Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
67 lines (57 sloc) 2.83 KB

title: Einstein's Mass-Energy Equation category: physical tags:

  • physical
  • energy equation
  • energy
  • equation
  • einstein mathjax: true top: true index: 1 date: 2019-02-24 14:15:35

{% qnimg pasted-4.png %}

$$e=mc^2$$

Theorem

The energy imparted to a body to cause that body to move causes the body to increase in mass by a value 𝑀 as given by the equation: $$ E = M c^2 $$ where 𝑐 is the speed of light.

Proof

From Einstein's Law of Motion, we have: $$ \mathbf F = \dfrac {m_0 \mathbf a} {\left({1 - \dfrac {v^2} {c^2}}\right)^{\tfrac 3 2}} $$ where:

  • 𝐅 is the force on the body
  • 𝐚 is the acceleration induced on the body
  • 𝑣 is the magnitude of the velocity of the body
  • 𝑐 is the speed of light
  • 𝑚0 is the rest mass of the body. Without loss of generality, assume that the body is starting from rest at the origin of a cartesian coordinate plane.

Assume the force 𝐅 on the body is in the positive direction along the x-axis.

To simplify the work, we consider the acceleration as a scalar quantity and write it 𝑎.

Thus, from the Chain Rule: $$ a = \dfrac{\mathrm d v}{\mathrm d t} = \dfrac{\mathrm d v}{\mathrm d x} \dfrac {\mathrm d x}{\mathrm d t} = v \dfrac {\mathrm d v} {\mathrm d x} $$

Then from the definition of energy: $$ \displaystyle E = \int_0^x F \mathrm d x $$ which leads us to: $$E = m_0 \int_0^x \frac a {\left({1 - v^2 / c^2}\right)^{\tfrac 3 2} } \ \mathrm d x $$ $$ = m_0 \int_0^v \frac v {\left({1 - v^2 / c^2}\right)^{\tfrac 3 2} } \ \mathrm d v $$ $$ = m_0 \left({- \frac {c^2} 2}\right) \int_0^v \left({1 - \frac {v^2} {c^2} }\right)^{-\tfrac 3 2} \left({- \frac {2 v \ \mathrm d v} {c^2} }\right) $$ $$ = \left[{m_0 c^2 \left({1 - \frac {v^2} {c^2} }\right)^{- \tfrac 1 2} }\right]_0^v $$ $$ = m_0 c^2 \left({\frac 1 {\sqrt {1 - \frac {v^2} {c^2} } } - 1}\right) $$ $$ = c^2 \left({\frac {m_0} {\sqrt {1 - \frac {v^2} {c^2} } } - m_0}\right) $$ $$ = c^2 \left({m - m_0}\right) $$ $$ = M c^2$$

Einstein's Mass-Velocity Equation

Sources

You can’t perform that action at this time.