EARTH 114: GLOBAL WARMING Lecture 2: Radiation and planetary temperature

Overview

- i. Solar energy and electromagnetic radiation– a little about light
- ii. Radiation laws-relationship between electromagnetic radiation and temperature
- iii. Planetary energy balance $&$ the greenhouse effect– modeling planetary temperature

Planetary temperature

What determines Earth's mean temperature?

Energy and Heat

Energy: property responsible for work on or heating of an object.

Heat: Is a measure of the kinetic energy (bouncing-around energy) of atoms.

 \circ Temperature (K, C, F) is a measure of the heat in an object.

 \circ Heat (J) is transferred through convection, conduction, and radiation.

Solar energy

Solar heating: Earth's surface is heated by the Sun

- Earth receives 99.98% of its surface energy from the Sun.
- o Solar energy is created in the core of the Sun through nuclear fusion, the welding of H atoms into He atoms.
- o Every second our Sun fuses ~600 million tons of H to He, converting >4 million tons of matter into energy.
- o And radiates 3.828×10^{26} J/s to space (the Sun's luminosity).
- o Some of this energy reaches Earth's surface.

Electromagnetic radiation

Electromagnetic radiation: self-propagating waves that have electric and magnetic fields

- \circ Induced by acceleration of electrons within atoms
- \circ Moves through vacuum or matter at speed of light (c = $3x10^8$ m/s)
- o Characterized by wavelength (λ) or frequency (v)

 \circ Frequency is inversely proportional to wavelength:

$$
V=\frac{c}{\lambda}
$$

Electromagnetic spectrum

Electromagnetic spectrum: full range of electromagnetic radiation

Inverse square law

Newton's inverse square law: solar flux is inversely proportional to the square of the distance from Sun

 \circ As energy moves away from Sun, it is spread over a greater and

Inverse square law

- **Newton's inverse square law:** solar flux is inversely proportional to the square of the distance from Sun
- \circ As energy moves away from Sun, it is spread over a greater and greater area
- o Spread over the area of a sphere, $\left| 4\pi r^2 \right|$, where r is distance from the Sun
- \circ Solar flux is the luminosity divided by the sphere of incidence:

$$
S = \frac{L}{4\pi r^2}
$$

- \circ What is Earth's solar flux (S_0) ?
	- \circ L = 3.839 x 10²⁶ W
	- \circ r₀ = 1.496 x 10¹¹ m

Solar flux

Solar flux: amount of solar energy that reaches a unit area of surface per unit time

- \circ Solar flux is measured in units of Js⁻¹m⁻² or Wm⁻²
- \circ S_o = 1367 Wm⁻² equivalent to ~13 100 W light bulbs illuminating a square meter

Inverse square law model

Is planetary temperature explained by distance from the Sun?

Inverse square law model

Is planetary temperature explained by distance from the Sun?

Mercury's temperature = 539 K, Venus is about 2x as far away from the Sun.

Using the inverse square law, we estimate that Venus should receive $\frac{1}{4}$ as much solar radiation.

Venus' temperatures would be 539 K $(\frac{1}{4})$ = 135 K or -138 C.

Inverse square law model

Is planetary temperature explained by distance from the Sun?

Distance from the Sun does a poor job of estimating planetary temperatures.

Planck's function

Planck's law of black body radiation: describes the electromagnetic radiation of a black body in thermal equilibrium.

Wien's law

Wien Law: the peak electromagnetic radiation is inversely related to the temperature of a black body

A hot body will radiate at shorter peak wavelengths than a cold one:

$$
\lambda_{\max} = B/T
$$

where $B=0.0029$ K m is Wien's constant

Wien's law

Wien Law: the peak electromagnetic radiation is inversely related to the temperature of a black body

- \circ Sun radiates in the shortwave (visible) spectra
- \circ Earth radiates in the longwave (ir) spectra

Stefan-Boltzmann law

Stefan-Boltmann law: the total energy emitted by an object is proportional to its temperature:

 $I = \sigma T^4$

where σ = 5.67e-8 Wm⁻²K⁻⁴. Note that I is an energy flux (energy per time per area)! Units = Wm^{-2} = Jm⁻²s^{-1.}

Stefan-Boltzmann Law is derived by integrating Planck's Function.

Planetary energy balance

- **Radiative equilibrium:** assumes energy balance, incoming radiation equals outgoing radiation
- If incoming and outgoing radiation are not in balance, Earth's temperature will rise or fall.

Let's calculate the radiative equilibrium temperature for Earth!

• Start from our equation for radiative equilibrium:

Incoming Radiation = Outgoing Radiation

- Write equation for Incoming Radiation
- Write equation for Outgoing Radiation
- Solve

Incoming radiation: energy received from the Sun

Incoming radiation: energy received from the Sun (S) covers the area of a circle defined by the radius of the Earth (R)

Albedo

Albedo: measure of visible light reflection

• Some of the incoming visible radiation is not absorbed, it is reflected

Albedo

Albedo: measure of visible light reflection

- Some of the incoming radiation is not absorbed, it is reflected
- Expressed as a fraction of the total incident radiation
- Varies from 0 (no reflection) to 1 (complete reflection)

Incoming radiation: energy received from the Sun

 \circ Fraction of incoming radiation that is absorbed is $(1 - \alpha)$

Outgoing radiation: energy emitted by planet

Outgoing radiation: energy emitted by planet is equal to its black body radiation over its surface area

Outgoing radiation: energy emitted by planet is equal to its black body radiation over its surface area

 \circ Radiative equilibrium model for planet:

 \circ Radiative equilibrium model for planet:

 $S(1-\alpha)\pi R^2 = \sigma T^4 4\pi R^2$

 \circ Solve for T to estimate planetary temperature

$$
S(1-\alpha) \qquad \sigma T^4 4\pi
$$
\n
$$
\sigma T^4 4 = S(1-\alpha)
$$
\n
$$
T^4 = S(1-\alpha) / 4\sigma
$$
\n
$$
T = (S(1-\alpha) / 4\sigma)^{1/4}
$$

where S = 1367 Wm⁻², σ = 5.67x10⁻⁸ W m⁻²K⁻⁴, and α = 0.3.

Planetary radiative temperature

Can we use the radiative equilibrium model to predict planetary temperature?

Where did we go wrong?

Greenhouse effect: not all radiation emitted by the surface escapes to space. Some is absorbed by gases in the atmosphere (greenhouse gases) and re-emitted back to the surface

Greenhouse effect

Greenhouse effect: traps heat in the lower atmosphere causing warming.

- o Atmosphere is almost **transparent** to solar (shortwave) radiation!
- \circ Greenhouse gases absorb infrared (longwave radiation) and re-emit radiation in all directions

Summary

- i. Earth receives its energy from the Sun in the form of electromagnetic radiation. Electromagnetic radiation varies by wavelength with warmer objects emitting more energy at shorter wavelengths.
- ii. Earth's global temperature is determined by its energy budget, the difference between the incoming and outgoing energy.
- iii. The greenhouse effect exists because gases in our atmosphere are transparent to shortwave radiation, but absorb longwave radiation. The greenhouse effect reduces the amount of outgoing energy, increasing Earth's temperature.