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Abstract: Linear trends, or site velocities, derived from global navigation satellite system (GNSS) positional time series have been com-
monly applied to site stability assessments, structural health monitoring, sea-level rise, and coastal submergence studies. The uncertainty of
the velocity has become a big concern for stringent users targeting structural or ground deformation at a few millimeters per year. GNSS-
derived positional time series are autocorrelated. Consequently, conventional methods for calculating the standard errors of the linear trends
result in unrealistically small uncertainties. This article presents an approach to accounting for the autocorrelation with an effective sample
size (Neff). A robust methodology has been developed to determine the 95% confidence interval (95%CI) for the site velocities. It is found
that the 95%CI fits an inverse power-law relationship over the time span of the time series (vertical direction: 95%CI ¼ 5.2T−1.25; east–west
or north–south directions: 95%CI ¼ 1.8T−1.0). For static GNSS monitoring projects, continuous observations longer than 2.5 and 4 years are
recommended to achieve a 95%CI below 1 mm=year for the horizontal and vertical site velocities, respectively; continuous observations
longer than 7 years are recommended to achieve a 95%CI below 0.5 mm=year for the vertical land movement rate (subsidence or uplift).
The 95%CI from 7-year GNSS time series is equivalent to the 95%CI of the sea-level trend derived from 60-year tide gauge observations.
The method and the empirical formulas developed through this study have the potential for broad applications in geosciences, sea-level and
coastal studies, and civil and surveying engineering. DOI: 10.1061/(ASCE)SU.1943-5428.0000390. © 2021 American Society of Civil
Engineers.

Author keywords: Autoregressive model; Effective sample size; Global navigation satellite system (GNSS); Linear trend; Site velocity;
Sea-level rise; Uncertainty; 95% confidence interval.

Introduction

Motivation

Static global navigation satellite system (GNSS) monitoring tech-
niques have been increasingly applied in long-term geological
hazards (e.g., subsidence, landslides, faulting) and structural health
monitoring. Most applications do not directly use the absolute po-
sitions but rely on the change of positions over a specific time
range, that is, site velocity. Accurate site velocities are needed in
assessing long-term site stability and structural deformation. How-
ever, a site velocity must be used only with a full understanding of
its uncertainty.

In the sea-level research community, the 95% confidence inter-
val (95%CI) is used as a standard index to assess the uncertainty or
reliability of tide gauge (TG)–derived mean sea-level change rates.
The National Ocean Service (NOS) Center for Operational Oceano-
graphic Products and Services (CO-OPS) at the National Oceanic
and Atmospheric Administration (NOAA) routinely processes
TG data along the US coasts and publishes the relative sea-level
trends and their corresponding 95%CI (e.g., Zervas et al. 2013).
The NOAA products have been widely applied in the sea-level
and coastal research communities. During the past two decades,
closely spaced GNSS and TG data sets have been routinely applied

to derive sea-level rise rates with respect to global or regional refer-
ence frames (e.g., Snay et al. 2007; Santamaría-Gómez et al. 2012;
Zhou et al. 2021). The sea-level research and coastal engineering
communities urgently need a consistent method to estimate the
95%CI of the trends of vertical land movements (VLMs). This mo-
tivates development of a general methodology for determining the
95%CI of the GNSS-derived site velocities.

GNSS has become the standard generic term for satellite nav-
igation systems in the satellite positioning community, including
the United States’ GPS, Russia’s GLONASS, Europe’s Galileo,
China’s Beidou, and other regional satellite navigation systems.
This investigation only used GPS signals in calculating daily static
positions. The methodology developed through this study is appli-
cable to the daily positional time series derived from other satellite
systems, however. Accordingly, I use the umbrella term GNSS
throughout this article.

Common Problems

An ordinary linear regression is often used to estimate the linear
trend from GNSS-derived displacement time series (or relative po-
sitions). Though slightly different approaches are used in imple-
menting the least squares by various researchers, they all result
in very similar site velocity estimates (linear trends) for sites nat-
urally experiencing linear movements over time. However, the
uncertainties of GNSS-derived site velocities reported by different
researchers could be considerably different.

In statistics, there are sophisticated mathematical methods for
calculating the linear trend and its uncertainty, also known as stan-
dard error, for stationary time series. A stationary time series is one
whose statistical properties such as mean, variance, and autocorre-
lation do not depend on the time at which the series is measured.
The commonly used form of linear regression is called ordinary
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least-squares regression. This study employs the ordinary linear
regression methods commonly used in the broad geophysical sci-
ences (e.g., Wilks 2006, Chapter 6). Assuming yi is the GNSS-
derived daily displacement time series with respect to a specific
reference frame, a simple linear regression can be used to model
the daily positional time series

yi ¼ aþ bti þ Ri ð1Þ
where a ¼ Y-intercept of the regression line (usually just called the
intercept); b = slope of the linear regression; ti = series of Julian
days with the unit of fractional years (e.g., May 1, 2020, is counted
as 2,020þ 121.5=365.25 ¼ 2,020.3326 years); and Ri = residual
time series. The coefficient of correlation between ti and yi (i ¼ 1,
N) is defined as

rty ¼
P

N
i¼1½ðti − t̄Þðyi − ȳÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼0 ðti − t̄Þ2 PN

i¼0 ðyi − ȳÞ2
q ð2Þ

where t̄ and ȳ = mean values of the time series ti and yi, respec-
tively. The coefficients ða; bÞ and their standard errors are obtained
as follows:

b ¼ rty ×
σy

σt
ð3Þ

a ¼ ȳ − b × t̄ ð4Þ
where σt and σy = standard deviation of the series of ti and yi. The
residual time series can be obtained by

Ri ¼ aþ bti − yi ð5Þ
The standard error of the regression, which is represent by s, can

be obtained by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 R

2
i

N − 2

r
ð6Þ

where s represents unbiased estimate of the standard deviation of
the residual time series. For time series with hundreds to thousands
of samples, s is the same as the RMS of the residuals (RMS ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPN
i¼1 R

2
i Þ=N

p
), which is often used to assess the repeatability

(also called RMS accuracy) of GNSS positioning (Soler and
Wang 2016). The standard error of s is defined as

SEs ¼
sffiffiffiffi
N

p ð7Þ

where SEs is measured in the units of y centimeters or millimeters
for the GNSS-derived displacements. The standard error of the
slope b is estimated by a further adjustment of SEs

SEb ¼
sffiffiffiffi
N

p ×
1

σt
ð8Þ

where 1=σt merely serves to scale the value and unit of SEs; and
σt represents standard deviation of the series of observational days
(ti) in decimal years. The units of SEb is consistent with the units of
the slope (b). For ti series with a time span of T years (e.g., T >
1 year), σt ≈ T=ð2 ffiffiffi

3
p Þ.

If the residual time series (Ri) is stationary, SEs does a good job
representing the uncertainty of the linear regression, and SEb does
a good job representing the uncertainty of the slope (b). However,
the residual time series (Ri) from GNSS observations is not station-
ary. It often exhibits trends, seasonality, random walking, and other
nonstationary behaviors, known as power-law noise in general

(e.g., Agnew 1992; Langbein and Johnson 1997; Williams et al.
2004). Temporal-correlated errors are pervasive in GNSS-derived
displacement time series, in both horizontal and vertical directions.
Error terms correlated over time or space are said to be autocorre-
lated. Autocorrelation has been investigated in the geodetic com-
munity since the late 1960s, first discovered by Krarup (1969) and
expanded and explained by Moritz (1973) for gravity predictions.
For the GNSS time series, the position of each day is partially cor-
related with the position values of the previous and following days.
Therefore, there are actually many fewer independent measure-
ments contributing to the standard error of the linear regression.
Consequently, SEb calculated using the total sample number N is
unrealistically small. Fig. 1 illustrates the three-component dis-
placement time series at THSU (2013–2020). The antenna of
THSU is mounted on the sidewall of a 1-story laboratory building
at the University of Houston (UH) [Fig. 2(a)]. The reference frame
of the displacement time series is the International GNSS Service
Reference Frame 2014 (IGS14) (Altamimi et al. 2016; Rebischung
et al. 2016). The value of SEb equals 0.02 mm=year for each hori-
zontal velocity [east–west (EW) or north–south (NS)] and 0.05 mm=
year for the vertical velocity. Usually, these estimates below
0.1 mm=year are unrealistically small and significantly underesti-
mate the real uncertainties of linear trends.

Current Approaches

Trend estimation is a common task in the geophysical research and
application community. In parallel, the GNSS geodetic research
community has developed two approaches for obtaining realistic
uncertainty estimates of GNSS-derived site velocities. One is the
scaling approach, and another is the noise-modeling approach.

Approach 1: Scaling
In order to make the calculated velocity uncertainty (SEb) more
realistic and reasonable, one or more scale factors are often applied
to correct (increase) SEb in practice. The scale factors used in geod-
esy literature vary widely from 2 to 20 (e.g., Dixon et al. 2000;
Bettinelli et al. 2006; Heflin et al. 2020). Consequently, it is hard
to align the uncertainties published by different research groups,
though each group may provide consistent uncertainty estimates
for their own velocity products.

The geodetic research groups at the Jet Propulsion Laboratory
(JPL) of the National Aeronautics and Space Administration
(NASA) and Nevada Geodetic Laboratory (NGL) of the University
of Nevada, Reno, routinely process global GNSS data and provide
daily precise point positioning (PPP) solutions and their velocity
products to the research community (Blewitt et al. 2018; Heflin
et al. 2020). Both JPL and NGL employ the GipsyX software pack-
age for static GNSS processing (Bertiger et al. 2020). The PPP so-
lutions with respect to regional reference frames have attracted
broad interest in natural hazard studies (earthquakes, landslides,
subsidence, volcanos) (e.g., Wang et al. 2014; Murray and Svarc
2017) and long-term structural deformation monitoring because
of the simplicity in the data process and the consistency of posi-
tional accuracy over time and space (e.g., Bao et al. 2018; Guo
et al. 2019; Zhao et al. 2020). JPL applies a single factor of 20
for correcting the uncertainty of the whole time series (Heflin
et al. 2020). NGL employs the Median Interannual Difference Ad-
justed for Skewness (MIDAS) method in calculating the site veloc-
ities and corresponding uncertainties (Blewitt et al. 2016). MIDAS
uses the median of slopes of a great number of selected 1-year-apart
displacements to represent the overall site velocity. The standard
deviation of these slopes somehow reflects the uncertainty of
the selected velocity. However, the unscaled standard deviation
is unrealistically small because of the temporal correlation among
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the GNSS observations. MIDAS further corrects the calculated
standard deviation by scaling.

For site THSU illustrated in Fig. 1, the site velocities and their
uncertainties reported by JPL and NGL (JPL 2021; NGL 2021), as
well as the results from this study, are marked on each subplot. It
appears that JPL and NGL velocities and their corresponding un-
certainties are comparable in the NS and EW directions. Both result
in 0.2 to 0.3 mm=year velocity uncertainties. However, the vertical
uncertainties are considerably different. The JPL results show an

uncertainty of 0.45 mm=year, while the NGL results show an un-
certainty of 1.11 mm=year. The UH results are obtained according
to the method introduced in this article. For structural monitoring
looking at deformations of a few millimeters per year level, uncer-
tainties at a level of submillimeter per year (<1 mm=year) are often
required; for sea-level and coastal submergence studies, uncertainties
below 0.5 mm=year are often required. The main reason causing
the difference of the uncertainties among the JPL and NGL results
is the scale factors that they used. This study aims to develop a
general methodology for determining the uncertainties of GNSS-
derived site velocities without involving scaling factors.

Approach 2: Noise Modeling
Over the past three decades, the geodetic research community has
developed a number of methods for modeling the noise contents
superimposed onto the GNSS daily time series, thus improving
the estimates of the linear trend and its uncertainty, particularly
the uncertainty. In general, the noises can be modeled by a combi-
nation of white noise and power-law noise (Agnew 1992; Langbein
2004), including white noise, flicker noise, random-walk noise, and
their combinations (e.g., Zhang et al. 1997; Mao et al. 1999; Hackl
et al. 2011; Langbein 2008; Wang et al. 2012). White noise rep-
resents temporally uncorrelated phenomena; flicker noise often in-
cludes mismodeled parameters during data processing, as well as
large-scale effects; random-walk noise is often dominated by site-
dependent effects and monument instability (e.g., Williams et al.
2004; Williams 2008; Langbein 2012; Klos et al. 2014; Ray et al.
2019). Those modeling methods have been employed in routine
GNSS time series processing, such as the UNAVCOGAGENetwork
processing (Herring et al. 2016), the CATS program (Williams
2008), and the Hector program (Bos et al. 2013). The CATS and
Hector programs estimate both the linear trend and the parameters
of the chosen noise model primarily using the maximum likelihood
estimation (MLE) method, which is an iterative minimization pro-
cess. MLE requires computing the inverse of the covariance matrix
in each step and thus often brings along a computationally ineffi-
cient problem (Langbein 2017). The uncertainty of the linear trend
is further estimated using the information provided by the final data
covariance matrix and empirical relationships, such as those found
in Zhang et al. (1997) and Mao et al. (1999). Essentially, the ac-
curacy or reliability of the velocity uncertainty largely depends on
the goodness of the fitting models. It is always a challenge to pre-
cisely model the site-specific component of the GNSS noises.

This study does not attempt to dig into the details of the noises
and modeling, but instead focuses on modeling the autocorrelation
among the GNSS daily displacement measurements. The autocor-
relation would provide essential information for estimating the size
of independent GNSS measurements, and thus provide an analyti-
cal approach to calculating the velocity uncertainty.

Methodology

Decomposition of GNSS Time Series

Long-period nonlinear motions and periodical motions are the
major contributions to the autocorrelation within the GNSS time
series. To exclude those known correlations, the GNSS-derived dis-
placement time series is decomposed into four components: a linear
trend, a nonlinear trend, a seasonal trend, and residuals. The linear,
nonlinear, and seasonal motions are regarded as the deterministic
parts, while the residuals are regarded as the noise part. Both the
deterministic and noise parts could contribute to the uncertainty of
the overall linear trend. The noise superimposed onto the GNSS
time series could be induced by many causes, such as unmodeled
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Fig. 1. Three-component displacement time series at GNSS site THSU
at UH: (a) NS direction; (b) EW direction; and (c) vertical direction.
The site velocities and their uncertainties (as of January 20, 2021) pub-
lished by Jet Propulsion Laboratory (JPL 2021) and Nevada Geodetic
Laboratory (NGL 2021) are marked on each subplot. The UH results,
site velocity, and its 95%CI are obtained according to Eq. (16), and SEb

is obtained according to Eq. (8).
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true physical site motion generated by surface loading due to hy-
drology and atmospheric pressure, effects of multipath, instability
of antenna monuments, and errors in modeling satellite orbits and
the Earth orientation parameters (e.g., Blewitt and Lavallee 2002;
Griffiths and Ray 2009; King and Williams 2009).

The first step of the decomposition process is to calculate the
linear trend (Li) with the ordinary least-squares regression over the
entire time series. The second step is to decompose the de-linear-
trended time series into three components: a smoothed nonlinear
trend (NLi), a seasonal trend (Si), and a residual time series (ri).
So, the displacement time series yi (i ¼ 1, N) can be described as

yi ¼ Li þ NLi þ Si þ ri ð9Þ

where Li ¼ aþ bti, with b being the linear trend [Eq. (3)] and a
being the intercept of the linear trend [Eq. (4)]. I use the classical
moving regression method called locally weighted scatterplot
smoothing (LOWESS) (Cleveland 1981) to capture the nonlinear
trend (NLi). LOWESS uses a nonparametric technique to fit a
smooth curve through points in a scatterplot. A smoothing param-
eter is designed to control the smoothness of the curve. The
smoothing parameter, a value in (0, 1), decides the proportion of
observations to use for local regression. A larger value of the
smoothing parameter results in a smoother curve, and a smaller
value captures more short-period signals. The smoothing parameter
is set as 0.4 in this study, which works well for the purpose of cap-
turing the long-period (>2 years) trends.

Fig. 3 illustrates the steps for decomposing the displacement time
series at UH01 (2013–2019). The displacements are referred to the
stable Gulf of Mexico Reference Frame 2020 (GOM20), which was
realized by 55 long-term GNSS stations (13.5 years on average) lo-
cated within the inland of the Gulf of Mexico (GOM) coastal plain
(Wang et al. 2020). The GNSS antenna (UH01) is mounted on the
roof of the 7-story building in which the Department of Earth and

Atmospheric Sciences at the University of Houston is located [Fig. 2
(b)]. Typically, there are certain data gaps in continuous GNSS ob-
servations, often caused by the temporary failure of field equipment
(antenna, receiver, power supplies) (Yang et al. 2016). The decom-
posing process requires continuous time series if the fast Fourier
transform (FFT) is employed to analyze the seasonality. I use the
classical hot-deck imputation to fill in the missing data in this study.
Ford (1983) provides an introduction of the method. The idea of the
hot-deck method is simple: borrow (in a random way) information
from a set of nearby observations (the donor) to fill the missing in-
formation. In my implementation, each missing-data slot is flagged.
A loop is performed to fill the empty slots one by one. For each
flagged slot, the program finds the location of the nearest unflagged
point. The distance is calledD. The program takes the nearestDþ 5
unflagged points before and after the flagged one to compute the
weighted mean of these neighbors and fills the missing slot with
the mean value. More neighboring observations are used for filling
large gaps than small gaps. The random weights are generated by a
Gaussian random number generator. The potential impacts of data
gaps on the 95%CI will be discussed in the next section.

Seasonal signals are primarily caused by periodical surface mass
redistribution (atmosphere, hydraulic, ocean, snow, and soil mois-
ture) and bedrock thermal expansion (e.g., Dong et al. 2002). In
general, the seasonal component (Si) can be modeled by a combi-
nation of annual and semiannual cycles. On physical grounds,
the amplitudes and phases of the seasonal signals may vary over
time because the sources of the seasonal signals are not constant.
Advanced models and methods have been developed to consider
the time-varying amplitudes and phases of seasonal signals, such
as the singular spectrum analysis method (e.g., Chen et al. 2013;
Xu and Yue 2015), the Kalman filter method (e.g., Davis et al.
2012; Didova et al. 2016), the wavelet decomposition method
(e.g., Bogusz 2015), the MLE (e.g., Langbein 2004; Bos et al. 2013),
and the moving ordinary least-squares method (Klos et al. 2018). In

(a) (b)

(c) (d)

UH01

 UTEX TXLN 

THSU 

Fig. 2. Field installation of GNSS antennas whose positional time series are illustrated in this article: (a) THSU; (b) UH01; (c) UTEX; and (d) TXLN
[image courtesy of the Continuously Operating Reference Station (CORS) website operated by the National Geodetic Survey (NGS), NOAA].

© ASCE 04021030-4 J. Surv. Eng.

 J. Surv. Eng., 2022, 148(1): 04021030 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
uo

qu
an

 W
an

g 
on

 1
1/

18
/2

1.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



this study, I model the seasonal ground motions with a sum of annual
and semiannual sinusoids with constant amplitudes and phases

SðtiÞ ¼ c1 cosð2π × tiÞ þ d1 sinð2π × tiÞ þ c2 cosð4π × tiÞ
þ d2 sinð4π × tiÞ ð10Þ

where ti = epoch (observation day) with a unit in decimal years; and
c1, d1, c2, and d2 = coefficients deciding the amplitudes of the annual
and semiannual signals. The seasonal information that is not properly
modeled by the seasonal model [Eq. (10)] will be captured by the
residual time series [ri, Eq. (9)] as noise. The coefficients c1, d1,
c2, and d2 can be estimated by using the least-squares fitting methods
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Fig. 3. Decomposition of the GNSS-derived displacement time series at UH01: (a and b) linear trends of the vertical and NS components, respec-
tively; (c and d) nonlinear components of the vertical and NS components, respectively; (e and f) seasonal trends of the vertical and NS components,
respectively; and (g and h) residuals of the vertical and NS component, respectively. RMS = root-mean square of each time series; b = linear trend of
the original time series; Sb = standard error of the linear trend [Eq. (8)]; bNL = linear trend of the nonlinear component [NLi, Eq. (9)]; and bS = linear
trend of the seasonal component [Si, Eq. (9)].
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(e.g., Bos et al. 2013) or by using FFT. In my program, I employ the
FFT method that computes the discrete Fourier transform of the
residual time series. In the method, c1 and d1 are the Fourier coef-
ficients of 1-year-period signals; and c2 and d2 are the Fourier co-
efficients of half-year-period signals.

Effective Sample Size

As mentioned previously, the autocorrelation among the adjacent
GNSS measurements causes the extremely small standard error
(SEb) of the estimated slope [Eq. (8)]. The number of independent
measurements is much fewer than the number (N) of total measure-
ments. In theory, only the number of independent samples should
be used to calculate the standard error (SEb). Effective sample size
(Neff ) is a term used in statistics to represent the independent sam-
ples among autocorrelated time series (e.g., Kass et al. 1998). The
value of Neff can be estimated by modeling the residual time series
(Ri) using an autoregressive (AR) model, a linear regression pre-
dicting a coming value based on previous values from the same
time series. A lag-p-order autoregressive model ARðpÞ can be de-
scribed as

Ri ¼ φ0 þ φ1Ri−1 þ φ2Ri−2 þ : : : þ φpRi−p þ εi ð11Þ

where φk = partial autocorrelation function (PACF) of the residual
time series (Ri) at lag k, PACFðkÞ ¼ φk; φk ≈ 0 for k > p; and εi =
white noise, the unpredictable component of Ri.

Autocorrelation function (ACF) and PACF are two primary
tools for assessing the correlations among observations (e.g., Box
et al. 2008). ACF describes how well the present value of the series
is related to its past values. PACF shows the correlation of a series
with itself at increasing lags after the correlations at the intervening
lags have been removed. PACF is useful for identifying the order of
an autoregressive model. The order is the number of immediately
preceding values in the series used to predict the value at the present
time. Partial autocorrelation coefficients that are significantly dif-
ferent from zero indicate lagged terms of the AR process that
are useful for predicting Ri. Fig. 4 illustrates ACF of the residual
time series of UH01 (vertical and NS) depicted in Figs. 3(g and h).

ACF exhibits a gradual decay toward zero at the first few lags, then
fluctuates around the zero-axis. The overall decaying of ACF re-
flects the generally weaker statistical relationships between posi-
tions further away from each other in time. Fig. 5 depicts the PACF
of the residual time series of UH01 (vertical and NS).

NOAA employs a first-order autoregressive model AR(1), or
Markov, to model the residuals of the sea-level time series (Zervas
2009). An AR(1) model is a linear model that predicts the present
value of a time series using the immediately prior value in time
[Eq. (11)]. For an AR(1) process, the persistence of the effective
sample size can be estimated using the approximation (Wilks
2006, p. 144)

Neff ≈ 1 − ρ1
1þ ρ1

× N ð12Þ

where N = total sample size; Neff = effective sample size; and ρ1 =
lag-1 autocorrelation coefficient. The values of ACF and PACF are
the same at lag-1. Fig. 5 indicates that the maximum PACF is below
0.5 at UH01. PACF values at lag-2, lag-3, and lag-4 are noteworthy
compared to the PACF at lag-1. Even the PACF below the 95%
confidence intervals shown by the dashed lines are also statistically
unignorable. Therefore, an AR(1) process is not the best for mod-
eling the daily GNSS residual time series. A high-order AR model
is needed. For a high-order autoregressive process [Eq. (11)], the
effective sample size (Neff ) can be estimated by the following
equations (e.g., Straatsma et al. 1986; Geyer 1992; Thompson
2010):

Neff ≈ N
τ

ð13Þ

τ ¼ 1þ 2
X∞
k¼1

ρðkÞ ð14Þ

where N = number of the original samples; ρðkÞ ¼ lag-k ACF of
the autocorrelated time series; and τ = autocorrelation time. In our
calculations, the infinite sum is truncated at the last lag-M where
ρðMÞ þ ρðM þ 1Þ ≥ 0. Many statistical software packages also
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Fig. 4. ACF of the residual time series of the (a) vertical (up–down); and (b) horizontal (NS) components of UH01. N = number of total measure-
ments; quantities M,

P
ρk, τ , and Neff are defined in Eqs. (13) and (14), and discussions thereafter.
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adopt a similar approach. For example, the Stan statistical package,
a state-of-the-art platform for statistical modeling and computation,
cuts off the infinite sum at the first negative ρðkÞ (Stan Development
Team 2021). The ACF in Fig. 4 suggests that the ACF after the
lag-M is a zero-crossing undulating function of the time span. The
parts below and above the x-axis retain approximately equal areas.
Thus,

P∞
k¼M ρðkÞ≈ 0. So,

P
M
k¼1 ρðkÞ is a reasonable approxima-

tion of
P∞

k¼1 ρðkÞ. Accordingly, the corrected standard error
[Eq. (8)] of the linear trend can be estimated by

SEbc ≈ sffiffiffiffiffiffiffiffi
Neff

p ×
1

σt
¼ ffiffiffi

τ
p

× SEb ð15Þ

Assuming that the linear trends of the nonlinear and seasonal
motions are flat (e.g., <0.1 mm=year), SEbc would be a reasonable
approximation of the uncertainty of the site velocity (b) from the
ordinary regression. The 95%CI can be estimated by 1.96 × SEbc.
However, in many cases, the nonlinear motions show a remarkable
linear trend drifting away from the zero velocity, which is mainly
related to long-period (e.g., >1 year) motions or significantly non-
stationary noises. The amplitudes of seasonal motions can be sub-
stantial in certain areas (up to a few centimeters), which could also
result in a remarkable linear trend drifting away from the zero
velocity if the time range is short (e.g., less than 3 years).

Fig. 6 illustrates a particular case (UTEX) in which the nonlin-
ear motions and seasonal motions show remarkable linear trends
(5 versus 8 years). UTEX lies in a subsiding area in western Hous-
ton. This region has been suffering from land subsidence associated
with excessive groundwater withdrawals for more than five decades
(e.g., Kearns et al. 2015; Liu et al. 2019). The ongoing average
subsidence rate is approximately 9 mm=year (2012–2020) with
respect to GOM20. The antenna is installed on the sidewall of a
2-story building [Fig. 2(c)]. The nonlinear motions result in a linear
trend (bNL) of 0.35 mm=year within the 5-year window (2012.4–
2017.4) and an even larger linear trend (0.77 mm=year) within the
8-year window (2012.4–2020.4). The seasonal motions result in
an overall linear trend (bS) of 0.41 mm=year within the 5-year
segment and a smaller linear trend (0.12 mm=year) within the

8-year window. The bNL and bS are the velocity errors from the
deterministic part of the original GNSS time series [Eq. (9)]. Both
degrade the confidence of the ordinary linear regression result (b)
in almost a certain way (∼100%). Accordingly, the 95%CI of the
site velocity b could be estimated by 1.96 × SEbc, plus the abso-
lute values of the linear trends of the nonlinear and the seasonal
motions

b95%CI ≈ 1.96 × SEbc þ jbNLj þ jbSj ð16Þ

For stations located on stable sites (e.g., bedrock) or stations
with a history of more than 5 years, bNL and bS are often ignorable
(<0.2 mm=year). A statistical analysis of the contribution of bNL
and bS to the 95%CI will be investigated in the next section.
Throughout this article, the 95%CI is calculated according to
Eq. (16).

Empirical Formulas for Projecting the 95%CI

In this section, I calculate the 95%CI of the site velocities at ap-
proximately 13,000 globally distributed GNSS stations with obser-
vations over 400 days. The daily PPP solutions (ECEF-XYZ, with
respect to IGS14) are provided by NGL (Blewitt et al. 2018) and the
Houston GPS Network (Wang et al. 2015b). The XYZ time series
is converted to a local topocentric coordinate system, called local-
ENU coordinates: EW, NS, and up–down (UD). An outlier-
removing procedure introduced in Wang (2011, 2013) is employed
to remove obvious outliers. On average, about 2% of measurements
are removed as outliers. GNSS stations with less than 270 obser-
vational days per year (9 months per year) are excluded from the
global data set. Site movements at some GNSS sites do not follow a
linear relationship over time, such as sites significantly affected by
long-term postseismic displacements, subsidence, volcanic activ-
ities, and glacial movements. Those stations need to be excluded
from the data set for assessing the linear regression. I find that the
RMS of the residuals [Eq. (6)] after removing the overall linear
trend can be used as a threshold to exclude those nonlinear sites.
According to previous publications (e.g., Bertiger et al. 2010, 2020;
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�95% confidence interval of the PACF, estimated by �1.96=
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p
, where N is the number of measurements.
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Wang et al. 2017) and this study, the average RMS of the daily PPP
solutions for sites experiencing linear movements is below 4 mm
for the horizontal components and below 8 mm for the vertical
component. The time series at nonlinear sites often retain substan-
tially larger RMS at least in one direction. I use RMS thresholds of
8 and 16 mm for the horizontal and vertical components, respec-
tively, to exclude nonlinear sites. I checked many stations that were
investigated in previous publications, such as GNSS sites significantly

affected by coseismic displacements and long-term postseismic de-
formation in China (Wang et al. 2018; Bao et al. 2021), sites with
antennas covered by snow during the winter in Alaska (Wang et al.
2015a), sites affected by volcanic activities in the Caribbean (Wang
et al. 2019), and sites affected by significant nonlinear subsidence
in the greater Houston region (Agudelo et al. 2020). Those stations
have been successfully rejected by the RMS thresholds. After all
these selections, 9,700 displacement time series remained for the
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vertical component, 9,700 for the NS component, and 9,600 for the
EW component. The vertical and horizontal components are treated
separately in this study. The remaining stations for the three com-
ponents are slightly different.

Fig. 7 depicts the locations of those 9,700 GNSS stations whose
vertical time series remained for the statistical analysis. The maps
are plotted with the Generic Mapping Tools (GMT) (Wessel et al.
2013). The majority GNSS stations are in the US, Europe, and
Japan. Fig. 7(a) depicts the observational history of these 9,700
stations; the colors represent the year range: over 7 years, between
4 and 7 years, and between 1 and 4 years. Fig. 7(b) depicts the 95%
CI of the vertical velocities; the colors represent the levels of the
95%CI: below 0.5 mm=year, between 0.5 and 1.0 mm=year, and
greater than 1.0 mm=year. The color patterns suggest that the 95%
CI is primarily dominated by the time span of the observations.

Fig. 8 illustrates the 95%CI of the site velocities at these
9,700 GNSS stations versus the year range of the observations.
The log-log plots indicate a linear relationship between log(95%
CI) and logðTÞ for both vertical and horizontal components, sug-
gesting a power-law relationship between the 95%CI and the
year range. Each horizontal component can be best fit by a re-
gression line

95%CI ¼ 1.8 ×
1

T
ð17Þ

The vertical component can be best fit by a regression line

95%CI ¼ 5.2 ×
1

T1.25 ð18Þ
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45°N 45°N
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Fig. 7.Global distributions of the selected GNSS (approximately 9,700) for developing the empirical formula predicting the 95%CI of the vertical site
velocities [Eq. (18)]: (a) observational periods; and (b) 95%CI.
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where T = year range of the time series in years; and the unit of 95%
CI is in millimeters per year. The 95%CI tends to decrease rapidly
with the increase of time span. The empirical formulas [Eqs. (17)
and (18)] provide a general tool for users to project the ideal ob-
servational time span for their deformation monitoring projects. In
order to achieve a 95%CI below 1 mm=year for a horizontal site
velocity, continuous observations over 2.5 years are recommended.
In order to achieve a 95%CI below 1 mm=year in all three direc-
tions, continuous GNSS observations over 4 years are needed. A
minimum of 7 years of observations are recommended for achiev-
ing a 95%CI below 0.5 mm=year in all three directions.

Fig. 9 depicts the contributions of the nonlinear and seasonal
motions to the 95%CI of site velocities [Eq. (16)]. Both the linear
trends of the nonlinear and seasonal motions decay with the in-
crease of the year range. The linear trend bS of the seasonal motions
shows regular undulations with a 1-year period [Figs. 9(a and b)].
The undulations reduce to below 0.2 mm=year approximately after
4.5 annual cycles in each horizontal direction and after 6.5 annual
cycles in the vertical direction. However, the linear trend bNL of the
nonlinear motions is more site specific [Figs. 9(c and d)]. Figs. 9(a
and b) also suggest that the velocity estimated from an n − 0.5 year
time series may suffer less impact from seasonal motions than an

n year time series. In the geodesy research community, a mini-
mum of a 2.5-year time span of coordinate time series is often
recommended to minimize the effect of seasonal ground motions
(e.g., Blewitt and Lavallee 2002). Fig. 9 indicates that the effect of
vertical seasonal motions for time series over 2.5 years could still
be remarkable (>0.2 mm=year). According to the empirical for-
mulas [Eqs. (17) and (18)], the 95%CI of the site velocity for the
2.5-year time series is 0.7 mm=year in the horizontal direction and
1.7 mm=year in the vertical direction. For stability monitoring proj-
ects focusing on submillimeter-per-year accuracy (95%CI) in the
vertical direction, observations longer than 4 years are needed.

Robustness and Limitations

Noise and data gaps are two key elements increasing the velocity
uncertainty of the GNSS time series. A robust 95%CI estimator is
expected to distinguish sites with significant noise and large gaps
from average sites. It may be easier to describe what is not an aver-
age site than what is an average site. For example, those sites af-
fected by irregular fluctuations of groundwater levels, short-period
severe drought or flooding, snow or ice on antennas during the
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Fig. 8. 95%CI of site velocities versus the year range at 9,700 globally distributed GNSS stations: (a and b) log-log plots of the 95%CI versus the year
range for the vertical and horizontal (EW, NS) components, respectively; and (c and d) linear plots within a smaller range for the vertical and
horizontal (EW, NS) components, respectively. The locations of GNSS used for the vertical component are plotted in Fig. 7.
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winter, localized landslide and fault creeping, and significant post-
seismic displacements are not average sites.

Effects of Site-Specific Noise

The scatterplots in Fig. 8 indicate that the 95%CI estimates are re-
markably scattered around the regression line. Fig. 9 suggests that
the scattering is partially contributed by bNL, site-specific nonlinear
motions. Fig. 10(a) illustrates the vertical displacement time series
recorded by a GNSS array at the University of Houston Coastal
Center (UHCC). The GPS array was designed to measure the sedi-
ment compactions at different depths. The antenna poles are anch-
ored at the bottom of boreholes cased with PVC pipes. The depths
of the boreholes at UHC3, UHC2, and UHC1 are 10, 7, and 4 m
below the land surface, respectively [Fig. 10(b)]. The antennas
move consistently with the vertical movements of the bottom sedi-
ments. The antenna pole of UHC0 is just anchored on a concrete
pad built on the ground surface. The vertical component of UHC3,
UHC2, and UHC1 recorded different compaction rates associated
with the different thicknesses of sediments. Visually, the noise
levels of the time series at these three sites are the same. The
95%CI estimates at these three sites are almost identical, 0.3 to

0.4 mm=year, comparable with the projections from Eq. (18)
(5.2 × 7−1.25 ¼ 0.46 mm=year). The 95%CI at UHC0 is much
larger than the 95%CI of deep-seated sites (0.4 versus 2.2 mm=
year). The substantial noise at UHC0 is associated with land surface
fluctuations caused by frequent soil moisture changes within the
shallow soil. Fig. 10(a) suggests that the method [Eq. (16)] for cal-
culating the 95%CI is robust in distinguishing noisy sites from nor-
mal sites. I further checked many other sites showing remarkable
(>2 mm=year) 95%CI values. It is found that estimated site veloc-
ities at those sites are often biased by significant pulse-like motions
or long-period (>1 year) motions superimposed into the time series.
The observations at UHCC suggest that the 95%CI can be potentially
used as an index for automatically sorting well-behaved and poorly
behaved GNSS time series from GNSS networks with a similar ob-
servational time span.

Effects of Data Gaps

Missing data can create problems for analyzing time series. A
common technique for handling missing data is imputation,
whereby the missing data are filled in to create a continuous time
series. The methods for calculating ACF and PACF require
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Fig. 9. (a and b) Linear trends (bS) of the seasonal motions versus the year range at these 9,700 globally distributed GNSS sites for the vertical and
horizontal components, respectively; and (c and d) linear trends (bNL) of the nonlinear motions versus the year range at these 9,700 globally dis-
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continuous time series. The decomposition process also requires
continuous time series because FFT is involved in the seasonality
analysis [Eq. (10)]. So, all gaps need to be filled before calculat-
ing the 95%CI. Scientists have embraced many theories and
methods to fill missing data. In general, those methods work well
for small gaps (a few days) and poorly for large gaps (a few
months to years). The hot-deck imputation method is employed
for filling missing data in this study.

Fig. 11 depicts the comparison of original and gap-filled displace-
ment time series (vertical) at TXWO and PA26. TXWO is a typical
continuously operating reference station (CORS) operated by the
Texas Department of Transportation. TXWO is located in the City
of Woodwille, Tyler County, Texas. There are several small gaps
(a few days) and one large gap (approximately half a year) in the
observations at TXWO. The average data rate is 310 days per year.
Visually, the imputation does a good job filling small gaps. The cal-
culated 95%CI is 0.77 mm=year for TXWO, which is slightly larger
than the projection from Eq. (18) (0.70 mm=year). PA26 was a peri-
odically surveyed GNSS station operated by the Houston–Galveston
Subsidence District in Houston. PA26 was switched to a continuous
GNSS station in 2017. There are frequent gaps from a few days to a
few months within the original time series. The average data rate is
265 days per year. The calculated 95%CI is 1.46 mm=year, which is
about two times the projection [Eq. (18), 0.70 mm=year]. PA26 re-
tains more gaps than the sites (a minimum of 270 days per year) used
to establish the regression model [Eq. (18)]. So, the larger 95%CI at
PA26 is expected. It is evident that the method for calculating the
95%CI is able to account for the effect of data gaps on the velocity
uncertainties.

Limitations

The general methodology for calculating the 95%CI [Eq. (16)] is
appliable to GNSS time series at any sites processed with different
methods. The empirical formulas [Eqs. (17) and (18)] for projecting

95%CI are derived from the daily positional time series processed
by the GipsyX software package (Bertiger et al. 2020). GipsyX
achieves higher accuracy than its predecessor GIPSY-OASIS
(Bertiger et al. 2010), and it is constantly updated and upgraded.
In general, a new software package or a new version often achieves
higher accuracy than its predecessors because the new version
always tries to integrate the latest models and data processing tech-
niques. As a result, the uncertainty from recently processed posi-
tional time series may be considerably smaller than those published
uncertainties a few years ago. Different GNSS data processing
methods often produce positional time series with slightly different
scatters (Wang et al. 2017). Thus, the uncertainties of the velocity
products from different research groups (often using different soft-
ware packages and parameters) could be considerably different.
The definition of the 95%CI introduced in this study [Eq. (16)]
may differ from the definition of the uncertainties used in other
publications. For the reasons mentioned previously, I do not rec-
ommend mixing the velocity uncertainties determined from the
method introduced in this study with the uncertainties determined
with other methods or provided by other research groups.

This study further indicates that the uncertainty could be highly
site specific (e.g., Figs. 8 and 10). It is likely that the empirical
formulas [Eqs. (17) and (18)] developed in this study represent
the optimistic projection of the 95%CI of GNSS site velocities be-
cause the time series used for this study are produced from the
state-of-the-art (as of 2020) GNSS positioning techniques. Users
may bear this in mind if they do need to compare the projected
uncertainties from the empirical models [Eqs. (17) and (18)] with
the published uncertainties in the geodesy literature.

The effects of data gaps on the 95%CI have not been fully in-
vestigated in this study. The hot-deck method does not rely on syn-
thetic models fitting for the variable to be imputed, and thus is
potentially less sensitive to model misspecifications than regression
imputation methods. However, the hot-deck imputation employed
in this study could introduce hidden variability because random
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weights are involved in filling data gaps. It thus breaks the temporal
correlations within the original data, which may affect the estimates
of ACF, and in turn affect the estimates of autocorrelation time (τ )
and the 95%CI. In general, small gaps cause fewer impacts on the
95%CI than large gaps. The 95%CI from GNSS time series with
large gaps from several months to a year should be interpreted with
caution.

Determining the 95%CI of the Absolute
Sea-Level Trend

Sea-level changes are primarily measured using TGs along the
coasts. Instead of measuring absolute (eustatic) sea-level changes,
TG measures sea-level changes with respect to adjacent bench-
marks fixed on the local land surface. Therefore, the mean sea-level
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(MSL) change rate derived from TG data (VTG) is a combination of
the absolute sea-level change rate (VASL) and the vertical land
movement measured by GNSS (subsidence or uplift) rate (VGNSS).
The absolute sea-level change rate with respect to a global or
regional reference frame can be estimated by

VASL ¼ VTG þ VGNSS ð19Þ

One challenge of using the closely spaced GNSS and TG data
sets to estimate VASL is the mismatching of the uncertainties of VTG
and VGNSS. To the best of my knowledge, there was not a consistent
method for determining the uncertainties of VTG and VGNSS before
this study. Thus, it is often confusing or troublesome for sea-level
researchers and practical users to assess the uncertainties of the
absolute sea-level trends (VASL).

The method for determining the 95%CI of the VLM rates in-
troduced in this article is similar to the NOAA’s method for deter-
mining the 95%CI of sea-level trends. Both methods employ an
autoregressive model for accounting for the time-correlated noise
within the observations. Researchers at NOAA developed the fol-
lowing empirical formula for projecting the 95%CI of the sea-level
trends (Zervas 2009):

95%CI ¼ 395.5 ×
1

T1.643 ð20Þ

where T = year range of the monthly sea-level measurements in
years; and 95%CI is in millimeters per year. Fig. 12 illustrates

the empirical models for predicting the 95%CI of GNSS-derived
site velocities (vertical) and TG-derived sea-level trends [Eqs. (18)
and (20)]. The plots suggest that approximately 4-year daily GNSS
observations (vertical) and 40-year monthly TG observations are
needed to achieve a 1-mm-per-year 95%CI. Many research scien-
tists recommend using a minimum of 60 years of TG data for es-
timating global sea-level trends (e.g., IPCC 2013; Parker 2014;
Wenzel and Schroter 2014). Seven-year daily GNSS observations
would achieve the same 95%CI (∼0.5 mm=year) as the 60-year
monthly TG observations.

Fig. 13 illustrates a pair of the closely spaced TG and GNSS
data sets at Port Isabel, Texas, near the Mexico and Texas border.
TXLN is a CORS operated by the Texas Department of Transpor-
tation. The GNSS antenna is mounted on the sidewall of a single-
story building [Fig. 2(d)]. The distance between the tide gauge and
GNSS is about 9 km. The monthly sea-level measurements are pro-
vided by the Center for Operational Oceanographic Products and
Services at NOAA. The 8-year GNSS measurements (2013–2020)
result in an average land-subsidence rate of −1.55 mm=year with a
95%CI of 0.43 mm=year, which is slightly larger than the estimate
from Eq. (18), 0.39 mm=year. The reference frame for the vertical
land movements is GOM20, which provides a robust reference for
ruling out regional tectonic movements and highlighting localized
subsidence and faulting along the GOM coastal region. The 76-year
monthly TG measurements (1944–2019) result in an average sea-
level rise rate of 4.15 mm=year with a 95%CI of 0.33 mm=year
[projection from Eq. (20): 0.33 mm=year]. The two rates result
in an ongoing sea-level rise rate of 2.6 mm=year with respect to
GOM20. According to the 95%CI estimates of VTG and VGNSS, the
95%CI of the sea-level rise rate (VASL) with respect to GOM20
would approximate to 0.5 mm=year (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.332 þ 0.432

p
¼ 0.54).

Conclusions

This study presented a general methodology for determining the
95%CI [Eq. (16)] of the site velocities derived from GNSS daily
positions affected by time-correlated noises. An effective sample
size (Neff ) was used to calculate the standard error of the linear
trend instead of the original sample size. The Neff was obtained
from a high-order autoregressive model of the residual time series.
It was found that the 95%CI fits an inverse power-law relationship
with the time span (T) of the GNSS observations. Two empirical
formulas [Eqs. (17) and (18)] for projecting the 95%CI of horizon-
tal and vertical site velocities were developed based on the data sets
from approximately 9,700 globally distributed GNSS stations. The
empirical formulas provide the projections for the 95%CI of site
velocities processed with state-of-the-art GNSS techniques.

According to this study, a minimum of 2.5- and 4-year continu-
ous GNSS observations are recommended to achieve a 95%CI at
1 mm=year for the horizontal and vertical site velocities, respec-
tively; 4- and 7-year GNSS observations are recommended to
achieve a 95%CI below 0.5 mm=year for the horizontal and ver-
tical site velocities, respectively. Seven-year daily GNSS measure-
ments would achieve a similar 95%CI (∼0.5 mm=year) with the
60-year monthly tide gauge measurements, and 15-year GNSS data
would achieve a similar 95%CI (∼0.25 mm=year) with the 100-
year tide gauge data. This study recommends that a 7-year period
be adopted as a minimum time span of GNSS observations for sea-
level rise and coastal submergence studies using closely spaced
GNSS and TG data sets.

The 95%CI could potentially be a robust index for automatically
sorting well-behaved and poorly behaved GNSS data sets from
large GNSS networks with similar observational periods.
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Considering the wide applications of the linear trends of GNSS
time series in science and engineering, the methodology and the
models introduced in this study have the potential for broad appli-
cations in geosciences, civil and surveying engineering, and sea-
level rise and coastal submergence studies.
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