EARTH 114: GLOBAL WARMING Lecture 2: Radiation and planetary temperature

Overview

- Solar energy and electromagnetic radiation a little about light
- ii. Radiation laws– relationship between electromagnetic radiation and temperature
- iii. Planetary energy balance & the greenhouse effectmodeling planetary temperature

Planetary temperature

What determines Earth's mean temperature?

Energy and Heat

Energy: property responsible for work on or heating of an object.

Heat: Is a measure of the kinetic energy (bouncing-around energy) of atoms.

• Temperature (K, C, F) is a measure of the heat in an object.

 Heat (J) is transferred through convection, conduction, and radiation.

Solar energy

Solar heating: Earth's surface is heated by the Sun

- Earth receives 99.98% of its surface energy from the Sun.
- Solar energy is created in the core of the Sun through nuclear fusion, the welding of H atoms into He atoms.
- Every second our Sun fuses ~600 million tons of H to He, converting >4 million tons of matter into energy.
- And <u>radiates</u> 3.828 x 10²⁶ J/s to space (the Sun's luminosity).
- Some of this energy reaches Earth's surface.

Electromagnetic radiation

Electromagnetic radiation: self-propagating waves that have electric and magnetic fields

- Induced by acceleration of electrons within atoms
- Moves through vacuum or matter at speed of light ($c = 3x10^8$ m/s)
- Characterized by wavelength (λ) or frequency (v)

• Frequency is inversely proportional to wavelength:

$$\nu = \frac{c}{\lambda}$$

Electromagnetic spectrum

Electromagnetic spectrum: full range of electromagnetic radiation

Inverse square law

Newton's inverse square law: solar flux is inversely proportional to the square of the distance from Sun

• As energy moves away from Sun, it is spread over a greater and

Inverse square law

- **Newton's inverse square law:** solar flux is inversely proportional to the square of the distance from Sun
- As energy moves away from Sun, it is spread over a greater and greater area
- Spread over the area of a sphere, $4\pi r^2$, where r is distance from the Sun
- Solar flux is the luminosity divided by the sphere of incidence:

$$S = \frac{L}{4\pi r^2}$$

- What is Earth's solar flux (S_0) ?
 - $L = 3.839 \times 10^{26} W$
 - o $r_0 = 1.496 \times 10^{11} \text{ m}$

Solar flux

Solar flux: amount of solar energy that reaches a unit area of surface per unit time

- Solar flux is measured in units of Js⁻¹m⁻² or Wm⁻²
- S_o = 1367 Wm⁻² equivalent to ~13 100 W light bulbs illuminating a square meter

Inverse square law model

Is planetary temperature explained by distance from the Sun?

Inverse square law model

Is planetary temperature explained by distance from the Sun?

Mercury's temperature = 539 K, Venus is about 2x as far away from the Sun.

Using the inverse square law, we estimate that Venus should receive ¼ as much solar radiation.

Venus' temperatures would be 539 K (¼) = 135 K or -138 C.

Inverse square law model

Is planetary temperature explained by distance from the Sun?

Distance from the Sun does a poor job of estimating planetary temperatures.

Planck's function

Planck's law of black body radiation: describes the electromagnetic radiation of a black body in thermal equilibrium.

Wien's law

Wien Law: the peak electromagnetic radiation is inversely related to the temperature of a black body

A hot body will radiate at shorter peak wavelengths than a cold one:

$$\lambda_{max} = B/T$$

where B=0.0029 K m is Wien's constant

Wien's law

Wien Law: the peak electromagnetic radiation is inversely related to the temperature of a black body

- Sun radiates in the shortwave (visible) spectra
- Earth radiates in the longwave (ir) spectra

Stefan-Boltzmann law

Stefan-Boltmann law: the total energy emitted by an object is proportional to its temperature:

 $I = \sigma T^4$

where $\sigma = 5.67e-8$ Wm⁻²K⁻⁴. Note that I is an energy flux (energy per time per area)! Units = Wm⁻² = Jm⁻²s⁻¹.

Stefan-Boltzmann Law is derived by integrating Planck's Function.

	T (K)	λ _{max} (μ m)	region in spectrum	F (W/m²)
Sun	6000			
Earth	300			

	T (K)	λ _{max} (μ m)	region in spectrum	F (W/m²)
Sun	6000	0.5		
Earth	300	10		

	T (K)	λ _{max} (μ m)	region in spectrum	F (W/m²)
Sun	6000	0.5	visible	
Earth	300	10	infrared	

	T (K)	λ _{max} (μ m)	region in spectrum	F (W/m²)
Sun	6000	0.5	visible	7x10 ⁷
Earth	300	10	infrared	460

Planetary energy balance

- **Radiative equilibrium:** assumes energy balance, incoming radiation equals outgoing radiation
- If incoming and outgoing radiation are not in balance, Earth's temperature will rise or fall.

Let's calculate the radiative equilibrium temperature for Earth!

• Start from our equation for radiative equilibrium:

Incoming Radiation = Outgoing Radiation

- Write equation for Incoming Radiation
- Write equation for Outgoing Radiation
- Solve

Incoming radiation: energy received from the Sun

Incoming radiation: energy received from the Sun (S) covers the area of a circle defined by the radius of the Earth (R)

Albedo

Albedo: measure of visible light reflection

Some of the incoming visible radiation is not absorbed, it is reflected

Albedo

Albedo: measure of visible light reflection

- Some of the incoming radiation is not absorbed, it is reflected
- Expressed as a fraction of the total incident radiation
- Varies from 0 (no reflection) to 1 (complete reflection)

Incoming radiation: energy received from the Sun

• Fraction of incoming radiation that is absorbed is $(1 - \alpha)$

Outgoing radiation: energy emitted by planet

Outgoing radiation: energy emitted by planet is equal to its black body radiation over its surface area

Outgoing radiation: energy emitted by planet is equal to its black body radiation over its surface area

• Radiative equilibrium model for planet:

• Radiative equilibrium model for planet:

 $S(1-\alpha)\pi R^2 = \sigma T^4 4\pi R^2$

• Solve for T to estimate planetary temperature

$$S(1-\alpha) \int \sigma T^4 4\pi$$
$$\sigma T^4 4 = S(1-\alpha)$$
$$T^4 = S(1-\alpha) / 4\sigma$$
$$T = (S(1-\alpha) / 4\sigma)^{1/4}$$

where S = 1367 Wm⁻², σ = 5.67x10⁻⁸ W m⁻²K⁻⁴, and α = 0.3.

Planetary radiative temperature

Can we use the radiative equilibrium model to predict planetary temperature?

Where did we go wrong?

Greenhouse effect: not all radiation emitted by the surface escapes to space. Some is absorbed by gases in the atmosphere (greenhouse gases) and re-emitted back to the surface

Greenhouse effect

Greenhouse effect: traps heat in the lower atmosphere causing warming.

- Atmosphere is almost **transparent** to solar (shortwave) radiation!
- Greenhouse gases absorb infrared (longwave radiation) and re-emit radiation in all directions

Summary

- i. Earth receives its energy from the Sun in the form of electromagnetic radiation. Electromagnetic radiation varies by wavelength with warmer objects emitting more energy at shorter wavelengths.
- ii. Earth's global temperature is determined by its energy budget, the difference between the incoming and outgoing energy.
- iii. The greenhouse effect exists because gases in our atmosphere are transparent to shortwave radiation, but absorb longwave radiation. The greenhouse effect reduces the amount of outgoing energy, increasing Earth's temperature.