
HAPIDAYS: SERVER.INJECT AND REGISTERED
SERVER METHODS

Farrin A. Reid

Director of Engineering @ MovingWorlds

handle: blakmatrix

slides: http://github.com/blakmatrix/hapiday2014talk

http://github.com/blakmatrix/hapiday2014talk

OVERVIEW
I am going to discuss when and when to not use

server.inject and when to use server.method in the
Hapi.js framework.

I hope by then end of the talk you will learn when and how to use
both.

INSPIRATION
This talk was inspired by discovering issues during the

development of our public launch product.

tl;dw: used server.inject as stopgap; found bugs.

SERVER.INJECT
Uses the shot module for performing injections without making a

socket connection

SERVER.INJECT(OPTIONS, CALLBACK)

Options (String with the requested URI || Object)
method - (GET|POST|PUT|...)
url - request URL (foo.com:8080) required
headers - {key:value}
payload - (String || buffer) payload objects need to be
converted to strings first
credentials - (Object) contains authentication data
simulate - (Object)

error - if true, emits an 'error' event after payload
transmission (if any)
close - if true, emits a 'close' event after payload
transmission (if any)
end - if false, does not end the stream.

SERVER.INJECT(OPTIONS, CALLBACK)

callback - function(res), required
res.statusCode - HTTP status code
res.headers - HTTP headers
res.payload - String of response payload
res.rawPayload - raw response payload buffer
res.raw - {req:{},res:{}} Object with the injection
request and response objects
res.result - The raw handler response before it's turned
int what is returned via res.payload not always
available

WHEN/WHY SERVER.INJECT SHOULD BE USED:
Testing:

var Lab = require("lab");
var lab = exports.lab = Lab.script();

lab.experiment("Test username existence", function() {
 // tests

 lab.test("Expect status code 200 for name that is taken", function(done){

 var options = {
 method: 'GET',
 url: '/timmy'
 };
 //server inject lets you simulate an http request
 server.inject(options, function(response){
 Lab.expect(response.statusCode).to.equal(200);
 Lab.expect(response.result.available).to.equal("no");
 done();
 });
 });

 lab.test("Expect status code 400 for a name that is still available", function(done)

 var options = {
 method: 'GET',
 url: '/sdlkjflsajdfljalskjfjkhkjhd'
 };
 //server inject lets you simulate an http request
 server.inject(options, function(response){
 Lab.expect(response.statusCode).to.equal(200);

WHEN/WHY SERVER.INJECT SHOULD BE USED:
Doing things that server methods cannot, eg. complex routing
logic that cannot easily be abstracted
Avoiding overhead/imitations of the network stack

you can isolate networking issues
credentials by seting this you can bypass default
authenticated strategies

testing keeping some routes "internal only" with perhaps
higher privilages

WHEN/WHY SERVER.INJECT SHOULD NOT BE
USED:

res.result is not always available, meaning res.payload
may need to be used which leads to potentially needing to use
JSON.parse on the string, costing both the overhead of
encoding the response into a string, then parsing it
(JSON.parse(res.payload)) and potentially reencoding
to finally send to the client.

There is an implicit assumption (by the developer) that the
route injected will return the expected res.statusCode
depending on the situation. This can lead to confusion when
assumptions are wrong.

REGISTERED SERVER METHODS
Methods are awesome because you can use them to share
common functions by attaching them to the server object,
this means you do not have to require your common modules
everywhere you need them (essentially helps you to make
your code more DRY).
You can cache your methods usign hapi's native caching.
You can change the this context within your methods.

WHAT
You need to give your method a name, you can access via
server.methods[name] later

Neat Feature: You can register a name such as 'user.get'
and it will register it as a nested object (eg. {user:{get:
foo(){}})

This can be a great way to organize your server methods
and used with bind can serve as a method namespace
accessible through this in the method.

server.method([{
name: 'users.findAndCountAll',
method: function(options, next) {
 this.findAndCountAll(options).complete(function (err, result) {
 if (err) {
 return next(err);
 }
 return next(null, result);
 });
},
options: {
 bind: server.plugins['hapi-sequelize'].models.User
}
}]);

You need to give your method a function of course
{
 method: function(arg1, arg2, ..., argn, next){
 next(err, result, ttl);
 }
}

You may also give your method some [options]
bind - the context object sent back to the method via this
cache - cache configurations (same as server.cache())
callback - set to false if your method is synchronous
(callback in method takes the form function(err,
result, cached, report))
generateKey - for generating a unique key for your
caching, must produce a number, boolean, or string

HOW
You can register server methods in two ways:

As seperate parameters
var foo = function (x, y, next) {
 next(null, x + y);
};

server.method('foo', foo, {});

As an object
var foo = function (x, y, next) {
 next(null, x + y);
};

server.method({
 name: 'foo',
 method: foo,
 options: {}
});

(or an array of objects)
var foo = function (x, y, next) {
 next(null, x + y);
};
var bar = function (x, y, next) {
 next(null, x * y);
};

server.method([
 {
 name: 'foo',
 method: foo,
 options: {}
 },
 {
 name: 'bar',
 method: bar,
 options: {}
 },
]);

WHEN/WHY SERVER METHODS SHOULD BE USED:
If you want to use DRY principles, avoids having to require
common modules everywhere in your code when you have
access to the server object
If want to cache a string/number/boolean/[json] object
(buffers and stream support in the future?)

WHEN/WHY SERVER METHODS SHOULD NOT BE USED:
If you only perform an operation once (slight overhead to call
the method)
It doesn't fit your use case

CLOSE/SUMMARY
Use server.inject for tests, elsewhere if and only if routing

logic is too complex to be abstracted

Use server methods if you need to use the same pieces of code in
multiple locations, ++points for speeding up responses with

caching!

THANKS

Farrin A. Reid

@blakmatrix - on all the things

