
Subnets
Architecture Meeting

12/10/21



What are subnets?

● Layer 2 networks: blockchains which can confirm transactions, produce 
blocks independent of the Stacks chain

● Can interact with Stacks assets by depositing into the subnet, and 
withdrawing out of.

○ These are the only interactions with the subnet that are “visible” on the Stacks chain
● There may be many subnets on the Stacks chain, and in most cases, each 

subnet would be application-specific
● Subnet blocks are lossy with respect to the Stacks chain

○ Subnet blocks should be able to hold much more data, mutations, than Stacks blocks
○ Operations in the subnet should not have 1-1 correspondence to operations on the Stacks 

chain



Interacting with subnets

● Stacks subnets run Clarity VMs, and process and validate transactions 
exactly like the main Stacks chain:

○ Transaction wire format is the same
○ Event emitters are the same (so subnets can support explorers, APIs)
○ Subnet nodes expose a strict subset of the RPC interface

● Stacks addresses in the subnet use the same version bytes as mainnet, but 
transactions will use different ChainID bytes

● Wallets, to support interactions on a subnet would need to:
○ Change API backend to subnet-specific API
○ Change ChainID in stacks.js transaction construction (will need to confirm that hardware 

wallets will allow alternate ChainIDs)



General Subnets Architecture

Stacks Blockchain

User Stacks 
Transactions

Ass
et 

de
po

sit
s +

with
dr

aw
 re

qu
es

ts
Subnet A 
Contract

Subnet Miner 1

Subnet Miner 2
...

Subnet B 
Contract

Subnet Miner 3

Subnet Miner 4
...

Subnet A Blockchain (L2)

Subnet Miner 2

Subnet Miner 1

...

User Subnet 
Transactions

Ac
kn

ow
led

ge
 d

ep
os

its

Ap
pr

ov
e 

W
ith

dr
aw

al

Clarity 
ContractClarity 

ContractClarity 
Contract

Block Block Block



Trusted, Trustless, and Incentive Schemes

● Participation in a subnet is optional, but when participating the amount of trust 
in the subnet miners can vary depending on the scheme

● Fully-trusted: miners are responsible for issuing subnet blocks, users can 
validate, but withdrawals are issued arbitrarily by a subnet miner

○ Trust can be federated with a BFT protocol of miners for block issuance
○ Federation: require majority of miners to approve withdrawals

● Fully-trustless: miners are responsible for issuing subnet blocks, users can 
validate, and withdrawals are issuable only if they correspond to a correct 
state in the most recent valid subnet block.

○ This is the ideal subnet, but requires that subnet blocks be validated on the Stacks chain: this 
either breaks the “lossy” goal, or requires novel cryptographic techniques (PCPs?)

● Incentivized trust: miners may issue arbitrary withdrawals, but can be 
punished for doing so.



Proposal for Hiro’s Iterations on Subnets

● Emphasizing the lossiness goal of subnets
○ Approaches like peer swaps require operations on the Stacks chain linear with the number of 

subnet transfers
○ Jude’s vector-clocking merkle tree proposal doesn’t require linear operations, but it does 

require fixed membership sets
● Start with fully-trusted approach, federated miners with BFT.
● Iteration 1: incentive scheme for processing user->user asset transfers

○ This can be achieved with merkle tree proofs, periodic Stacks chain block commits, and proof 
challenges to deal with non-responsiveness



Far Future Iterations on Subnets

● Iteration 2: incentive scheme for processing contract asset transfers
○ This requires validating contract execution and is similar to the solution posed by Arbitrum
○ Clarity likely could not support this kind of validation yet

● Iteration 3: PCP Magic?
○ Probabilistically Checkable Proofs provide a theoretical framework for a Stacks smart contract 

to act as a “verifier” to the layer 2 “prover” -- this is similar to the promise of “ZK rollups”, and 
would require similar amount of refinement and research to discover it was workable



Fully-Trusted Approach with BFT

● Stacks smart contract governs the subnet
○ Specifies who the miners are
○ Receives deposits
○ Processes Withdrawals

● Subnet miners run a “stacks-subnet-node”
○ Accepts transactions
○ Exposes normal RPC interface, emits events
○ Monitors Stacks chains for withdrawal requests
○ Implements a BFT protocol with the other miners to build and issue blocks

● Subnet users do not need to run nodes
● Subnet APIs / explorers can run follower nodes



Fully-Trusted Approach with BFT: Contract Interface
(define-read-only (get-miners))
 ;; returns (list principal) of the subnet’s miners

(define-public (deposit-ft (fungible-token <ft-trait>) (amount uint))
 ;; deposits a fungible token in the subnet

(define-public (deposit-nft (non-fungible-token <nft-trait>) (nft-id uint))
 ;; deposits a non-fungible token in the subnet

(define-public (request-ft-withdrawal (ft-contract principal) (amount uint))
 ;; initiates a ft-withdrawal request on behalf of the tx-sender, returns a withdrawal ID

(define-public (approve-ft-withdrawal (withdrawal-id uint))
 ;; invoked by a miner to approve a pending withdrawal

(define-public (execute-ft-withdrawal (fungible-token <ft-trait>) (withdrawal-id uint))
;; once a withdrawal has been approved, execute the withdrawal by invoking the ft contract



Semi-Trusted Approach with BFT

● Subnets miners stake assets in the subnet contract
● Subnet users deposit Stacks assets, received a deposit identifier

○ Subnet transactions operate on whole deposits
○ Deposits can be divided/split by a Stacks chain transaction with the subnet contract

● Periodic subnet blocks write a commitment to the Stacks contract
● The commitment is a merkle tree root reflecting the current state of deposit 

holders, and the signed-by-sender transforms since the last commitment:
○ Key: Deposit Identifier
○ Value: (Principal, Transformation list from Block n - 1)

● Withdrawals include the path in the current block (or are delayed to allow 
someone to challenge the withdrawal with a later block)



Validating and Challenging the Staked Approach

● Attack 1: Withdrawal with invented transforms
○ Miners produce a block commitment with an owner and empty transform set.

● Alice can provide the path in Block N to the smart contract as proof of 
misbehavior (requires Alice monitor deposit IDs she is interested in)

Block N

Key: Deposit 1
Value: Alice owner, ()

Block N+1

Key: Deposit 1
Value: Bob owner, ()



Validating and Challenging the Staked Approach

● Attack 2: Non-responsive mining
○ Miners just hide the contents of the block from the impacted users

Block N

Key: Deposit 1
Value: Alice owner, ()

Block N+1

Key: Deposit 1
Value: ??

Block N+2

Key: Deposit 1
Value: Bob owner, ()

● Alice can issue a “challenge transaction” on the smart contract: asking for 
the path and value of “deposit 1” in “block n+1”

● Non-response leads to loss of stake


