
Phyutility manual (v. 2.2)

Stephen A. Smith

November 20, 2007

Contents

1 Introduction 2

2 Installation 3

2.1 Download . 3
2.2 Mac . 3
2.3 Linux . 4
2.4 Windows . 4

3 Tree Functions 5

3.1 Rerooting . 5
3.1.1 Examples . 5

3.2 Pruning . 5
3.2.1 Examples . 5

3.3 Type conversion . 6
3.3.1 Examples . 6

3.4 Consensus . 6
3.4.1 Examples . 6

3.5 Leaf stability . 7
3.5.1 Examples . 7

3.6 Branch Attachment Frequency . 7
3.6.1 Examples . 7

3.7 Tree support . 8
3.7.1 Examples . 8

3.8 Thinning trees . 8
3.8.1 Examples . 8

4 Data matrix functions 9

4.1 Concatenate . 9
4.1.1 Examples . 9

4.2 GenBank Parsing . 9

1

4.2.1 Examples . 9
4.3 Trimming sites . 10

4.3.1 Examples . 10
4.4 Searching NCBI . 10

4.4.1 Examples . 10
4.5 Fetching Sequences from NCBI . 10

4.5.1 Examples . 11

5 References 11

1 Introduction

Phyutility (fyoo-til-i-te) is a program that collects many of the analyses and functions that phylogeneticists
perform on trees and molecular data. Some of these were developed and are �rst introduced in this program,
others may be found in other programs but may not be �exible for pipelining or di�erent input and output
formats. Currently phyutility performs

• Trees

� rerooting

� pruning

� type conversion

� consensus

� leaf stability

� lineage movement

� tree support

� thinning trees

• Data matrices

� concatenate alignments

� genbank parsing

� trimming alignments

� search NCBI

� fetch NCBI

In order to get help from the command line just enter phyutility with no arguments (or java -jar phyutility.jar)
and the list of commands will show. You may then enter phyutility -h <nameofcommand> (or java

-jar phyutility.jar -h <nameofcommand>) for help on that command. Phyutility is an open source
project that makes use of not only custom code, but also JADE (from the PEBLS library http://code.

google.com/p/pebls) and JEBL (http://sourceforge.net/projects/jebl). It additionally employs
Derby (http://db.apache.org/derby/) for large tree �les. When Derby is employed a folder named read-
trees will be created and deleted. Make sure to not have a folder named readtrees beforehand or it will be
deleted.

This manual explains installation, how each function works, the options for each, and a simple example.
Report bugs here http://code.google.com/p/phyutility/issues/list

2

http://code.google.com/p/pebls
http://code.google.com/p/pebls
http://sourceforge.net/projects/jebl
http://db.apache.org/derby/
http://code.google.com/p/phyutility/issues/list

2 Installation

Phyutility is available for all operating systems that run Java. If your computer does not have Java installed,
you need to install it. Mac users with versions >= 10.4 are �ne (not sure about 10.3, but could be �ne).
Linux users should verify that they are using Sun Java and not the Gnu Java. Windows users should open
the command prompt and verify that something happens when you type "java <enter>", if nothing happens,
go here http://www.java.com/en/download/index.jsp and follow the instructions.

2.1 Download

You can download the most recent package from http://code.google.com/p/phyutility/downloads/

list. The package will include this documentation, a lib folder with the Derby package, example �les and
phyutility.jar. phyutility.jar is the actual program. you may run any of the procedures using phyutility.jar.
These will be run from the terminal. Even though phyutility.jar can be run from any operating system that
can run Java, below I have custom instructions for major operating systems to make life easier.

2.2 Mac

1. download package

2. unpack package (just double click it, it will make a folder called phyutility)

3. move package somewhere for permanance (here I have placed the folder into a folder, phylo, in my
Applications folder)

3

http://www.java.com/en/download/index.jsp
http://code.google.com/p/phyutility/downloads/list
http://code.google.com/p/phyutility/downloads/list

4. edit script (create a �le, i called mine phyutility and add the text (changed for where ever you put phyu-
tility)java -jar /Applications/phylo/phyutility/phyutility.jar $@). This script is included
in the package now. If you update phyutility, just make sure to replace the old phyutility.jar with the
new phyutility.jar so you won't have to edit this �le again.

5. move script to PATH (follow the instructions in the terminal screenshot below). This allows you to
run phyutility from anywhere on your computer. The steps are: 1) open terminal, 2) change directory
to where phyutility text �le is that you created above (mine is in /Applications/phyutility), 3) make
it executable (chmod 755), 4) cp to PATH (sudo cp phyutility /usr/bin/), 5) test it out (phyutility).

2.3 Linux

Every Linux distribution is di�erent, but assuming you are using Ubuntu (if you aren't then you can probably
manage on your own), you can basically follow the instructions for the Mac above. I use both Ubuntu and
Fedora and these instructions work. Make sure that you are using Sun Java and not Gnu Java.

2.4 Windows

In order to correctly run phyutility in Windows, you must have Java version 1.5 or higher. If you don't have
Java installed, no problem, just go to http://java.sun.com/javase/downloads/index.jsp and get the
Java Runtime Environment (JRE) 6 Update <somenumber>. Install as instructed and you should be good
to go.

4

http://java.sun.com/javase/downloads/index.jsp

Once you download the phyutility package and unpack, you may place the folder anywhere. It is easiest
in Windows to simply work out of that folder and run examples as they are shown in this documentation.
By work out of that folder, I mean, copy or drag your input �les into the phyutility folder, then navigate to
that folder in the Command Prompt and run your commands.

3 Tree Functions

3.1 Rerooting

The need to reroot trees or a tree is common. Phyutility will reroot nexus or newick �les and will output
nexus or newick �les. Rerooting can be done with unrooted or rooted trees and when multiple trees are in
the �le or multiple �les are given, all the trees will be rerooted and placed in one �le. If no names are given
to reroot, phyutility will unroot trees.

3.1.1 Examples

Command-line options

• -rr | designates that you want to reroot

• -names <tip name> ... | tip names forming the mrca for the reroot

• -in <�le name> ... | input tree �les

• -out <�le name> | output tree �le name (optional)

• -log <�le name> | log �le name (optional)

three

five

four

six

one

two

five

one

three

two

six

four

java -jar phyutility.jar -rr -in test.tre -out testrr.tre -names one two

3.2 Pruning

It is not uncommon to want or need to prune taxa from a tree. Often it is best to rerun the analyses with
the correct taxa, but it is also helpful to be able to prune taxa without rerunning analyses. Phyutility will
prune nexus or newick �les and will output nexus or newick �les. When multiple trees are in the �le or
multiple �les are given, all the trees will be pruned and placed in one �le.

3.2.1 Examples

Command-line options

• -pr | designates that you want to prune

• -names <tip name> ... | tip names to prune

5

• -in <�le name> ... | input tree �les

• -out <�le name> | output tree �le name (optional)

• -log <�le name> | log �le name (optional)

three

five

four

six

one

two

two

three

four

five

six

java -jar phyutility.jar -pr -in test.tre -out testpr.tre -names one

3.3 Type conversion

Often it is necessary to use tree �les that have or do not have translation tables, or to use or not use newick
or nexus tree �les. Phyutility can convert between these types. Type conversion only occurs one �le at a
time so if multiple �les are given, only the �rst will be used.

3.3.1 Examples

Command-line options

• -vert | designates that you want to convert

• -in <�le name> | input tree �le

• -out <�le name> | output tree �le name

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -vert -in test.tre -out testvert.nex

3.4 Consensus

Many programs make consensus trees, and phyutility is meant to only provide another convenient way to
produce consensus trees from multiple (or single) �le sources. Phyutility will make a consensus with nexus
and/or newick �les and will output nexus or newick �les. When multiple trees are in a �le or multiple �les
are given, all the trees will be used and a consensus will be placed into one out �le.

3.4.1 Examples

Command-line options

• -con | designates that you want to make a consensus

• -t <number> | the threshold for consensus (1.0 = strict, 0.5 = majrule, 0 = allcompat)

• -in <�le name> ... | input tree �les

6

• -out <�le name> | output tree �le name

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -con -t 0.5 -in testall.tre -out test.con

3.5 Leaf stability

The leaf stability index was described and implemented in a Mac OS 9 program by Thorley and Page (2000).
Phyutility implements this procedure and reports the leaf stability indices for all taxa in a tree or set of
trees. Phyutility will calculate these with nexus and/or newick �les. When multiple trees are in the �le or
multiple �les are given, all the trees will be used.

3.5.1 Examples

Command-line options

• -ls | designates to perform the leaf stability procedure

• -in <�le name> ... | input tree �les

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -ls -in testall.tre

3.6 Branch Attachment Frequency

The lineage movement procedure is aimed at identifying where a lineage (tip or clade) moves. When there
is a source set of trees (i.e. posterior distribution of trees from mrbayes) and a consensus tree with a target
clade with lower support, the lineage movement procedure will plot where else the lineage is falling (as seen
on the consensus tree). With a consensus tree with otherwise good support this can be very illuminating as
to why and where there is low support, for consensus trees with otherwise low support, this will probably
not be helpful. Phyutility will use nexus or newick �les and will output nexus or newick �les. When multiple
trees are in the �le or multiple �les are given, all the trees will be used.

3.6.1 Examples

Command-line options

• -lm | designates that you want to run a branch attachment (lineage movement) analysis

• -names <tip name> ... | tip names to check

• -tree <�le name> | consensus �le to map movement

• -in <�le name> ... | input tree �les

• -out <�le name> | output tree �le name

• -log <�le name> | log �le name (optional)

7

one

four

two

six

five

three

6 0

6 0

100

6 0

six

two

three

five 0.6

four 0.4

one

java -jar phyutility.jar -lm -in testall.tre -tree test.con -out testlm.tre -names three

3.7 Tree support

A consensus tree is helpful in that it gives us an idea of what the best supported tree is in a set of trees. It
can also be helpful to see what support there is for clades in a particular tree that may not be a consensus
tree. For this, one can use the tree support function in Phyutility. Phyutility will use nexus or newick �les
and will output nexus or newick �les. When multiple trees are in the �le or multiple �les are given, all the
trees will be used and the support tree will be placed in one �le. (In the case where the consensus tree is
used for the tree for support, the same results should occur if you made a consensus tree).

3.7.1 Examples

Command-line options

• -ts | designates that you want to calculate tree support

• -tree <�le name> | tree to get support for

• -in <�le name> ... | input tree �les

• -out <�le name> | output tree �le name

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -ts -in testall.tre -tree test.con -out testts.tre

3.8 Thinning trees

Trimming (or thinning) trees can be essential if other programs require less trees than are present in your
�les. Phyutility will thin these �les to make them more manageable.

3.8.1 Examples

Command-line options

• -tt # | designates that you want to thin and followed by the number of trimming (sample every #)

• -in <�le name> ... | input tree �les

• -out <�le name> | output tree �le name

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -tt 100 -in testall.tre -out testts.tre

8

4 Data matrix functions

4.1 Concatenate

Concatenating alignments together is a necessary task but can often be a painful assignment, especially when
the same taxa are not found in all alignments. Phyutility will concatenate fasta or nexus �les. Sequences
will be concatenated as long as they have the same name between �les. Each input �le is considered a gene.
Missing taxa in each gene will be given gaps for each gene in which the taxon is missing. The output is
nexus or fasta and each needs to have been aligned separately before running.

4.1.1 Examples

Command-line options

• -concat | designates that you want to concatenate

• -in <�le name> ... | input fasta or nexus �les, each one considered a gene

• -out <�le name> | output �le name

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -concat -in test.aln test2.aln -out testall.aln

4.2 GenBank Parsing

When downloading many sequences from GenBank in a fasta �le, it can be helpful to parse the id line with
a more helpful identi�er. Phyutility will do this with many options:

1. gi number

2. gb number

3. taxon name

4. taxon_name

5. T_name

6. taxon_name_ginumber

7. taxon_name_gbnumber

The input must be fasta (aligned or unaligned) and the output should always be double-checked as some
GenBank entries have non-standard id lines.

4.2.1 Examples

Command-line options

• -parse # | designates that you want to parse and the option number must follow

• -in <�le name> ... | input fasta �les

• -out <�le name> | output �le name

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -parse 1 -in test.gb -out testgb1.fasta

9

4.3 Trimming sites

Many people (most people) edit their alignments by hand, but would often like to have some standard way
to delete sites with gaps. Many alignment programs allow this but they often don't allow you to choose what
threshold to delete sites. In other words, you may want to delete sites that are missing 50% and 75% data.
Phyutility will do this. The input is fasta or nexus. Trimming is done one �le at a time, so if multiple �les
are given, only the �rst will be read.

4.3.1 Examples

Command-line options

• -clean # | designates that you want to trim and the threshold must follow

• -in <�le name> | input �le

• -out <�le name> | output �le name

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -clean 0.5 -in test.nex -out test50.nex

4.4 Searching NCBI

NCBI has a very convenient web interface for searching for particular things such as nucleotide sequences in
GenBank. The NCBI searching function in phyutility is meant not to replace this functionality but instead
to o�er a way to double check a fetch request (see below). Basically to verify that the fetch you are about
to do returns the expected ids and count number.

4.4.1 Examples

Command-line options

• -es | designates that you want to perform a search

• -term <term> | the search term(s)

• -db # | corresponds to the database you want to search (right now nucleotide (1), protein (2), genome
(3), taxonomy (4)) (optional, default = nucleotide)

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -es -term lonicera+OR+viburnum+AND+rbcl -log log.txt

4.5 Fetching Sequences from NCBI

NCBI has a very convenient web interface for fetching sequences as well. However, it is occasionally bene�cial,
instead of using something like the parse function (above) to just parse the results at the outset. The NCBI
fetch function in phyutility is meant not to replace the web interface, just to o�er another route to retrieving
fasta sequences from GenBank. This is also a �rst step to add even more post-processing of genbank
retrievals. The output is a fasta �le formatted as requested.

10

4.5.1 Examples

Command-line options

• -ef | designates that you want to perform a fetch

• -term <term> | the search term(s)

• -out <�le name> | output �le name

• -ll <length> | the length limit to return, meant to eliminate genomic sequences or sequences that are
too long in the retrieval (should almost always use, especially use if you get a memory error) (optional,
default = 10000)

• -outfor <format> | a way to customize the fasta line (1 = ginumber, 2 = taxid, 3 = orgname (with
spaces replaced with whatever is sep), 4 = de�ine (with spaces replaced with sep), 5 = seqlength)
(optional, default = 31)

• -sep <seperator> | seperator for between outfor and between orgname and de�ine (optional, default
= _)

• -db # | corresponds to the database you want to search (nucleotide (1), protein (2)) (optional, nucleotide
is default)

• -log <�le name> | log �le name (optional)

java -jar phyutility.jar -ef -term lonicera+OR+viburnum+AND+rbcl -ll 3000

-log log.txt -out out.fasta -sep -outfor 13

Acknowledgments

Thanks to all the testers and to Brian Moore for the name.

5 References

Thorley, J. L. and R. D. Page. 2000. Radcon: phylogenetic tree comparison and consensus. Bioinformatics
16:486�487.

11

	Introduction
	Installation
	Download
	Mac
	Linux
	Windows

	Tree Functions
	Rerooting
	Examples

	Pruning
	Examples

	Type conversion
	Examples

	Consensus
	Examples

	Leaf stability
	Examples

	Branch Attachment Frequency
	Examples

	Tree support
	Examples

	Thinning trees
	Examples

	Data matrix functions
	Concatenate
	Examples

	GenBank Parsing
	Examples

	Trimming sites
	Examples

	Searching NCBI
	Examples

	Fetching Sequences from NCBI
	Examples

	References

