
DOREMI LABS, INC. 

NUGGET MACHINE CONTROL 
PROTOCOL 

Version 1.0 Ethernet 

1/5 



4.2 Controlling the V1 using the Ethernet port: 
 
The V1 can handle IP based network communication using connectionless (UDP) or connection-oriented 
messages (TCP). The V1 uses a very simple protocol on top UDP and TCP. 
Important note: The byte ordering in the structure is big endian: When filling or reading a data structure 
from a computer using little endian byte ordering (eg. Intel ix86), the programmer must manually 
swap the structure member. 
 
4.2.1 Using UDP for Control 
 
BYTE ORDERING IS BIG ENDIAN 
 
The V1 receives UDP messages sent on port 0x8080, and replies on the same port. Every message should be 
accompanied with a 10 byte header which has the following format: 

typedef struct { 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
unsigned short 

} ComHdr; 
the type field can have on of the values of the following enums : 

 
enum { 

Sony9P_Protocol = 1, 
ComputerLink = 2, 
Mgmt_Protocol= 3 

}; 
 

Example : To send a Sony 9 pin Play command, you need to construct the following : 

0x0001, 0x0003, 0x0000, 0x0000, 0x0000, 0x20, 0x01, 0x21 
 
The first word indicate that the message is a Sony9P_Protocol message, the second word indicate the size of the 
message excluding the 10 byte header, the following 3 words are “ don’ t care” . Then the play message 
20.01.21 
 
you will receive an ack 
0x0001, 0x0003, 0x0000, 0x0000, 0x0000, 0x10, 0x01, 0x11 
 
 
 
 
 
 
 
 

2/5 



3/5 

 
4.2.2 Using TCP/IP for Control 

4.2.2.1 Description
At boot time, the V1 opens two listening socket on port 5000 (0x1388). 
Operations are initiated using a simple protocol that uses messages of 12 bytes structured as follows: 
 

typedef struct { 
int32 type; // 32 bits int32 
param1; // 32 bits 

int32 param2; // 32 bits } 
cnxn_msg; 

This structure is the header used for all TCP/IP communication, both requests and replies. However, the header 
might be followed by one or more bytes depending on the type of the message described below. 
 

 



4/5 

4.2.2.2 Simple messages
 

• Nop (No operation): This message does not do anything. It is basically used to prevent 
communications time out. 

• Request message 
type is set to the value 0x616c6976 (‘ aliv‘ ) param1 
is not used and should be set to zero param2 is not 
used and should be set to zero data no data should 
follow the header 

• Reply message 
There is no reply to this message 

• Example 
Outgoing: 61 6c 69 76 00 00 00 00 00 00 00 00 
Incoming: (none) 

 
• Version: This message retrieves the protocol version used on the V1. The present document 

describes protocol 1.0 
• Request message 

type is set to the value 0x76657220 (‘ ver ‘ ) param1 
is not used and should be set to zero param2 is not 
used and should be set to zero data no data should 
follow the header 

• Reply message 
type is set to the value 0x76657220 (‘ ver ‘ ) param1 
contains the protocol version number param2 contains 
the protocol revision number data none 

• Example 
Outgoing: 76 65 72 20 00 00 00 00 00 00 00 00 
Incoming: 76 65 72 20 00 00 00 01 00 00 00 00 

 
• Sony 9 pin protocol embedded message 

• Request message 
type is set to the value 0x73397020 (‘ s9p ‘ ) 
param1 is initialized with the sony 9 pin message length (checksum included). param2 is 
not used and should be set to zero data the sony 9 pin command should be immediately 
after the header. 

• Reply message 
type is set to the value 0x73397020 (‘ s9p ‘ ) 
param1 is initialized with the sony 9 pin message length (checksum included). param2 is 
not used 
data the sony 9 pin reply follow immediately the header. 

• Example 
Outgoing: 73 39 70 20 00 00 00 03 00 00 00 00 20 00 21 
Incoming: 73 39 70 20 00 00 00 03 00 00 00 00 10 00 11 

 




