Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
blender/release/scripts/startup/bl_operators/uvcalc_smart_project.py /
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1053 lines (802 sloc)
34.6 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # ##### BEGIN GPL LICENSE BLOCK ##### | |
| # | |
| # This program is free software; you can redistribute it and/or | |
| # modify it under the terms of the GNU General Public License | |
| # as published by the Free Software Foundation; either version 2 | |
| # of the License, or (at your option) any later version. | |
| # | |
| # This program is distributed in the hope that it will be useful, | |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| # GNU General Public License for more details. | |
| # | |
| # You should have received a copy of the GNU General Public License | |
| # along with this program; if not, write to the Free Software Foundation, | |
| # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | |
| # | |
| # ##### END GPL LICENSE BLOCK ##### | |
| # TODO <pep8 compliant> | |
| from mathutils import ( | |
| Matrix, | |
| Vector, | |
| geometry, | |
| ) | |
| import bpy | |
| from bpy.types import Operator | |
| DEG_TO_RAD = 0.017453292519943295 # pi/180.0 | |
| # see bugs: | |
| # - T31598 (when too small). | |
| # - T48086 (when too big). | |
| SMALL_NUM = 1e-12 | |
| global USER_FILL_HOLES | |
| global USER_FILL_HOLES_QUALITY | |
| USER_FILL_HOLES = None | |
| USER_FILL_HOLES_QUALITY = None | |
| def pointInTri2D(v, v1, v2, v3): | |
| key = v1.x, v1.y, v2.x, v2.y, v3.x, v3.y | |
| # Commented because its slower to do the bounds check, we should really cache the bounds info for each face. | |
| ''' | |
| # BOUNDS CHECK | |
| xmin= 1000000 | |
| ymin= 1000000 | |
| xmax= -1000000 | |
| ymax= -1000000 | |
| for i in (0,2,4): | |
| x= key[i] | |
| y= key[i+1] | |
| if xmax<x: xmax= x | |
| if ymax<y: ymax= y | |
| if xmin>x: xmin= x | |
| if ymin>y: ymin= y | |
| x= v.x | |
| y= v.y | |
| if x<xmin or x>xmax or y < ymin or y > ymax: | |
| return False | |
| # Done with bounds check | |
| ''' | |
| try: | |
| mtx = dict_matrix[key] | |
| if not mtx: | |
| return False | |
| except: | |
| side1 = v2 - v1 | |
| side2 = v3 - v1 | |
| nor = side1.cross(side2) | |
| mtx = Matrix((side1, side2, nor)) | |
| # Zero area 2d tri, even tho we throw away zero area faces | |
| # the projection UV can result in a zero area UV. | |
| if not mtx.determinant(): | |
| dict_matrix[key] = None | |
| return False | |
| mtx.invert() | |
| dict_matrix[key] = mtx | |
| uvw = (v - v1) @ mtx | |
| return 0 <= uvw[0] and 0 <= uvw[1] and uvw[0] + uvw[1] <= 1 | |
| def boundsIsland(faces): | |
| minx = maxx = faces[0].uv[0][0] # Set initial bounds. | |
| miny = maxy = faces[0].uv[0][1] | |
| # print len(faces), minx, maxx, miny , maxy | |
| for f in faces: | |
| for uv in f.uv: | |
| x = uv.x | |
| y = uv.y | |
| if x < minx: | |
| minx = x | |
| if y < miny: | |
| miny = y | |
| if x > maxx: | |
| maxx = x | |
| if y > maxy: | |
| maxy = y | |
| return minx, miny, maxx, maxy | |
| """ | |
| def boundsEdgeLoop(edges): | |
| minx = maxx = edges[0][0] # Set initial bounds. | |
| miny = maxy = edges[0][1] | |
| # print len(faces), minx, maxx, miny , maxy | |
| for ed in edges: | |
| for pt in ed: | |
| x= pt[0] | |
| y= pt[1] | |
| if x<minx: x= minx | |
| if y<miny: y= miny | |
| if x>maxx: x= maxx | |
| if y>maxy: y= maxy | |
| return minx, miny, maxx, maxy | |
| """ | |
| # Turns the islands into a list of unpordered edges (Non internal) | |
| # Only for UV's | |
| # only returns outline edges for intersection tests. and unique points. | |
| def island2Edge(island): | |
| # Vert index edges | |
| edges = {} | |
| unique_points = {} | |
| for f in island: | |
| f_uvkey = list(map(tuple, f.uv)) | |
| for vIdx in range(len(f_uvkey)): | |
| unique_points[f_uvkey[vIdx]] = f.uv[vIdx] | |
| if f.v[vIdx].index > f.v[vIdx - 1].index: | |
| i1 = vIdx - 1 | |
| i2 = vIdx | |
| else: | |
| i1 = vIdx | |
| i2 = vIdx - 1 | |
| try: | |
| edges[f_uvkey[i1], f_uvkey[i2]] *= 0 # sets any edge with more than 1 user to 0 are not returned. | |
| except: | |
| edges[f_uvkey[i1], f_uvkey[i2]] = (f.uv[i1] - f.uv[i2]).length | |
| # If 2 are the same then they will be together, but full [a,b] order is not correct. | |
| # Sort by length | |
| length_sorted_edges = [(Vector(key[0]), Vector(key[1]), value) for key, value in edges.items() if value != 0] | |
| length_sorted_edges.sort(key=lambda a: -a[2]) # largest first | |
| # Its okay to leave the length in there. | |
| # for e in length_sorted_edges: | |
| # e.pop(2) | |
| # return edges and unique points | |
| return length_sorted_edges, [v.to_3d() for v in unique_points.values()] | |
| def pointInIsland(pt, island): | |
| vec1, vec2, vec3 = Vector(), Vector(), Vector() | |
| for f in island: | |
| vec1.x, vec1.y = f.uv[0] | |
| vec2.x, vec2.y = f.uv[1] | |
| vec3.x, vec3.y = f.uv[2] | |
| if pointInTri2D(pt, vec1, vec2, vec3): | |
| return True | |
| if len(f.v) == 4: | |
| vec1.x, vec1.y = f.uv[0] | |
| vec2.x, vec2.y = f.uv[2] | |
| vec3.x, vec3.y = f.uv[3] | |
| if pointInTri2D(pt, vec1, vec2, vec3): | |
| return True | |
| return False | |
| # box is (left,bottom, right, top) | |
| def islandIntersectUvIsland(source, target, SourceOffset): | |
| # Is 1 point in the box, inside the vertLoops | |
| edgeLoopsSource = source[6] # Pretend this is offset | |
| edgeLoopsTarget = target[6] | |
| # Edge intersect test | |
| for ed in edgeLoopsSource: | |
| for seg in edgeLoopsTarget: | |
| i = geometry.intersect_line_line_2d(seg[0], | |
| seg[1], | |
| SourceOffset + ed[0], | |
| SourceOffset + ed[1], | |
| ) | |
| if i: | |
| return 1 # LINE INTERSECTION | |
| # 1 test for source being totally inside target | |
| SourceOffset.resize_3d() | |
| for pv in source[7]: | |
| if pointInIsland(pv + SourceOffset, target[0]): | |
| return 2 # SOURCE INSIDE TARGET | |
| # 2 test for a part of the target being totally inside the source. | |
| for pv in target[7]: | |
| if pointInIsland(pv - SourceOffset, source[0]): | |
| return 3 # PART OF TARGET INSIDE SOURCE. | |
| return 0 # NO INTERSECTION | |
| def rotate_uvs(uv_points, angle): | |
| if angle != 0.0: | |
| mat = Matrix.Rotation(angle, 2) | |
| for uv in uv_points: | |
| uv[:] = mat @ uv | |
| def optiRotateUvIsland(faces): | |
| uv_points = [uv for f in faces for uv in f.uv] | |
| angle = geometry.box_fit_2d(uv_points) | |
| if angle != 0.0: | |
| rotate_uvs(uv_points, angle) | |
| # orient them vertically (could be an option) | |
| minx, miny, maxx, maxy = boundsIsland(faces) | |
| w, h = maxx - minx, maxy - miny | |
| # use epsilon so we don't randomly rotate (almost) perfect squares. | |
| if h + 0.00001 < w: | |
| from math import pi | |
| angle = pi / 2.0 | |
| rotate_uvs(uv_points, angle) | |
| # Takes an island list and tries to find concave, hollow areas to pack smaller islands into. | |
| def mergeUvIslands(islandList): | |
| global USER_FILL_HOLES | |
| global USER_FILL_HOLES_QUALITY | |
| # Pack islands to bottom LHS | |
| # Sync with island | |
| # islandTotFaceArea = [] # A list of floats, each island area | |
| # islandArea = [] # a list of tuples ( area, w,h) | |
| decoratedIslandList = [] | |
| islandIdx = len(islandList) | |
| while islandIdx: | |
| islandIdx -= 1 | |
| minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx]) | |
| w, h = maxx - minx, maxy - miny | |
| totFaceArea = 0 | |
| offset = Vector((minx, miny)) | |
| for f in islandList[islandIdx]: | |
| for uv in f.uv: | |
| uv -= offset | |
| totFaceArea += f.area | |
| islandBoundsArea = w * h | |
| efficiency = abs(islandBoundsArea - totFaceArea) | |
| # UV Edge list used for intersections as well as unique points. | |
| edges, uniqueEdgePoints = island2Edge(islandList[islandIdx]) | |
| decoratedIslandList.append([ | |
| islandList[islandIdx], | |
| totFaceArea, | |
| efficiency, | |
| islandBoundsArea, | |
| w, | |
| h, | |
| edges, | |
| uniqueEdgePoints, | |
| ]) | |
| # Sort by island bounding box area, smallest face area first. | |
| # no.. chance that to most simple edge loop first. | |
| decoratedIslandListAreaSort = decoratedIslandList[:] | |
| decoratedIslandListAreaSort.sort(key=lambda A: A[3]) | |
| # sort by efficiency, Least Efficient first. | |
| decoratedIslandListEfficSort = decoratedIslandList[:] | |
| # decoratedIslandListEfficSort.sort(lambda A, B: cmp(B[2], A[2])) | |
| decoratedIslandListEfficSort.sort(key=lambda A: -A[2]) | |
| # ================================================== THESE CAN BE TWEAKED. | |
| # This is a quality value for the number of tests. | |
| # from 1 to 4, generic quality value is from 1 to 100 | |
| USER_STEP_QUALITY = ((USER_FILL_HOLES_QUALITY - 1) / 25.0) + 1 | |
| # If 100 will test as long as there is enough free space. | |
| # this is rarely enough, and testing takes a while, so lower quality speeds this up. | |
| # 1 means they have the same quality | |
| USER_FREE_SPACE_TO_TEST_QUALITY = 1 + (((100 - USER_FILL_HOLES_QUALITY) / 100.0) * 5) | |
| # print 'USER_STEP_QUALITY', USER_STEP_QUALITY | |
| # print 'USER_FREE_SPACE_TO_TEST_QUALITY', USER_FREE_SPACE_TO_TEST_QUALITY | |
| removedCount = 0 | |
| areaIslandIdx = 0 | |
| ctrl = Window.Qual.CTRL | |
| BREAK = False | |
| while areaIslandIdx < len(decoratedIslandListAreaSort) and not BREAK: | |
| sourceIsland = decoratedIslandListAreaSort[areaIslandIdx] | |
| # Already packed? | |
| if not sourceIsland[0]: | |
| areaIslandIdx += 1 | |
| else: | |
| efficIslandIdx = 0 | |
| while efficIslandIdx < len(decoratedIslandListEfficSort) and not BREAK: | |
| if Window.GetKeyQualifiers() & ctrl: | |
| BREAK = True | |
| break | |
| # Now we have 2 islands, if the efficiency of the islands lowers there's an | |
| # increasing likely hood that we can fit merge into the bigger UV island. | |
| # this ensures a tight fit. | |
| # Just use figures we have about user/unused area to see if they might fit. | |
| targetIsland = decoratedIslandListEfficSort[efficIslandIdx] | |
| if sourceIsland[0] == targetIsland[0] or\ | |
| not targetIsland[0] or\ | |
| not sourceIsland[0]: | |
| pass | |
| else: | |
| #~ ([island, totFaceArea, efficiency, islandArea, w,h]) | |
| # Wasted space on target is greater then UV bounding island area. | |
| #~ if targetIsland[3] > (sourceIsland[2]) and\ # | |
| # ~ print USER_FREE_SPACE_TO_TEST_QUALITY | |
| if targetIsland[2] > (sourceIsland[1] * USER_FREE_SPACE_TO_TEST_QUALITY) and\ | |
| targetIsland[4] > sourceIsland[4] and\ | |
| targetIsland[5] > sourceIsland[5]: | |
| # DEBUG # print '%.10f %.10f' % (targetIsland[3], sourceIsland[1]) | |
| # These enough spare space lets move the box until it fits | |
| # How many times does the source fit into the target x/y | |
| blockTestXUnit = targetIsland[4] / sourceIsland[4] | |
| blockTestYUnit = targetIsland[5] / sourceIsland[5] | |
| boxLeft = 0 | |
| # Distance we can move between whilst staying inside the targets bounds. | |
| testWidth = targetIsland[4] - sourceIsland[4] | |
| testHeight = targetIsland[5] - sourceIsland[5] | |
| # Increment we move each test. x/y | |
| xIncrement = (testWidth / (blockTestXUnit * ((USER_STEP_QUALITY / 50) + 0.1))) | |
| yIncrement = (testHeight / (blockTestYUnit * ((USER_STEP_QUALITY / 50) + 0.1))) | |
| # Make sure were not moving less then a 3rg of our width/height | |
| if xIncrement < sourceIsland[4] / 3: | |
| xIncrement = sourceIsland[4] | |
| if yIncrement < sourceIsland[5] / 3: | |
| yIncrement = sourceIsland[5] | |
| boxLeft = 0 # Start 1 back so we can jump into the loop. | |
| boxBottom = 0 # -yIncrement | |
| # ~ testcount= 0 | |
| while boxBottom <= testHeight: | |
| # Should we use this? - not needed for now. | |
| # ~ if Window.GetKeyQualifiers() & ctrl: | |
| # ~ BREAK= True | |
| # ~ break | |
| # testcount+=1 | |
| # print 'Testing intersect' | |
| Intersect = islandIntersectUvIsland( | |
| sourceIsland, targetIsland, Vector((boxLeft, boxBottom))) | |
| # print 'Done', Intersect | |
| if Intersect == 1: # Line intersect, don't bother with this any more | |
| pass | |
| if Intersect == 2: # Source inside target | |
| """ | |
| We have an intersection, if we are inside the target | |
| then move us 1 whole width across, | |
| Its possible this is a bad idea since 2 skinny Angular faces | |
| could join without 1 whole move, but its a lot more optimal to speed this up | |
| since we have already tested for it. | |
| It gives about 10% speedup with minimal errors. | |
| """ | |
| # Move the test along its width + SMALL_NUM | |
| #boxLeft += sourceIsland[4] + SMALL_NUM | |
| boxLeft += sourceIsland[4] | |
| elif Intersect == 0: # No intersection?? Place it. | |
| # Progress | |
| removedCount += 1 | |
| # XXX Window.DrawProgressBar(0.0, 'Merged: %i islands, Ctrl to finish early.' % removedCount) | |
| # Move faces into new island and offset | |
| targetIsland[0].extend(sourceIsland[0]) | |
| offset = Vector((boxLeft, boxBottom)) | |
| for f in sourceIsland[0]: | |
| for uv in f.uv: | |
| uv += offset | |
| del sourceIsland[0][:] # Empty | |
| # Move edge loop into new and offset. | |
| # targetIsland[6].extend(sourceIsland[6]) | |
| # while sourceIsland[6]: | |
| targetIsland[6].extend([( | |
| (e[0] + offset, e[1] + offset, e[2]) | |
| ) for e in sourceIsland[6]]) | |
| del sourceIsland[6][:] # Empty | |
| # Sort by edge length, reverse so biggest are first. | |
| try: | |
| targetIsland[6].sort(key=lambda A: A[2]) | |
| except: | |
| targetIsland[6].sort(lambda B, A: cmp(A[2], B[2])) | |
| targetIsland[7].extend(sourceIsland[7]) | |
| offset = Vector((boxLeft, boxBottom, 0.0)) | |
| for p in sourceIsland[7]: | |
| p += offset | |
| del sourceIsland[7][:] | |
| # Decrement the efficiency | |
| targetIsland[1] += sourceIsland[1] # Increment totFaceArea | |
| targetIsland[2] -= sourceIsland[1] # Decrement efficiency | |
| # IF we ever used these again, should set to 0, eg | |
| sourceIsland[2] = 0 # No area if anyone wants to know | |
| break | |
| # INCREMENT NEXT LOCATION | |
| if boxLeft > testWidth: | |
| boxBottom += yIncrement | |
| boxLeft = 0.0 | |
| else: | |
| boxLeft += xIncrement | |
| # print testcount | |
| efficIslandIdx += 1 | |
| areaIslandIdx += 1 | |
| # Remove empty islands | |
| i = len(islandList) | |
| while i: | |
| i -= 1 | |
| if not islandList[i]: | |
| del islandList[i] # Can increment islands removed here. | |
| # Takes groups of faces. assumes face groups are UV groups. | |
| def getUvIslands(faceGroups, me): | |
| # Get seams so we don't cross over seams | |
| edge_seams = {} # should be a set | |
| for ed in me.edges: | |
| if ed.use_seam: | |
| edge_seams[ed.key] = None # dummy var- use sets! | |
| # Done finding seams | |
| islandList = [] | |
| # XXX Window.DrawProgressBar(0.0, 'Splitting %d projection groups into UV islands:' % len(faceGroups)) | |
| # print '\tSplitting %d projection groups into UV islands:' % len(faceGroups), | |
| # Find grouped faces | |
| faceGroupIdx = len(faceGroups) | |
| while faceGroupIdx: | |
| faceGroupIdx -= 1 | |
| faces = faceGroups[faceGroupIdx] | |
| if not faces: | |
| continue | |
| # Build edge dict | |
| edge_users = {} | |
| for i, f in enumerate(faces): | |
| for ed_key in f.edge_keys: | |
| if ed_key in edge_seams: # DELIMIT SEAMS! ;) | |
| edge_users[ed_key] = [] # so as not to raise an error | |
| else: | |
| try: | |
| edge_users[ed_key].append(i) | |
| except: | |
| edge_users[ed_key] = [i] | |
| # Modes | |
| # 0 - face not yet touched. | |
| # 1 - added to island list, and need to search | |
| # 2 - touched and searched - don't touch again. | |
| face_modes = [0] * len(faces) # initialize zero - untested. | |
| face_modes[0] = 1 # start the search with face 1 | |
| newIsland = [] | |
| newIsland.append(faces[0]) | |
| ok = True | |
| while ok: | |
| ok = True | |
| while ok: | |
| ok = False | |
| for i in range(len(faces)): | |
| if face_modes[i] == 1: # search | |
| for ed_key in faces[i].edge_keys: | |
| for ii in edge_users[ed_key]: | |
| if i != ii and face_modes[ii] == 0: | |
| face_modes[ii] = ok = 1 # mark as searched | |
| newIsland.append(faces[ii]) | |
| # mark as searched, don't look again. | |
| face_modes[i] = 2 | |
| islandList.append(newIsland) | |
| ok = False | |
| for i in range(len(faces)): | |
| if face_modes[i] == 0: | |
| newIsland = [] | |
| newIsland.append(faces[i]) | |
| face_modes[i] = ok = 1 | |
| break | |
| # if not ok will stop looping | |
| # XXX Window.DrawProgressBar(0.1, 'Optimizing Rotation for %i UV Islands' % len(islandList)) | |
| for island in islandList: | |
| optiRotateUvIsland(island) | |
| return islandList | |
| def packIslands(islandList): | |
| if USER_FILL_HOLES: | |
| # XXX Window.DrawProgressBar(0.1, 'Merging Islands (Ctrl: skip merge)...') | |
| mergeUvIslands(islandList) # Modify in place | |
| # Now we have UV islands, we need to pack them. | |
| # Make a synchronized list with the islands | |
| # so we can box pack the islands. | |
| packBoxes = [] | |
| # Keep a list of X/Y offset so we can save time by writing the | |
| # uv's and packed data in one pass. | |
| islandOffsetList = [] | |
| islandIdx = 0 | |
| while islandIdx < len(islandList): | |
| minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx]) | |
| w, h = maxx - minx, maxy - miny | |
| if USER_ISLAND_MARGIN: | |
| minx -= USER_ISLAND_MARGIN * w / 2 | |
| miny -= USER_ISLAND_MARGIN * h / 2 | |
| maxx += USER_ISLAND_MARGIN * w / 2 | |
| maxy += USER_ISLAND_MARGIN * h / 2 | |
| # recalc width and height | |
| w, h = maxx - minx, maxy - miny | |
| if w < SMALL_NUM: | |
| w = SMALL_NUM | |
| if h < SMALL_NUM: | |
| h = SMALL_NUM | |
| """Save the offset to be applied later, | |
| we could apply to the UVs now and align them to the bottom left hand area | |
| of the UV coords like the box packer imagines they are | |
| but, its quicker just to remember their offset and | |
| apply the packing and offset in 1 pass """ | |
| islandOffsetList.append((minx, miny)) | |
| # Add to boxList. use the island idx for the BOX id. | |
| packBoxes.append([0, 0, w, h]) | |
| islandIdx += 1 | |
| # Now we have a list of boxes to pack that syncs | |
| # with the islands. | |
| # print '\tPacking UV Islands...' | |
| # XXX Window.DrawProgressBar(0.7, "Packing %i UV Islands..." % len(packBoxes) ) | |
| # time1 = time.time() | |
| packWidth, packHeight = geometry.box_pack_2d(packBoxes) | |
| # print 'Box Packing Time:', time.time() - time1 | |
| # if len(packedLs) != len(islandList): | |
| # raise ValueError("Packed boxes differs from original length") | |
| # print '\tWriting Packed Data to faces' | |
| # XXX Window.DrawProgressBar(0.8, "Writing Packed Data to faces") | |
| # Sort by ID, so there in sync again | |
| islandIdx = len(islandList) | |
| # Having these here avoids divide by 0 | |
| if islandIdx: | |
| if USER_STRETCH_ASPECT: | |
| # Maximize to uv area?? Will write a normalize function. | |
| xfactor = 1.0 / packWidth | |
| yfactor = 1.0 / packHeight | |
| else: | |
| # Keep proportions. | |
| xfactor = yfactor = 1.0 / max(packWidth, packHeight) | |
| while islandIdx: | |
| islandIdx -= 1 | |
| # Write the packed values to the UV's | |
| xoffset = packBoxes[islandIdx][0] - islandOffsetList[islandIdx][0] | |
| yoffset = packBoxes[islandIdx][1] - islandOffsetList[islandIdx][1] | |
| for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box | |
| for uv in f.uv: | |
| uv.x = (uv.x + xoffset) * xfactor | |
| uv.y = (uv.y + yoffset) * yfactor | |
| def VectoQuat(vec): | |
| vec = vec.normalized() | |
| return vec.to_track_quat('Z', 'X' if abs(vec.x) > 0.5 else 'Y').inverted() | |
| class thickface: | |
| __slost__ = "v", "uv", "no", "area", "edge_keys" | |
| def __init__(self, face, uv_layer, mesh_verts): | |
| self.v = [mesh_verts[i] for i in face.vertices] | |
| self.uv = [uv_layer[i].uv for i in face.loop_indices] | |
| self.no = face.normal.copy() | |
| self.area = face.area | |
| self.edge_keys = face.edge_keys | |
| def main_consts(): | |
| from math import radians | |
| global ROTMAT_2D_POS_90D | |
| global ROTMAT_2D_POS_45D | |
| global RotMatStepRotation | |
| ROTMAT_2D_POS_90D = Matrix.Rotation(radians(90.0), 2) | |
| ROTMAT_2D_POS_45D = Matrix.Rotation(radians(45.0), 2) | |
| RotMatStepRotation = [] | |
| rot_angle = 22.5 # 45.0/2 | |
| while rot_angle > 0.1: | |
| RotMatStepRotation.append([ | |
| Matrix.Rotation(radians(+rot_angle), 2), | |
| Matrix.Rotation(radians(-rot_angle), 2), | |
| ]) | |
| rot_angle = rot_angle / 2.0 | |
| global ob | |
| ob = None | |
| def main(context, | |
| island_margin, | |
| projection_limit, | |
| user_area_weight, | |
| use_aspect, | |
| stretch_to_bounds, | |
| ): | |
| global USER_FILL_HOLES | |
| global USER_FILL_HOLES_QUALITY | |
| global USER_STRETCH_ASPECT | |
| global USER_ISLAND_MARGIN | |
| from math import cos | |
| import time | |
| global dict_matrix | |
| dict_matrix = {} | |
| # Constants: | |
| # Takes a list of faces that make up a UV island and rotate | |
| # until they optimally fit inside a square. | |
| global ROTMAT_2D_POS_90D | |
| global ROTMAT_2D_POS_45D | |
| global RotMatStepRotation | |
| main_consts() | |
| # Create the variables. | |
| USER_PROJECTION_LIMIT = projection_limit | |
| USER_ONLY_SELECTED_FACES = True | |
| USER_SHARE_SPACE = 1 # Only for hole filling. | |
| USER_STRETCH_ASPECT = stretch_to_bounds | |
| USER_ISLAND_MARGIN = island_margin # Only for hole filling. | |
| USER_FILL_HOLES = 0 | |
| USER_FILL_HOLES_QUALITY = 50 # Only for hole filling. | |
| USER_VIEW_INIT = 0 # Only for hole filling. | |
| is_editmode = (context.mode == 'EDIT_MESH') | |
| if is_editmode: | |
| obList = context.objects_in_mode_unique_data | |
| else: | |
| obList = [ | |
| ob for ob in context.selected_editable_objects | |
| if ob.type == 'MESH' and ob.data.library is None | |
| ] | |
| if not is_editmode: | |
| USER_ONLY_SELECTED_FACES = False | |
| if not obList: | |
| raise Exception("error, no selected mesh objects") | |
| # Convert from being button types | |
| USER_PROJECTION_LIMIT_CONVERTED = cos(USER_PROJECTION_LIMIT * DEG_TO_RAD) | |
| USER_PROJECTION_LIMIT_HALF_CONVERTED = cos((USER_PROJECTION_LIMIT / 2) * DEG_TO_RAD) | |
| # Toggle Edit mode | |
| if is_editmode: | |
| bpy.ops.object.mode_set(mode='OBJECT') | |
| # Assume face select mode! an annoying hack to toggle face select mode because Mesh doesn't like faceSelectMode. | |
| if USER_SHARE_SPACE: | |
| # Sort by data name so we get consistent results | |
| obList.sort(key=lambda ob: ob.data.name) | |
| collected_islandList = [] | |
| time1 = time.time() | |
| # Tag as False so we don't operate on the same mesh twice. | |
| for me in bpy.data.meshes: | |
| me.tag = False | |
| for ob in obList: | |
| me = ob.data | |
| if me.tag or me.library: | |
| continue | |
| # Tag as used | |
| me.tag = True | |
| if not me.uv_layers: # Mesh has no UV Coords, don't bother. | |
| me.uv_layers.new() | |
| uv_layer = me.uv_layers.active.data | |
| me_verts = list(me.vertices) | |
| if USER_ONLY_SELECTED_FACES: | |
| meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons) if f.select] | |
| else: | |
| meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons)] | |
| # ======= | |
| # Generate a projection list from face normals, this is meant to be smart :) | |
| # make a list of face props that are in sync with meshFaces | |
| # Make a Face List that is sorted by area. | |
| # meshFaces = [] | |
| # meshFaces.sort( lambda a, b: cmp(b.area , a.area) ) # Biggest first. | |
| meshFaces.sort(key=lambda a: -a.area) | |
| # remove all zero area faces | |
| while meshFaces and meshFaces[-1].area <= SMALL_NUM: | |
| # Set their UV's to 0,0 | |
| for uv in meshFaces[-1].uv: | |
| uv.zero() | |
| meshFaces.pop() | |
| if not meshFaces: | |
| continue | |
| # Smallest first is slightly more efficient, | |
| # but if the user cancels early then its better we work on the larger data. | |
| # Generate Projection Vecs | |
| # 0d is 1.0 | |
| # 180 IS -0.59846 | |
| # Initialize projectVecs | |
| if USER_VIEW_INIT: | |
| # Generate Projection | |
| # We add to this along the way | |
| projectVecs = [Vector(Window.GetViewVector()) @ ob.matrix_world.inverted().to_3x3()] | |
| else: | |
| projectVecs = [] | |
| newProjectVec = meshFaces[0].no | |
| newProjectMeshFaces = [] # Popping stuffs it up. | |
| # Pretend that the most unique angle is ages away to start the loop off | |
| mostUniqueAngle = -1.0 | |
| # This is popped | |
| tempMeshFaces = meshFaces[:] | |
| # This while only gathers projection vecs, faces are assigned later on. | |
| while 1: | |
| # If there's none there then start with the largest face | |
| # add all the faces that are close. | |
| for fIdx in range(len(tempMeshFaces) - 1, -1, -1): | |
| # Use half the angle limit so we don't overweight faces towards this | |
| # normal and hog all the faces. | |
| if newProjectVec.dot(tempMeshFaces[fIdx].no) > USER_PROJECTION_LIMIT_HALF_CONVERTED: | |
| newProjectMeshFaces.append(tempMeshFaces.pop(fIdx)) | |
| # Add the average of all these faces normals as a projectionVec | |
| averageVec = Vector((0.0, 0.0, 0.0)) | |
| if user_area_weight == 0.0: | |
| for fprop in newProjectMeshFaces: | |
| averageVec += fprop.no | |
| elif user_area_weight == 1.0: | |
| for fprop in newProjectMeshFaces: | |
| averageVec += fprop.no * fprop.area | |
| else: | |
| for fprop in newProjectMeshFaces: | |
| averageVec += fprop.no * ((fprop.area * user_area_weight) + (1.0 - user_area_weight)) | |
| if averageVec.x != 0 or averageVec.y != 0 or averageVec.z != 0: # Avoid NAN | |
| projectVecs.append(averageVec.normalized()) | |
| # Get the next vec! | |
| # Pick the face that's most different to all existing angles :) | |
| mostUniqueAngle = 1.0 # 1.0 is 0d. no difference. | |
| mostUniqueIndex = 0 # dummy | |
| for fIdx in range(len(tempMeshFaces) - 1, -1, -1): | |
| angleDifference = -1.0 # 180d difference. | |
| # Get the closest vec angle we are to. | |
| for p in projectVecs: | |
| temp_angle_diff = p.dot(tempMeshFaces[fIdx].no) | |
| if angleDifference < temp_angle_diff: | |
| angleDifference = temp_angle_diff | |
| if angleDifference < mostUniqueAngle: | |
| # We have a new most different angle | |
| mostUniqueIndex = fIdx | |
| mostUniqueAngle = angleDifference | |
| if mostUniqueAngle < USER_PROJECTION_LIMIT_CONVERTED: | |
| # print 'adding', mostUniqueAngle, USER_PROJECTION_LIMIT, len(newProjectMeshFaces) | |
| # Now weight the vector to all its faces, will give a more direct projection | |
| # if the face its self was not representative of the normal from surrounding faces. | |
| newProjectVec = tempMeshFaces[mostUniqueIndex].no | |
| newProjectMeshFaces = [tempMeshFaces.pop(mostUniqueIndex)] | |
| else: | |
| if len(projectVecs) >= 1: # Must have at least 2 projections | |
| break | |
| # If there are only zero area faces then its possible | |
| # there are no projectionVecs | |
| if not len(projectVecs): | |
| Draw.PupMenu('error, no projection vecs where generated, 0 area faces can cause this.') | |
| return | |
| faceProjectionGroupList = [[] for i in range(len(projectVecs))] | |
| # MAP and Arrange # We know there are 3 or 4 faces here | |
| for fIdx in range(len(meshFaces) - 1, -1, -1): | |
| fvec = meshFaces[fIdx].no | |
| i = len(projectVecs) | |
| # Initialize first | |
| bestAng = fvec.dot(projectVecs[0]) | |
| bestAngIdx = 0 | |
| # Cycle through the remaining, first already done | |
| while i - 1: | |
| i -= 1 | |
| newAng = fvec.dot(projectVecs[i]) | |
| if newAng > bestAng: # Reverse logic for dotvecs | |
| bestAng = newAng | |
| bestAngIdx = i | |
| # Store the area for later use. | |
| faceProjectionGroupList[bestAngIdx].append(meshFaces[fIdx]) | |
| # Cull faceProjectionGroupList, | |
| # Now faceProjectionGroupList is full of faces that face match the project Vecs list | |
| for i in range(len(projectVecs)): | |
| # Account for projectVecs having no faces. | |
| if not faceProjectionGroupList[i]: | |
| continue | |
| # Make a projection matrix from a unit length vector. | |
| MatQuat = VectoQuat(projectVecs[i]) | |
| # Get the faces UV's from the projected vertex. | |
| for f in faceProjectionGroupList[i]: | |
| f_uv = f.uv | |
| for j, v in enumerate(f.v): | |
| f_uv[j][:] = (MatQuat @ v.co).xy | |
| if USER_SHARE_SPACE: | |
| # Should we collect and pack later? | |
| islandList = getUvIslands(faceProjectionGroupList, me) | |
| collected_islandList.extend(islandList) | |
| else: | |
| # Should we pack the islands for this 1 object? | |
| islandList = getUvIslands(faceProjectionGroupList, me) | |
| packIslands(islandList) | |
| # update the mesh here if we need to. | |
| # We want to pack all in 1 go, so pack now | |
| if USER_SHARE_SPACE: | |
| packIslands(collected_islandList) | |
| print("Smart Projection time: %.2f" % (time.time() - time1)) | |
| # aspect correction is only done in edit mode - and only smart unwrap supports currently | |
| if is_editmode: | |
| bpy.ops.object.mode_set(mode='EDIT') | |
| if use_aspect: | |
| import bmesh | |
| aspect = context.scene.uvedit_aspect(context.active_object) | |
| if aspect[0] > aspect[1]: | |
| aspect[0] = aspect[1] / aspect[0] | |
| aspect[1] = 1.0 | |
| else: | |
| aspect[1] = aspect[0] / aspect[1] | |
| aspect[0] = 1.0 | |
| bm = bmesh.from_edit_mesh(me) | |
| uv_act = bm.loops.layers.uv.active | |
| faces = [f for f in bm.faces if f.select] | |
| for f in faces: | |
| for l in f.loops: | |
| l[uv_act].uv[0] *= aspect[0] | |
| l[uv_act].uv[1] *= aspect[1] | |
| dict_matrix.clear() | |
| from bpy.props import FloatProperty, BoolProperty | |
| class SmartProject(Operator): | |
| """This script projection unwraps the selected faces of a mesh """ \ | |
| """(it operates on all selected mesh objects, and can be used """ \ | |
| """to unwrap selected faces, or all faces)""" | |
| bl_idname = "uv.smart_project" | |
| bl_label = "Smart UV Project" | |
| bl_options = {'REGISTER', 'UNDO'} | |
| angle_limit: FloatProperty( | |
| name="Angle Limit", | |
| description="Lower for more projection groups, higher for less distortion", | |
| min=1.0, max=89.0, | |
| default=66.0, | |
| ) | |
| island_margin: FloatProperty( | |
| name="Island Margin", | |
| description="Margin to reduce bleed from adjacent islands", | |
| min=0.0, max=1.0, | |
| default=0.0, | |
| ) | |
| user_area_weight: FloatProperty( | |
| name="Area Weight", | |
| description="Weight projections vector by faces with larger areas", | |
| min=0.0, max=1.0, | |
| default=0.0, | |
| ) | |
| use_aspect: BoolProperty( | |
| name="Correct Aspect", | |
| description="Map UVs taking image aspect ratio into account", | |
| default=True, | |
| ) | |
| stretch_to_bounds: BoolProperty( | |
| name="Stretch to UV Bounds", | |
| description="Stretch the final output to texture bounds", | |
| default=True, | |
| ) | |
| @classmethod | |
| def poll(cls, context): | |
| return context.active_object is not None | |
| def execute(self, context): | |
| main(context, | |
| self.island_margin, | |
| self.angle_limit, | |
| self.user_area_weight, | |
| self.use_aspect, | |
| self.stretch_to_bounds, | |
| ) | |
| return {'FINISHED'} | |
| def invoke(self, context, _event): | |
| wm = context.window_manager | |
| return wm.invoke_props_dialog(self) | |
| classes = ( | |
| SmartProject, | |
| ) |