIndex::IsSuperMajority(2, pindexPrev, 51, 100)))
{
CScript expect = CScript() << nHeight;
if (!std::equal(expect.begin(), expect.end(), vtx[0].vin[0].scriptSig.begin()))
return DoS(100, error("AcceptBlock() : block height mismatch in coinbase"));
}
}
// Write block to history file
if (!CheckDiskSpace(::GetSerializeSize(*this, SER_DISK, CLIENT_VERSION)))
return error("AcceptBlock() : out of disk space");
unsigned int nFile = -1;
unsigned int nBlockPos = 0;
if (!WriteToDisk(nFile, nBlockPos))
return error("AcceptBlock() : WriteToDisk failed");
if (!AddToBlockIndex(nFile, nBlockPos))
return error("AcceptBlock() : AddToBlockIndex failed");
// Relay inventory, but don't relay old inventory during initial block download
int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate();
if (hashBestChain == hash)
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
if (nBestHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate))
pnode->PushInventory(CInv(MSG_BLOCK, hash));
}
return true;
}
bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck)
{
unsigned int nFound = 0;
for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++)
{
if (pstart->nVersion >= minVersion)
++nFound;
pstart = pstart->pprev;
}
return (nFound >= nRequired);
}
bool ProcessBlock(CNode* pfrom, CBlock* pblock)
{
// Check for duplicate
uint256 hash = pblock->GetHash();
if (mapBlockIndex.count(hash))
return error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString().substr(0,20).c_str());
if (mapOrphanBlocks.count(hash))
return error("ProcessBlock() : already have block (orphan) %s", hash.ToString().substr(0,20).c_str());
// Preliminary checks
if (!pblock->CheckBlock())
return error("ProcessBlock() : CheckBlock FAILED");
CBlockIndex* pcheckpoint = Checkpoints::GetLastCheckpoint(mapBlockIndex);
if (pcheckpoint && pblock->hashPrevBlock != hashBestChain)
{
// Extra checks to prevent "fill up memory by spamming with bogus blocks"
int64 deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime;
if (deltaTime < 0)
{
if (pfrom)
pfrom->Misbehaving(100);
return error("ProcessBlock() : block with timestamp before last checkpoint");
}
CBigNum bnNewBlock;
bnNewBlock.SetCompact(pblock->nBits);
CBigNum bnRequired;
bnRequired.SetCompact(ComputeMinWork(pcheckpoint->nBits, deltaTime));
if (bnNewBlock > bnRequired)
{
if (pfrom)
pfrom->Misbehaving(100);
return error("ProcessBlock() : block with too little proof-of-work");
}
}
// If we don't already have its previous block, shunt it off to holding area until we get it
if (!mapBlockIndex.count(pblock->hashPrevBlock))
{
printf("ProcessBlock: ORPHAN BLOCK, prev=%s\n", pblock->hashPrevBlock.ToString().substr(0,20).c_str());
// Accept orphans as long as there is a node to request its parents from
if (pfrom) {
CBlock* pblock2 = new CBlock(*pblock);
mapOrphanBlocks.insert(make_pair(hash, pblock2));
mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrevBlock, pblock2));
// Ask this guy to fill in what we're missing
pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(pblock2));
}
return true;
}
// Store to disk
if (!pblock->AcceptBlock())
return error("ProcessBlock() : AcceptBlock FAILED");
// Recursively process any orphan blocks that depended on this one
vector<uint256> vWorkQueue;
vWorkQueue.push_back(hash);
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (multimap<uint256, CBlock*>::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev);
mi != mapOrphanBlocksByPrev.upper_bound(hashPrev);
++mi)
{
CBlock* pblockOrphan = (*mi).second;
if (pblockOrphan->AcceptBlock())
vWorkQueue.push_back(pblockOrphan->GetHash());
mapOrphanBlocks.erase(pblockOrphan->GetHash());
delete pblockOrphan;
}
mapOrphanBlocksByPrev.erase(hashPrev);
}
printf("ProcessBlock: ACCEPTED\n");
return true;
}
bool CheckDiskSpace(uint64 nAdditionalBytes)
{
uint64 nFreeBytesAvailable = filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
{
fShutdown = true;
string strMessage = _("Warning: Disk space is low!");
strMiscWarning = strMessage;
printf("*** %s\n", strMessage.c_str());
uiInterface.ThreadSafeMessageBox(strMessage, "Bitcoin", CClientUIInterface::OK | CClientUIInterface::ICON_EXCLAMATION | CClientUIInterface::MODAL);
StartShutdown();
return false;
}
return true;
}
static filesystem::path BlockFilePath(unsigned int nFile)
{
string strBlockFn = strprintf("blk%04u.dat", nFile);
return GetDataDir() / strBlockFn;
}
FILE* OpenBlockFile(unsigned int nFile, unsigned int nBlockPos, const char* pszMode)
{
if ((nFile < 1) || (nFile == (unsigned int) -1))
return NULL;
FILE* file = fopen(BlockFilePath(nFile).string().c_str(), pszMode);
if (!file)
return NULL;
if (nBlockPos != 0 && !strchr(pszMode, 'a') && !strchr(pszMode, 'w'))
{
if (fseek(file, nBlockPos, SEEK_SET) != 0)
{
fclose(file);
return NULL;
}
}
return file;
}
static unsigned int nCurrentBlockFile = 1;
FILE* AppendBlockFile(unsigned int& nFileRet)
{
nFileRet = 0;
loop
{
FILE* file = OpenBlockFile(nCurrentBlockFile, 0, "ab");
if (!file)
return NULL;
if (fseek(file, 0, SEEK_END) != 0)
return NULL;
// FAT32 file size max 4GB, fseek and ftell max 2GB, so we must stay under 2GB
if (ftell(file) < (long)(0x7F000000 - MAX_SIZE))
{
nFileRet = nCurrentBlockFile;
return file;
}
fclose(file);
nCurrentBlockFile++;
}
}
bool LoadBlockIndex(bool fAllowNew)
{
if (fTestNet)
{
pchMessageStart[0] = 0x0b;
pchMessageStart[1] = 0x11;
pchMessageStart[2] = 0x09;
pchMessageStart[3] = 0x07;
hashGenesisBlock = uint256("000000000933ea01ad0ee984209779baaec3ced90fa3f408719526f8d77f4943");
}
//
// Load block index
//
CTxDB txdb("cr");
if (!txdb.LoadBlockIndex())
return false;
txdb.Close();
//
// Init with genesis block
//
if (mapBlockIndex.empty())
{
if (!fAllowNew)
return false;
// Genesis Block:
// CBlock(hash=000000000019d6, ver=1, hashPrevBlock=00000000000000, hashMerkleRoot=4a5e1e, nTime=1231006505, nBits=1d00ffff, nNonce=2083236893, vtx=1)
// CTransaction(hash=4a5e1e, ver=1, vin.size=1, vout.size=1, nLockTime=0)
// CTxIn(COutPoint(000000, -1), coinbase 04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73)
// CTxOut(nValue=50.00000000, scriptPubKey=0x5F1DF16B2B704C8A578D0B)
// vMerkleTree: 4a5e1e
// Genesis block
const char* pszTimestamp = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks";
CTransaction txNew;
txNew.vin.resize(1);
txNew.vout.resize(1);
txNew.vin[0].scriptSig = CScript() << 486604799 << CBigNum(4) << vector<unsigned char>((const unsigned char*)pszTimestamp, (const unsigned char*)pszTimestamp + strlen(pszTimestamp));
txNew.vout[0].nValue = 50 * COIN;
txNew.vout[0].scriptPubKey = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG;
CBlock block;
block.vtx.push_back(txNew);
block.hashPrevBlock = 0;
block.hashMerkleRoot = block.BuildMerkleTree();
block.nVersion = 1;
block.nTime = 1231006505;
block.nBits = 0x1d00ffff;
block.nNonce = 2083236893;
if (fTestNet)
{
block.nTime = 1296688602;
block.nNonce = 414098458;
}
//// debug print
printf("%s\n", block.GetHash().ToString().c_str());
printf("%s\n", hashGenesisBlock.ToString().c_str());
printf("%s\n", block.hashMerkleRoot.ToString().c_str());
assert(block.hashMerkleRoot == uint256("0x4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"));
block.print();
assert(block.GetHash() == hashGenesisBlock);
// Start new block file
unsigned int nFile;
unsigned int nBlockPos;
if (!block.WriteToDisk(nFile, nBlockPos))
return error("LoadBlockIndex() : writing genesis block to disk failed");
if (!block.AddToBlockIndex(nFile, nBlockPos))
return error("LoadBlockIndex() : genesis block not accepted");
}
return true;
}
void PrintBlockTree()
{
// pre-compute tree structure
map<CBlockIndex*, vector<CBlockIndex*> > mapNext;
for (map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi)
{
CBlockIndex* pindex = (*mi).second;
mapNext[pindex->pprev].push_back(pindex);
// test
//while (rand() % 3 == 0)
// mapNext[pindex->pprev].push_back(pindex);
}
vector<pair<int, CBlockIndex*> > vStack;
vStack.push_back(make_pair(0, pindexGenesisBlock));
int nPrevCol = 0;
while (!vStack.empty())
{
int nCol = vStack.back().first;
CBlockIndex* pindex = vStack.back().second;
vStack.pop_back();
// print split or gap
if (nCol > nPrevCol)
{
for (int i = 0; i < nCol-1; i++)
printf("| ");
printf("|\\\n");
}
else if (nCol < nPrevCol)
{
for (int i = 0; i < nCol; i++)
printf("| ");
printf("|\n");
}
nPrevCol = nCol;
// print columns
for (int i = 0; i < nCol; i++)
printf("| ");
// print item
CBlock block;
block.ReadFromDisk(pindex);
printf("%d (%u,%u) %s %s tx %d",
pindex->nHeight,
pindex->nFile,
pindex->nBlockPos,
block.GetHash().ToString().substr(0,20).c_str(),
DateTimeStrFormat("%x %H:%M:%S", block.GetBlockTime()).c_str(),
block.vtx.size());
PrintWallets(block);
// put the main time-chain first
vector<CBlockIndex*>& vNext = mapNext[pindex];
for (unsigned int i = 0; i < vNext.size(); i++)
{
if (vNext[i]->pnext)
{
swap(vNext[0], vNext[i]);
break;
}
}
// iterate children
for (unsigned int i = 0; i < vNext.size(); i++)
vStack.push_back(make_pair(nCol+i, vNext[i]));
}
}
bool LoadExternalBlockFile(FILE* fileIn)
{
int64 nStart = GetTimeMillis();
int nLoaded = 0;
{
LOCK(cs_main);
try {
CAutoFile blkdat(fileIn, SER_DISK, CLIENT_VERSION);
unsigned int nPos = 0;
while (nPos != (unsigned int)-1 && blkdat.good() && !fRequestShutdown)
{
unsigned char pchData[65536];
do {
fseek(blkdat, nPos, SEEK_SET);
int nRead = fread(pchData, 1, sizeof(pchData), blkdat);
if (nRead <= 8)
{
nPos = (unsigned int)-1;
break;
}
void* nFind = memchr(pchData, pchMessageStart[0], nRead+1-sizeof(pchMessageStart));
if (nFind)
{
if (memcmp(nFind, pchMessageStart, sizeof(pchMessageStart))==0)
{
nPos += ((unsigned char*)nFind - pchData) + sizeof(pchMessageStart);
break;
}
nPos += ((unsigned char*)nFind - pchData) + 1;
}
else
nPos += sizeof(pchData) - sizeof(pchMessageStart) + 1;
} while(!fRequestShutdown);
if (nPos == (unsigned int)-1)
break;
fseek(blkdat, nPos, SEEK_SET);
unsigned int nSize;
blkdat >> nSize;
if (nSize > 0 && nSize <= MAX_BLOCK_SIZE)
{
CBlock block;
blkdat >> block;
if (ProcessBlock(NULL,&block))
{
nLoaded++;
nPos += 4 + nSize;
}
}
}
}
catch (std::exception &e) {
printf("%s() : Deserialize or I/O error caught during load\n",
__PRETTY_FUNCTION__);
}
}
printf("Loaded %i blocks from external file in %"PRI64d"ms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
//////////////////////////////////////////////////////////////////////////////
//
// CAlert
//
extern map<uint256, CAlert> mapAlerts;
extern CCriticalSection cs_mapAlerts;
string GetWarnings(string strFor)
{
int nPriority = 0;
string strStatusBar;
string strRPC;
if (GetBoolArg("-testsafemode"))
strRPC = "test";
// Misc warnings like out of disk space and clock is wrong
if (strMiscWarning != "")
{
nPriority = 1000;
strStatusBar = strMiscWarning;
}
// Longer invalid proof-of-work chain
if (pindexBest && bnBestInvalidWork > bnBestChainWork + pindexBest->GetBlockWork() * 6)
{
nPriority = 2000;
strStatusBar = strRPC = _("Warning: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade.");
}
// Alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
{
const CAlert& alert = item.second;
if (alert.AppliesToMe() && alert.nPriority > nPriority)
{
nPriority = alert.nPriority;
strStatusBar = alert.strStatusBar;
}
}
}
if (strFor == "statusbar")
return strStatusBar;
else if (strFor == "rpc")
return strRPC;
assert(!"GetWarnings() : invalid parameter");
return "error";
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
bool static AlreadyHave(CTxDB& txdb, const CInv& inv)
{
switch (inv.type)
{
case MSG_TX:
{
bool txInMap = false;
{
LOCK(mempool.cs);
txInMap = (mempool.exists(inv.hash));
}
return txInMap ||
mapOrphanTransactions.count(inv.hash) ||
txdb.ContainsTx(inv.hash);
}
case MSG_BLOCK:
return mapBlockIndex.count(inv.hash) ||
mapOrphanBlocks.count(inv.hash);
}
// Don't know what it is, just say we already got one
return true;
}
// The message start string is designed to be unlikely to occur in normal data.
// The characters are rarely used upper ASCII, not valid as UTF-8, and produce
// a large 4-byte int at any alignment.
unsigned char pchMessageStart[4] = { 0xf9, 0xbe, 0xb4, 0xd9 };
bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
{
static map<CService, CPubKey> mapReuseKey;
RandAddSeedPerfmon();
if (fDebug)
printf("received: %s (%d bytes)\n", strCommand.c_str(), vRecv.size());
if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0)
{
printf("dropmessagestest DROPPING RECV MESSAGE\n");
return true;
}
if (strCommand == "version")
{
// Each connection can only send one version message
if (pfrom->nVersion != 0)
{
pfrom->Misbehaving(1);
return false;
}
int64 nTime;
CAddress addrMe;
CAddress addrFrom;
uint64 nNonce = 1;
vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe;
if (pfrom->nVersion < MIN_PROTO_VERSION)
{
// Since February 20, 2012, the protocol is initiated at version 209,
// and earlier versions are no longer supported
printf("partner %s using obsolete version %i; disconnecting\n", pfrom->addr.ToString().c_str(), pfrom->nVersion);
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion == 10300)
pfrom->nVersion = 300;
if (!vRecv.empty())
vRecv >> addrFrom >> nNonce;
if (!vRecv.empty())
vRecv >> pfrom->strSubVer;
if (!vRecv.empty())
vRecv >> pfrom->nStartingHeight;
if (pfrom->fInbound && addrMe.IsRoutable())
{
pfrom->addrLocal = addrMe;
SeenLocal(addrMe);
}
// Disconnect if we connected to ourself
if (nNonce == nLocalHostNonce && nNonce > 1)
{
printf("connected to self at %s, disconnecting\n", pfrom->addr.ToString().c_str());
pfrom->fDisconnect = true;
return true;
}
// Be shy and don't send version until we hear
if (pfrom->fInbound)
pfrom->PushVersion();
pfrom->fClient = !(pfrom->nServices & NODE_NETWORK);
AddTimeData(pfrom->addr, nTime);
// Change version
pfrom->PushMessage("verack");
pfrom->vSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (!pfrom->fInbound)
{
// Advertise our address
if (!fNoListen && !IsInitialBlockDownload())
{
CAddress addr = GetLocalAddress(&pfrom->addr);
if (addr.IsRoutable())
pfrom->PushAddress(addr);
}
// Get recent addresses
if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000)
{
pfrom->PushMessage("getaddr");
pfrom->fGetAddr = true;
}
addrman.Good(pfrom->addr);
} else {
if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom)
{
addrman.Add(addrFrom, addrFrom);
addrman.Good(addrFrom);
}
}
// Ask the first connected node for block updates
static int nAskedForBlocks = 0;
if (!pfrom->fClient && !pfrom->fOneShot &&
(pfrom->nVersion < NOBLKS_VERSION_START ||
pfrom->nVersion >= NOBLKS_VERSION_END) &&
(nAskedForBlocks < 1 || vNodes.size() <= 1))
{
nAskedForBlocks++;
pfrom->PushGetBlocks(pindexBest, uint256(0));
}
// Relay alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
item.second.RelayTo(pfrom);
}
pfrom->fSuccessfullyConnected = true;
printf("receive version message: version %d, blocks=%d, us=%s, them=%s, peer=%s\n", pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString().c_str(), addrFrom.ToString().c_str(), pfrom->addr.ToString().c_str());
cPeerBlockCounts.input(pfrom->nStartingHeight);
}
else if (pfrom->nVersion == 0)
{
// Must have a version message before anything else
pfrom->Misbehaving(1);
return false;
}
else if (strCommand == "verack")
{
pfrom->vRecv.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
}
else if (strCommand == "addr")
{
vector<CAddress> vAddr;
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000)
return true;
if (vAddr.size() > 1000)
{
pfrom->Misbehaving(20);
return error("message addr size() = %d", vAddr.size());
}
// Store the new addresses
vector<CAddress> vAddrOk;
int64 nNow = GetAdjustedTime();
int64 nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
{
if (fShutdown)
return true;
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * 24 * 60 * 60;
pfrom->AddAddressKnown(addr);
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
// Relay to a limited number of other nodes
{
LOCK(cs_vNodes);
// Use deterministic randomness to send to the same nodes for 24 hours
// at a time so the setAddrKnowns of the chosen nodes prevent repeats
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint64 hashAddr = addr.GetHash();
uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60));
hashRand = Hash(BEGIN(hashRand), END(hashRand));
multimap<uint256, CNode*> mapMix;
BOOST_FOREACH(CNode* pnode, vNodes)
{
if (pnode->nVersion < CADDR_TIME_VERSION)
continue;
unsigned int nPointer;
memcpy(&nPointer, &pnode, sizeof(nPointer));
uint256 hashKey = hashRand ^ nPointer;
hashKey = Hash(BEGIN(hashKey), END(hashKey));
mapMix.insert(make_pair(hashKey, pnode));
}
int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s)
for (multimap<uint256, CNode*>::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi)
((*mi).second)->PushAddress(addr);
}
}
// Do not store addresses outside our network
if (fReachable)
vAddrOk.push_back(addr);
}
addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
if (pfrom->fOneShot)
pfrom->fDisconnect = true;
}
else if (strCommand == "inv")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message inv size() = %d", vInv.size());
}
// find last block in inv vector
unsigned int nLastBlock = (unsigned int)(-1);
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) {
if (vInv[vInv.size() - 1 - nInv].type == MSG_BLOCK) {
nLastBlock = vInv.size() - 1 - nInv;
break;
}
}
CTxDB txdb("r");
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++)
{
const CInv &inv = vInv[nInv];
if (fShutdown)
return true;
pfrom->AddInventoryKnown(inv);
bool fAlreadyHave = AlreadyHave(txdb, inv);
if (fDebug)
printf(" got inventory: %s %s\n", inv.ToString().c_str(), fAlreadyHave ? "have" : "new");
if (!fAlreadyHave)
pfrom->AskFor(inv);
else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) {
pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(mapOrphanBlocks[inv.hash]));
} else if (nInv == nLastBlock) {
// In case we are on a very long side-chain, it is possible that we already have
// the last block in an inv bundle sent in response to getblocks. Try to detect
// this situation and push another getblocks to continue.
pfrom->PushGetBlocks(mapBlockIndex[inv.hash], uint256(0));
if (fDebug)
printf("force request: %s\n", inv.ToString().c_str());
}
// Track requests for our stuff
Inventory(inv.hash);
}
}
else if (strCommand == "getdata")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message getdata size() = %d", vInv.size());
}
if (fDebugNet || (vInv.size() != 1))
printf("received getdata (%d invsz)\n", vInv.size());
BOOST_FOREACH(const CInv& inv, vInv)
{
if (fShutdown)
return true;
if (fDebugNet || (vInv.size() == 1))
printf("received getdata for: %s\n", inv.ToString().c_str());
if (inv.type == MSG_BLOCK)
{
// Send block from disk
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(inv.hash);
if (mi != mapBlockIndex.end())
{
CBlock block;
block.ReadFromDisk((*mi).second);
pfrom->PushMessage("block", block);
// Trigger them to send a getblocks request for the next batch of inventory
if (inv.hash == pfrom->hashContinue)
{
// Bypass PushInventory, this must send even if redundant,
// and we want it right after the last block so they don't
// wait for other stuff first.
vector<CInv> vInv;
vInv.push_back(CInv(MSG_BLOCK, hashBestChain));
pfrom->PushMessage("inv", vInv);
pfrom->hashContinue = 0;
}
}
}
else if (inv.IsKnownType())
{
// Send stream from relay memory
bool pushed = false;
{
LOCK(cs_mapRelay);
map<CInv, CDataStream>::iterator mi = mapRelay.find(inv);
if (mi != mapRelay.end()) {
pfrom->PushMessage(inv.GetCommand(), (*mi).second);
pushed = true;
}
}
if (!pushed && inv.type == MSG_TX) {
LOCK(mempool.cs);
if (mempool.exists(inv.hash)) {
CTransaction tx = mempool.lookup(inv.hash);
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss.reserve(1000);
ss << tx;
pfrom->PushMessage("tx", ss);
}
}
}
// Track requests for our stuff
Inventory(inv.hash);
}
}
else if (strCommand == "getblocks")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
// Find the last block the caller has in the main chain
CBlockIndex* pindex = locator.GetBlockIndex();
// Send the rest of the chain
if (pindex)
pindex = pindex->pnext;
int nLimit = 500;
printf("getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str(), nLimit);
for (; pindex; pindex = pindex->pnext)
{
if (pindex->GetBlockHash() == hashStop)
{
printf(" getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str());
break;
}
pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash()));
if (--nLimit <= 0)
{
// When this block is requested, we'll send an inv that'll make them
// getblocks the next batch of inventory.
printf(" getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str());
pfrom->hashContinue = pindex->GetBlockHash();
break;
}
}
}
else if (strCommand == "getheaders")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
CBlockIndex* pindex = NULL;
if (locator.IsNull())
{
// If locator is null, return the hashStop block
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashStop);
if (mi == mapBlockIndex.end())
return true;
pindex = (*mi).second;
}
else
{
// Find the last block the caller has in the main chain
pindex = locator.GetBlockIndex();
if (pindex)
pindex = pindex->pnext;
}
vector<CBlock> vHeaders;
int nLimit = 2000;
printf("getheaders %d to %s\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str());
for (; pindex; pindex = pindex->pnext)
{
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
break;
}
pfrom->PushMessage("headers", vHeaders);
}
else if (strCommand == "tx")
{
vector<uint256> vWorkQueue;
vector<uint256> vEraseQueue;
CDataStream vMsg(vRecv);
CTxDB txdb("r");
CTransaction tx;
vRecv >> tx;
CInv inv(MSG_TX, tx.GetHash());
pfrom->AddInventoryKnown(inv);
bool fMissingInputs = false;
if (tx.AcceptToMemoryPool(txdb, true, &fMissingInputs))
{
SyncWithWallets(tx, NULL, true);
RelayMessage(inv, vMsg);
mapAlreadyAskedFor.erase(inv);
vWorkQueue.push_back(inv.hash);
vEraseQueue.push_back(inv.hash);
// Recursively process any orphan transactions that depended on this one
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (map<uint256, CDataStream*>::iterator mi = mapOrphanTransactionsByPrev[hashPrev].begin();
mi != mapOrphanTransactionsByPrev[hashPrev].end();
++mi)
{
const CDataStream& vMsg = *((*mi).second);
CTransaction tx;
CDataStream(vMsg) >> tx;
CInv inv(MSG_TX, tx.GetHash());
bool fMissingInputs2 = false;
if (tx.AcceptToMemoryPool(txdb, true, &fMissingInputs2))
{
printf(" accepted orphan tx %s\n", inv.hash.ToString().substr(0,10).c_str());
SyncWithWallets(tx, NULL, true);
RelayMessage(inv, vMsg);
mapAlreadyAskedFor.erase(inv);
vWorkQueue.push_back(inv.hash);
vEraseQueue.push_back(inv.hash);
}
else if (!fMissingInputs2)
{
// invalid orphan
vEraseQueue.push_back(inv.hash);
printf(" removed invalid orphan tx %s\n", inv.hash.ToString().substr(0,10).c_str());
}
}
}
BOOST_FOREACH(uint256 hash, vEraseQueue)
EraseOrphanTx(hash);
}
else if (fMissingInputs)
{
AddOrphanTx(vMsg);
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
unsigned int nEvicted = LimitOrphanTxSize(MAX_ORPHAN_TRANSACTIONS);
if (nEvicted > 0)
printf("mapOrphan overflow, removed %u tx\n", nEvicted);
}
if (tx.nDoS) pfrom->Misbehaving(tx.nDoS);
}
else if (strCommand == "block")
{
CBlock block;
vRecv >> block;
printf("received block %s\n", block.GetHash().ToString().substr(0,20).c_str());
// block.print();
CInv inv(MSG_BLOCK, block.GetHash());
pfrom->AddInventoryKnown(inv);
if (ProcessBlock(pfrom, &block))
mapAlreadyAskedFor.erase(inv);
if (block.nDoS) pfrom->Misbehaving(block.nDoS);
}
else if (strCommand == "getaddr")
{
pfrom->vAddrToSend.clear();
vector<CAddress> vAddr = addrman.GetAddr();
BOOST_FOREACH(const CAddress &addr, vAddr)
pfrom->PushAddress(addr);
}
else if (strCommand == "mempool")
{
std::vector<uint256> vtxid;
mempool.queryHashes(vtxid);
vector<CInv> vInv;
for (unsigned int i = 0; i < vtxid.size(); i++) {
CInv inv(MSG_TX, vtxid[i]);
vInv.push_back(inv);
if (i == (MAX_INV_SZ - 1))
break;
}
if (vInv.size() > 0)
pfrom->PushMessage("inv", vInv);
}
else if (strCommand == "checkorder")
{
uint256 hashReply;
vRecv >> hashReply;
if (!GetBoolArg("-allowreceivebyip"))
{
pfrom->PushMessage("reply", hashReply, (int)2, string(""));
return true;
}
CWalletTx order;
vRecv >> order;
/// we have a chance to check the order here
// Keep giving the same key to the same ip until they use it
if (!mapReuseKey.count(pfrom->addr))
pwalletMain->GetKeyFromPool(mapReuseKey[pfrom->addr], true);
// Send back approval of order and pubkey to use
CScript scriptPubKey;
scriptPubKey << mapReuseKey[pfrom->addr] << OP_CHECKSIG;
pfrom->PushMessage("reply", hashReply, (int)0, scriptPubKey);
}
else if (strCommand == "reply")
{
uint256 hashReply;
vRecv >> hashReply;
CRequestTracker tracker;
{
LOCK(pfrom->cs_mapRequests);
map<uint256, CRequestTracker>::iterator mi = pfrom->mapRequests.find(hashReply);
if (mi != pfrom->mapRequests.end())
{
tracker = (*mi).second;
pfrom->mapRequests.erase(mi);
}
}
if (!tracker.IsNull())
tracker.fn(tracker.param1, vRecv);
}
else if (strCommand == "ping")
{
if (pfrom->nVersion > BIP0031_VERSION)
{
uint64 nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
pfrom->PushMessage("pong", nonce);
}
}
else if (strCommand == "alert")
{
CAlert alert;
vRecv >> alert;
uint256 alertHash = alert.GetHash();
if (pfrom->setKnown.count(alertHash) == 0)
{
if (alert.ProcessAlert())
{
// Relay
pfrom->setKnown.insert(alertHash);
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
alert.RelayTo(pnode);
}
}
else {
// Small DoS penalty so peers that send us lots of
// duplicate/expired/invalid-signature/whatever alerts
// eventually get banned.
// This isn't a Misbehaving(100) (immediate ban) because the
// peer might be an older or different implementation with
// a different signature key, etc.
pfrom->Misbehaving(10);
}
}
}
else
{
// Ignore unknown commands for extensibility
}
// Update the last seen time for this node's address
if (pfrom->fNetworkNode)
if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping")
AddressCurrentlyConnected(pfrom->addr);
return true;
}
bool ProcessMessages(CNode* pfrom)
{
CDataStream& vRecv = pfrom->vRecv;
if (vRecv.empty())
return true;
//if (fDebug)
// printf("ProcessMessages(%u bytes)\n", vRecv.size());
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
loop
{
// Don't bother if send buffer is too full to respond anyway
if (pfrom->vSend.size() >= SendBufferSize())
break;
// Scan for message start
CDataStream::iterator pstart = search(vRecv.begin(), vRecv.end(), BEGIN(pchMessageStart), END(pchMessageStart));
int nHeaderSize = vRecv.GetSerializeSize(CMessageHeader());
if (vRecv.end() - pstart < nHeaderSize)
{
if ((int)vRecv.size() > nHeaderSize)
{
printf("\n\nPROCESSMESSAGE MESSAGESTART NOT FOUND\n\n");
vRecv.erase(vRecv.begin(), vRecv.end() - nHeaderSize);
}
break;
}
if (pstart - vRecv.begin() > 0)
printf("\n\nPROCESSMESSAGE SKIPPED %d BYTES\n\n", pstart - vRecv.begin());
vRecv.erase(vRecv.begin(), pstart);
// Read header
vector<char> vHeaderSave(vRecv.begin(), vRecv.begin() + nHeaderSize);
CMessageHeader hdr;
vRecv >> hdr;
if (!hdr.IsValid())
{
printf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand().c_str());
continue;
}
string strCommand = hdr.GetCommand();
// Message size
unsigned int nMessageSize = hdr.nMessageSize;
if (nMessageSize > MAX_SIZE)
{
printf("ProcessMessages(%s, %u bytes) : nMessageSize > MAX_SIZE\n", strCommand.c_str(), nMessageSize);
continue;
}
if (nMessageSize > vRecv.size())
{
// Rewind and wait for rest of message
vRecv.insert(vRecv.begin(), vHeaderSave.begin(), vHeaderSave.end());
break;
}
// Checksum
uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize);
unsigned int nChecksum = 0;
memcpy(&nChecksum, &hash, sizeof(nChecksum));
if (nChecksum != hdr.nChecksum)
{
printf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n",
strCommand.c_str(), nMessageSize, nChecksum, hdr.nChecksum);
continue;
}
// Copy message to its own buffer
CDataStream vMsg(vRecv.begin(), vRecv.begin() + nMessageSize, vRecv.nType, vRecv.nVersion);
vRecv.ignore(nMessageSize);
// Process message
bool fRet = false;
try
{
{
LOCK(cs_main);
fRet = ProcessMessage(pfrom, strCommand, vMsg);
}
if (fShutdown)
return true;
}
catch (std::ios_base::failure& e)
{
if (strstr(e.what(), "end of data"))
{
// Allow exceptions from under-length message on vRecv
printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand.c_str(), nMessageSize, e.what());
}
else if (strstr(e.what(), "size too large"))
{
// Allow exceptions from over-long size
printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught\n", strCommand.c_str(), nMessageSize, e.what());
}
else
{
PrintExceptionContinue(&e, "ProcessMessages()");
}
}
catch (std::exception& e) {
PrintExceptionContinue(&e, "ProcessMessages()");
} catch (...) {
PrintExceptionContinue(NULL, "ProcessMessages()");
}
if (!fRet)
printf("ProcessMessage(%s, %u bytes) FAILED\n", strCommand.c_str(), nMessageSize);
}
vRecv.Compact();
return true;
}
bool SendMessages(CNode* pto, bool fSendTrickle)
{
TRY_LOCK(cs_main, lockMain);
if (lockMain) {
// Don't send anything until we get their version message
if (pto->nVersion == 0)
return true;
// Keep-alive ping. We send a nonce of zero because we don't use it anywhere
// right now.
if (pto->nLastSend && GetTime() - pto->nLastSend > 30 * 60 && pto->vSend.empty()) {
uint64 nonce = 0;
if (pto->nVersion > BIP0031_VERSION)
pto->PushMessage("ping", nonce);
else
pto->PushMessage("ping");
}
// Resend wallet transactions that haven't gotten in a block yet
ResendWalletTransactions();
// Address refresh broadcast
static int64 nLastRebroadcast;
if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60))
{
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
{
// Periodically clear setAddrKnown to allow refresh broadcasts
if (nLastRebroadcast)
pnode->setAddrKnown.clear();
// Rebroadcast our address
if (!fNoListen)
{
CAddress addr = GetLocalAddress(&pnode->addr);
if (addr.IsRoutable())
pnode->PushAddress(addr);
}
}
}
nLastRebroadcast = GetTime();
}
//
// Message: addr
//
if (fSendTrickle)
{
vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend)
{
// returns true if wasn't already contained in the set
if (pto->setAddrKnown.insert(addr).second)
{
vAddr.push_back(addr);
// receiver rejects addr messages larger than 1000
if (vAddr.size() >= 1000)
{
pto->PushMessage("addr", vAddr);
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty())
pto->PushMessage("addr", vAddr);
}
//
// Message: inventory
//
vector<CInv> vInv;
vector<CInv> vInvWait;
{
LOCK(pto->cs_inventory);
vInv.reserve(pto->vInventoryToSend.size());
vInvWait.reserve(pto->vInventoryToSend.size());
BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend)
{
if (pto->setInventoryKnown.count(inv))
continue;
// trickle out tx inv to protect privacy
if (inv.type == MSG_TX && !fSendTrickle)
{
// 1/4 of tx invs blast to all immediately
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint256 hashRand = inv.hash ^ hashSalt;
hashRand = Hash(BEGIN(hashRand), END(hashRand));
bool fTrickleWait = ((hashRand & 3) != 0);
// always trickle our own transactions
if (!fTrickleWait)
{
CWalletTx wtx;
if (GetTransaction(inv.hash, wtx))
if (wtx.fFromMe)
fTrickleWait = true;
}
if (fTrickleWait)
{
vInvWait.push_back(inv);
continue;
}
}
// returns true if wasn't already contained in the set
if (pto->setInventoryKnown.insert(inv).second)
{
vInv.push_back(inv);
if (vInv.size() >= 1000)
{
pto->PushMessage("inv", vInv);
vInv.clear();
}
}
}
pto->vInventoryToSend = vInvWait;
}
if (!vInv.empty())
pto->PushMessage("inv", vInv);
//
// Message: getdata
//
vector<CInv> vGetData;
int64 nNow = GetTime() * 1000000;
CTxDB txdb("r");
while (!pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow)
{
const CInv& inv = (*pto->mapAskFor.begin()).second;
if (!AlreadyHave(txdb, inv))
{
if (fDebugNet)
printf("sending getdata: %s\n", inv.ToString().c_str());
vGetData.push_back(inv);
if (vGetData.size() >= 1000)
{
pto->PushMessage("getdata", vGetData);
vGetData.clear();
}
mapAlreadyAskedFor[inv] = nNow;
}
pto->mapAskFor.erase(pto->mapAskFor.begin());
}
if (!vGetData.empty())
pto->PushMessage("getdata", vGetData);
}
return true;
}
//////////////////////////////////////////////////////////////////////////////
//
// BitcoinMiner
//
int static FormatHashBlocks(void* pbuffer, unsigned int len)
{
unsigned char* pdata = (unsigned char*)pbuffer;
unsigned int blocks = 1 + ((len + 8) / 64);
unsigned char* pend = pdata + 64 * blocks;
memset(pdata + len, 0, 64 * blocks - len);
pdata[len] = 0x80;
unsigned int bits = len * 8;
pend[-1] = (bits >> 0) & 0xff;
pend[-2] = (bits >> 8) & 0xff;
pend[-3] = (bits >> 16) & 0xff;
pend[-4] = (bits >> 24) & 0xff;
return blocks;
}
static const unsigned int pSHA256InitState[8] =
{0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
void SHA256Transform(void* pstate, void* pinput, const void* pinit)
{
SHA256_CTX ctx;
unsigned char data[64];
SHA256_Init(&ctx);
for (int i = 0; i < 16; i++)
((uint32_t*)data)[i] = ByteReverse(((uint32_t*)pinput)[i]);
for (int i = 0; i < 8; i++)
ctx.h[i] = ((uint32_t*)pinit)[i];
SHA256_Update(&ctx, data, sizeof(data));
for (int i = 0; i < 8; i++)
((uint32_t*)pstate)[i] = ctx.h[i];
}
//
// ScanHash scans nonces looking for a hash with at least some zero bits.
// It operates on big endian data. Caller does the byte reversing.
// All input buffers are 16-byte aligned. nNonce is usually preserved
// between calls, but periodically or if nNonce is 0xffff0000 or above,
// the block is rebuilt and nNonce starts over at zero.
//
unsigned int static ScanHash_CryptoPP(char* pmidstate, char* pdata, char* phash1, char* phash, unsigned int& nHashesDone)
{
unsigned int& nNonce = *(unsigned int*)(pdata + 12);
for (;;)
{
// Crypto++ SHA256
// Hash pdata using pmidstate as the starting state into
// pre-formatted buffer phash1, then hash phash1 into phash
nNonce++;
SHA256Transform(phash1, pdata, pmidstate);
SHA256Transform(phash, phash1, pSHA256InitState);
// Return the nonce if the hash has at least some zero bits,
// caller will check if it has enough to reach the target
if (((unsigned short*)phash)[14] == 0)
return nNonce;
// If nothing found after trying for a while, return -1
if ((nNonce & 0xffff) == 0)
{
nHashesDone = 0xffff+1;
return (unsigned int) -1;
}
}
}
// Some explaining would be appreciated
class COrphan
{
public:
CTransaction* ptx;
set<uint256> setDependsOn;
double dPriority;
double dFeePerKb;
COrphan(CTransaction* ptxIn)
{
ptx = ptxIn;
dPriority = dFeePerKb = 0;
}
void print() const
{
printf("COrphan(hash=%s, dPriority=%.1f, dFeePerKb=%.1f)\n",
ptx->GetHash().ToString().substr(0,10).c_str(), dPriority, dFeePerKb);
BOOST_FOREACH(uint256 hash, setDependsOn)
printf(" setDependsOn %s\n", hash.ToString().substr(0,10).c_str());
}
};
uint64 nLastBlockTx = 0;
uint64 nLastBlockSize = 0;
// We want to sort transactions by priority and fee, so:
typedef boost::tuple<double, double, CTransaction*> TxPriority;
class TxPriorityCompare
{
bool byFee;
public:
TxPriorityCompare(bool _byFee) : byFee(_byFee) { }
bool operator()(const TxPriority& a, const TxPriority& b)
{
if (byFee)
{
if (a.get<1>() == b.get<1>())
return a.get<0>() < b.get<0>();
return a.get<1>() < b.get<1>();
}
else
{
if (a.get<0>() == b.get<0>())
return a.get<1>() < b.get<1>();
return a.get<0>() < b.get<0>();
}
}
};
const char* pszDummy = "\0\0";
CScript scriptDummy(std::vector<unsigned char>(pszDummy, pszDummy + sizeof(pszDummy)));
CBlock* CreateNewBlock(CReserveKey& reservekey)
{
CBlockIndex* pindexPrev = pindexBest;
// Create new block
auto_ptr<CBlock> pblock(new CBlock());
if (!pblock.get())
return NULL;
// Create coinbase tx
CTransaction txNew;
txNew.vin.resize(1);
txNew.vin[0].prevout.SetNull();
txNew.vout.resize(1);
txNew.vout[0].scriptPubKey << reservekey.GetReservedKey() << OP_CHECKSIG;
// Add our coinbase tx as first transaction
pblock->vtx.push_back(txNew);
// Largest block you're willing to create:
unsigned int nBlockMaxSize = GetArg("-blockmaxsize", MAX_BLOCK_SIZE_GEN/2);
// Limit to betweeen 1K and MAX_BLOCK_SIZE-1K for sanity:
nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MAX_BLOCK_SIZE-1000), nBlockMaxSize));
// How much of the block should be dedicated to high-priority transactions,
// included regardless of the fees they pay
unsigned int nBlockPrioritySize = GetArg("-blockprioritysize", 27000);
nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize);
// Minimum block size you want to create; block will be filled with free transactions
// until there are no more or the block reaches this size:
unsigned int nBlockMinSize = GetArg("-blockminsize", 0);
nBlockMinSize = std::min(nBlockMaxSize, nBlockMinSize);
// Fee-per-kilobyte amount considered the same as "free"
// Be careful setting this: if you set it to zero then
// a transaction spammer can cheaply fill blocks using
// 1-satoshi-fee transactions. It should be set above the real
// cost to you of processing a transaction.
int64 nMinTxFee = MIN_TX_FEE;
if (mapArgs.count("-mintxfee"))
ParseMoney(mapArgs["-mintxfee"], nMinTxFee);
// Collect memory pool transactions into the block
int64 nFees = 0;
{
LOCK2(cs_main, mempool.cs);
CTxDB txdb("r");
// Priority order to process transactions
list<COrphan> vOrphan; // list memory doesn't move
map<uint256, vector<COrphan*> > mapDependers;
// This vector will be sorted into a priority queue:
vector<TxPriority> vecPriority;
vecPriority.reserve(mempool.mapTx.size());
for (map<uint256, CTransaction>::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi)
{
CTransaction& tx = (*mi).second;
if (tx.IsCoinBase() || !tx.IsFinal())
continue;
COrphan* porphan = NULL;
double dPriority = 0;
int64 nTotalIn = 0;
bool fMissingInputs = false;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Read prev transaction
CTransaction txPrev;
CTxIndex txindex;
if (!txPrev.ReadFromDisk(txdb, txin.prevout, txindex))
{
// This should never happen; all transactions in the memory
// pool should connect to either transactions in the chain
// or other transactions in the memory pool.
if (!mempool.mapTx.count(txin.prevout.hash))
{
printf("ERROR: mempool transaction missing input\n");
if (fDebug) assert("mempool transaction missing input" == 0);
fMissingInputs = true;
if (porphan)
vOrphan.pop_back();
break;
}
// Has to wait for dependencies
if (!porphan)
{
// Use list for automatic deletion
vOrphan.push_back(COrphan(&tx));
porphan = &vOrphan.back();
}
mapDependers[txin.prevout.hash].push_back(porphan);
porphan->setDependsOn.insert(txin.prevout.hash);
nTotalIn += mempool.mapTx[txin.prevout.hash].vout[txin.prevout.n].nValue;
continue;
}
int64 nValueIn = txPrev.vout[txin.prevout.n].nValue;
nTotalIn += nValueIn;
int nConf = txindex.GetDepthInMainChain();
dPriority += (double)nValueIn * nConf;
}
if (fMissingInputs) continue;
// Priority is sum(valuein * age) / txsize
unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
dPriority /= nTxSize;
// This is a more accurate fee-per-kilobyte than is used by the client code, because the
// client code rounds up the size to the nearest 1K. That's good, because it gives an
// incentive to create smaller transactions.
double dFeePerKb = double(nTotalIn-tx.GetValueOut()) / (double(nTxSize)/1000.0);
if (porphan)
{
porphan->dPriority = dPriority;
porphan->dFeePerKb = dFeePerKb;
}
else
vecPriority.push_back(TxPriority(dPriority, dFeePerKb, &(*mi).second));
}
// Collect transactions into block
map<uint256, CTxIndex> mapTestPool;
uint64 nBlockSize = 1000;
uint64 nBlockTx = 0;
int nBlockSigOps = 100;
bool fSortedByFee = (nBlockPrioritySize <= 0);
TxPriorityCompare comparer(fSortedByFee);
std::make_heap(vecPriority.begin(), vecPriority.end(), comparer);
while (!vecPriority.empty())
{
// Take highest priority transaction off the priority queue:
double dPriority = vecPriority.front().get<0>();
double dFeePerKb = vecPriority.front().get<1>();
CTransaction& tx = *(vecPriority.front().get<2>());
std::pop_heap(vecPriority.begin(), vecPriority.end(), comparer);
vecPriority.pop_back();
// Size limits
unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
if (nBlockSize + nTxSize >= nBlockMaxSize)
continue;
// Legacy limits on sigOps:
unsigned int nTxSigOps = tx.GetLegacySigOpCount();
if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS)
continue;
// Skip free transactions if we're past the minimum block size:
if (fSortedByFee && (dFeePerKb < nMinTxFee) && (nBlockSize + nTxSize >= nBlockMinSize))
continue;
// Prioritize by fee once past the priority size or we run out of high-priority
// transactions:
if (!fSortedByFee &&
((nBlockSize + nTxSize >= nBlockPrioritySize) || (dPriority < COIN * 144 / 250)))
{
fSortedByFee = true;
comparer = TxPriorityCompare(fSortedByFee);
std::make_heap(vecPriority.begin(), vecPriority.end(), comparer);
}
// Connecting shouldn't fail due to dependency on other memory pool transactions
// because we're already processing them in order of dependency
map<uint256, CTxIndex> mapTestPoolTmp(mapTestPool);
MapPrevTx mapInputs;
bool fInvalid;
if (!tx.FetchInputs(txdb, mapTestPoolTmp, false, true, mapInputs, fInvalid))
continue;
int64 nTxFees = tx.GetValueIn(mapInputs)-tx.GetValueOut();
nTxSigOps += tx.GetP2SHSigOpCount(mapInputs);
if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS)
continue;
if (!tx.ConnectInputs(mapInputs, mapTestPoolTmp, CDiskTxPos(1,1,1), pindexPrev, false, true))
continue;
mapTestPoolTmp[tx.GetHash()] = CTxIndex(CDiskTxPos(1,1,1), tx.vout.size());
swap(mapTestPool, mapTestPoolTmp);
// Added
pblock->vtx.push_back(tx);
nBlockSize += nTxSize;
++nBlockTx;
nBlockSigOps += nTxSigOps;
nFees += nTxFees;
if (fDebug && GetBoolArg("-printpriority"))
{
printf("priority %.1f feeperkb %.1f txid %s\n",
dPriority, dFeePerKb, tx.GetHash().ToString().c_str());
}
// Add transactions that depend on this one to the priority queue
uint256 hash = tx.GetHash();
if (mapDependers.count(hash))
{
BOOST_FOREACH(COrphan* porphan, mapDependers[hash])
{
if (!porphan->setDependsOn.empty())
{
porphan->setDependsOn.erase(hash);
if (porphan->setDependsOn.empty())
{
vecPriority.push_back(TxPriority(porphan->dPriority, porphan->dFeePerKb, porphan->ptx));
std::push_heap(vecPriority.begin(), vecPriority.end(), comparer);
}
}
}
}
}
nLastBlockTx = nBlockTx;
nLastBlockSize = nBlockSize;
printf("CreateNewBlock(): total size %lu\n", nBlockSize);
pblock->vtx[0].vout[0].nValue = GetBlockValue(pindexPrev->nHeight+1, nFees);
// Fill in header
pblock->hashPrevBlock = pindexPrev->GetBlockHash();
pblock->UpdateTime(pindexPrev);
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock.get());
pblock->nNonce = 0;
pblock->vtx[0].vin[0].scriptSig = scriptDummy;
CBlockIndex indexDummy(1, 1, *pblock);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
if (!pblock->ConnectBlock(txdb, &indexDummy, true))
throw std::runtime_error("CreateNewBlock() : ConnectBlock failed");
}
return pblock.release();
}
void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce)
{
// Update nExtraNonce
static uint256 hashPrevBlock;
if (hashPrevBlock != pblock->hashPrevBlock)
{
nExtraNonce = 0;
hashPrevBlock = pblock->hashPrevBlock;
}
++nExtraNonce;
unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2
pblock->vtx[0].vin[0].scriptSig = (CScript() << nHeight << CBigNum(nExtraNonce)) + COINBASE_FLAGS;
assert(pblock->vtx[0].vin[0].scriptSig.size() <= 100);
pblock->hashMerkleRoot = pblock->BuildMerkleTree();
}
void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1)
{
//
// Pre-build hash buffers
//
struct
{
struct unnamed2
{
int nVersion;
uint256 hashPrevBlock;
uint256 hashMerkleRoot;
unsigned int nTime;
unsigned int nBits;
unsigned int nNonce;
}
block;
unsigned char pchPadding0[64];
uint256 hash1;
unsigned char pchPadding1[64];
}
tmp;
memset(&tmp, 0, sizeof(tmp));
tmp.block.nVersion = pblock->nVersion;
tmp.block.hashPrevBlock = pblock->hashPrevBlock;
tmp.block.hashMerkleRoot = pblock->hashMerkleRoot;
tmp.block.nTime = pblock->nTime;
tmp.block.nBits = pblock->nBits;
tmp.block.nNonce = pblock->nNonce;
FormatHashBlocks(&tmp.block, sizeof(tmp.block));
FormatHashBlocks(&tmp.hash1, sizeof(tmp.hash1));
// Byte swap all the input buffer
for (unsigned int i = 0; i < sizeof(tmp)/4; i++)
((unsigned int*)&tmp)[i] = ByteReverse(((unsigned int*)&tmp)[i]);
// Precalc the first half of the first hash, which stays constant
SHA256Transform(pmidstate, &tmp.block, pSHA256InitState);
memcpy(pdata, &tmp.block, 128);
memcpy(phash1, &tmp.hash1, 64);
}
bool CheckWork(CBlock* pblock, CWallet& wallet, CReserveKey& reservekey)
{
uint256 hash = pblock->GetHash();
uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256();
if (hash > hashTarget)
return false;
//// debug print
printf("BitcoinMiner:\n");
printf("proof-of-work found \n hash: %s \ntarget: %s\n", hash.GetHex().c_str(), hashTarget.GetHex().c_str());
pblock->print();
printf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue).c_str());
// Found a solution
{
LOCK(cs_main);
if (pblock->hashPrevBlock != hashBestChain)
return error("BitcoinMiner : generated block is stale");
// Remove key from key pool
reservekey.KeepKey();
// Track how many getdata requests this block gets
{
LOCK(wallet.cs_wallet);
wallet.mapRequestCount[pblock->GetHash()] = 0;
}
// Process this block the same as if we had received it from another node
if (!ProcessBlock(NULL, pblock))
return error("BitcoinMiner : ProcessBlock, block not accepted");
}
return true;
}
void static ThreadBitcoinMiner(void* parg);
static bool fGenerateBitcoins = false;
static bool fLimitProcessors = false;
static int nLimitProcessors = -1;
void static BitcoinMiner(CWallet *pwallet)
{
printf("BitcoinMiner started\n");
SetThreadPriority(THREAD_PRIORITY_LOWEST);