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GNSS_Vel 95CIl.py: A Python Module for
Calculating the Uncertainty of
GNSS-Derived Site Velocity

Brendan Cornelison' and Guoquan Wang, M.ASCE?

Abstract: GNSS_Vel_95Cl.py is an open-source Python-3 module for calculating the 95% confidence interval (95% CI) for the site velocity
derived from global navigation satellite systems (GNSS) daily positions, which are often affected by time-correlated noises. The detailed
methodology for calculating the 95% CI is documented in a recent article (Wang 2022) and initially programmed in Fortran. However, few
young researchers (e.g., graduate students) are familiar with Fortran now. In an effort to support a broader user community, we have realized
the method in the Python programming language, which has been commonly taught in current college curriculums. Through the use of this
module, researchers and engineers can focus on the applications of GNSS time series, rather than on coding and data processing. In particular,
the module has the option to output the autocorrelation function (ACF) and the GNSS time-series decomposition results: the linear, nonlinear,
seasonal, and residual components, which allow students and researchers having little coding experience to conduct advanced GNSS
time-series analysis. The module is versatile, easy to install through the pip installer and GitHub, and simple to use. An example Python
program is provided to illustrate the use of this module. DOI: 10.1061/(ASCE)SU.1943-5428.0000410. © 2022 American Society of Civil
Engineers.
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Motivation

Site velocities are the primary products of long-term global navi-
gation satellite systems (GNSS) monitoring projects. A site velocity
must be used with a full understanding of its uncertainty. The un-
certainty is important for long-term site-stability assessment and
structural health monitoring (SHM) projects with site velocities
(or deformation rates) at a few millimeters per year. There are so-
phisticated mathematical methods for calculating the linear trend
and its uncertainty for stationary time series in statistics. A station-
ary time series has statistical properties that do not change over
time. However, GNSS time series often exhibit nonstationary
behaviors, such as nonlinear motions, seasonal motions, and ran-
dom walks. Consequently, the uncertainty estimated with the con-
ventional method is unrealistically small. In practice, different
scaling and/or noise-modeling approaches have been applied by
different research groups to correct the uncertainty. Thus, the geo-
detic literature documents considerably different uncertainty esti-
mates, which have caused confusion among GNSS data users
in research and engineering, although the velocity estimates from
different research groups are similar. The geodesy research and
engineering communities have been struggling for decades to
develop a consistent and robust method for quantifying the un-
certainties of GNSS-derived site velocities. A detailed review
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of current approaches to assessing the uncertainty is found in
Wang (2022).

Wang (2022) published an analytical methodology for determin-
ing the uncertainty, that is, the 95% confidence interval (95% CI),
of GNSS-derived site velocities. The method decomposes the
GNSS time series into four components: a linear component, a non-
linear component, a seasonal component, and residuals. The deter-
mination of 95% CI accounts for the linear trend of the nonlinear
component, the linear trend of the seasonal component, and the
autocorrelation of the residuals. An effective sample size (N,zr)
rather than the total sample size (N) is used to calculate the standard
error of the site velocity, which is the major component of the
95% CI. Two empirical formulas have been established for estimat-
ing the 95% CI of horizontal and vertical site velocities based on the
time span of the GNSS time series.

The Wang (2022) methodology was initially realized in a
Fortran program (Fortran77), which calls for numerous Fortran
subroutines. While Fortran is the first high-level computing lan-
guage, it is now rarely taught in universities. Consequently,
few young researchers (e.g., graduate students) are familiar with
Fortran now. Instead, Python has become the most popular and
powerful general-purpose programming language since its release
in 1991, and has been commonly offered in college curriculums.
To support a broader user community, we have implemented the
methodology of calculating the 95% CI into a Python module,
GNSS_Vel_95ClLpy. The Python language simplifies the overall
programming process and increases the code’s readability.

Software Description

The module is designed as a single Python function that reads in
GNSS time series and calculates its site velocity and 95% CI ac-
cording to the methodology presented in Wang (2022). The module
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is built on Python common libraries, such as pandas, numpy, math,
statsmodels, and matplotlib. The core process is the decomposition
of the original position time series (y;), as follows:

Yi=Li+NLi+S;+r; (1)

where L; = linear component; NL; = nonlinear component; S; =
seasonal component; and r; = residuals. The final 95% CI is
determined according to the following formula:

bosqcr ~ 1.96 X SE),. + |by.| + |bs| (2)

where SE,,. = corrected standard error of the slope obtained from an
ordinary linear regression on the GNSS time series; and by, and
bg = slopes of the nonlinear (NL;) and seasonal (S;) components,
respectively.

GNSS time series are often biased by outliers and steps. Prepro-
cessing is needed to remove obvious outliers and steps before con-
ducting the decomposition analysis. The authors have developed
Python modules for identifying and removing outliers and steps
superimposed into the GNSS time series. A detailed review of
the methods for handling the outliers and steps is found in Wang
et al. (2022).

The module framework is developed according to the time series
decomposition described in Eq. (1), which comprises the following
five main steps:

Step 1: Apply an ordinary linear regression to the GNSS time
series (y;) and build the linear component: L; = a + b, t;, where b,
represents the slope of the linear regression, known as the site
velocity (b;). The Python module “OLS” from the statsmodels
library is used for the linear regression (OLS 2021). The GNSS
time series is detrended to get the residual time series, R; =
y; — L;. The standard error (SE,) of b; is calculated using the
conventional method for stationary time-series analysis

N R? 1
SE, = | ==« — 3
PTAINN=2) "o, 3)

where o, = standard deviation of the observation days (¢;) in deci-
mal years.

Step 2: Apply locally weighted scatterplot smoothing (LOWESS)
to the delinear-trended time series (R;). The smoothed time series is
known as the nonlinear component (NL;) of the GNSS time series.
The “LOWESS” function from the statsmodels library is imported
into the module; “frac” is an input for determining the fraction of
the data used for the local regression, which controls the smooth-
ness of the curve; and “if” is an input for determining the number of
residual-based reweightings to perform (LOWESS 2021). In our
practice for processing GNSS data in the Houston, Texas, region,
“frac” is set as 0.4, and “ir” is set as 2. Users may use slightly differ-
ent parameters for their specific datasets. An ordinary linear regres-
sion is applied to the nonlinear component for calculating its
slope byy.

Step 3: Determine the seasonal component (S;) as follows:

Si = o+ COS(27T X (ti — lo)) + dl sin(27r X (ti — to))
+ cycos(4m x (t; — ty)) + dy sin(4m x (t; — 1)) (4)

where #; = date series with a unit in decimal years (e.g., 2014.3956,
2014.3984,2014.4011, ...); and f, = initial date (e.g., 2014.3956).
The coefficients ¢y, d;, ¢,, and d, are calculated using the fast
Fourier transform (FFT) method, computing the discrete Fourier
transform coefficients of the residual time series (Res; = y; — L; —
NL;); ¢, and d; are the Fourier coefficients of the 1-year-period
signals; ¢, and d, are the Fourier coefficients of the half-year-
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period signals. The peak-to-trough amplitude of the annual signal
can be estimated by p; = \/c? + d?; the peak-to-trough amplitude

of the semiannual signal can be estimated by p, = \/c3 + d3. The
peak-to-trough amplitude of the seasonal motions can be estimated

by P =2 X 4/ p% + p%. The detailed method for calculating the an-
nual and half-annual seasonal parameters is coded in a Python func-
tion. Users may read the source code at our GitHub site (Cornelison
and Wang 2021a) for details. It should be noted that the function
only uses the integer years (e.g., 7 years, not 7.6 years) of the re-
siduals (Res;) in calculating the seasonal parameters.

The FFT requires a continuous time series. There are often data
gaps from a few days to a few months in GNSS time series. The
“resample” module in the pandas library is used to resample the
date series (fill date gaps) and fill each data gap in the residual time
series (Res;) as a ‘NaN’ (Resample 2021). The “random.choice”
module in the numpy library is used to replace each data gap
(NaN) with a random number borrowed from the residual time
series (Random 2021). In the original methodology presented in
Wang (2022), we used the “hot-deck imputation” to fill in the miss-
ing data, which borrows (in a random way) information from a set
of nearby observations to fill the missing information. We found
that the “random.choice” module results in very similar filling data
with the “hot-deck imputation.” Both methods work well for small
gaps (a few days to a few months) and poorly for large gaps (several
months to a few years). The effects of data gaps on the estimation of
95% CI are discussed in Wang (2022).

Step 4: Determine the effective sample size (N,s;) based on
the analysis of autocorrelation of the residuals, r; =y, —L; —
NL; —S;. For GNSS measurements, the position of each day is
partially correlated with the position-values of the previous and fol-
lowing days. Therefore, there are actually fewer independent mea-
surements contributing to the standard error (SE}) of the estimated
slope (by). In theory, only the number of independent samples
should be used to calculate the standard error. “Effective sample
size” (N.¢r) is a term used in statistics to represent the independent
samples among autocorrelated time series. N, is obtained from a
high-order autoregressive model developed from the autocorrela-
tion function (ACF) of the residual time series (r;). ACF describes
how well the present value of the series is related to its past values.
The “acf’ module in the statsmodels library is used for calculating
ACF (ACF 2021). The detailed method for calculating N, ¢ is doc-
umented in Wang (2022). The standard error SE, [Eq. (3)] is cor-
rected according to the effective sample size as follows:

SEbc ~ X SEb (5)

eff

where N = original sample size.

Step 5: Determine the final 95% CI according to Eq. (2). To
provide a useful GNSS data analysis tool for GNSS data users, the
module also outputs the ACF, and the decomposition results as fig-
ures and ASCII text files.

lllustrative Example

The module reads GNSS time series and returns site velocity (b )
and its uncertainty (95% CI). Importing the module “GNSS_Vel_
95CTI” will enable a Python program to use the module. GNSS
measurements often comprise three components: north-south (NS),
east-west (EW), and up-down (UD). Users (or callers) need to call
the module for each component in their Python program. Here is a
brief example of using the module in a Python program, Main_
cal_95CLpy:
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#! /usr/bin/python3

import os

import pandas as pd

from GNSS_Vel_95CI import cal_95CI

# An example of 'fin: MRHK_GOM?20_neu_cm.col

# Decimal-Year NS(cm) EW(cm) UD(cm) sigma-NS(cm) sigma-
EW(cm) sigma-UD(cm)

#2014.3956 0.2037 0.0395 -0.0516 0.0548 0.0255 0.0605
#2014.3984 0.1714 0.0465 -0.7940 0.0542 0.0241 0.0593
# 2014.4011 -0.1916 0.0269 -0.2318 0.0538 0.0246 0.0591
#2014.4038 -0.2069 0.0400 1.0380 0.0517 0.0231 0.0566

directory = "/'
for fin in os.listdir(directory): # Put all GNSS data files under this
directory
if fin.endswith(“neu_cm.col”):
GNSS = fin[0:4] # Station name, e.g., MRHK
ts_enu = []
ts_enu = pd.read_csv (fin, header=0, delim_whitespace=True)
year = ts_enu.iloc[:,0] # Decimal year, 2014.3596,
2014.3984, ...

dis = ts_enu.iloc[:,1] # NS
result_NS=cal_95Cl(year,dis,GNSS,DIR='NS',output='on’,
pltshow='on")

b_NS=round(result_NS[0],2) # Site velocity
b_NS_95CI=round(result_NS[1],2) # The 95%CI of the site
velocity

dis = ts_enu.iloc[:,2] # EW

result EW=cal_95ClI(year,dis, GNSS,DIR="EW',output="on',
pltshow='on")

b_EW-=round(result_EW[0],2)
b_EW_95CI=round(result_EW[1],2)

dis = ts_enu.iloc[:,3] # UD

result_UD=cal_95ClI(year,dis, GNSS,DIR="UD',output='on’,
pltshow='on")

b_UD=round(result_UDI[0],2)
b_UD_95CI=round(result_UD[1],2)

else:
pass

Two options are included in the inputs of the module:
(1) pltshow = ‘on’ or ‘off’, enable or disable displaying the ACF
versus time-lag plot and the decomposition plot at the end of this
process; and (2) output=‘on’ or ‘off’, enable or disable outputting
the ACF and decomposition data. The module outputs two figures
and four ASCII text files if the user sets output = on. The two
figures are an ACF plot (GNSS_DIR_ACEF.pdf) and a decomposi-
tion plot (GNSS_DIR_Decomposition.pdf). “GNSS” represents
the name of the GNSS station (e.g., MRHK). “DIR” represents
the direction of the time series, such as NS, EW, or UD. Both
GNSS and DIR are the inputs from callers. The four text files
are: (1) GNSS_DIR_ACEFE.txt, which comprises the time-lag and
ACF; (2) GNSS_DIR_Linear_Nonlinear.txt, which comprises the
columns of date (decimal year), the original displacement, the lin-
ear trend, and the nonlinear trend; (3) GNSS_DIR_SeasonalM.txt,
which comprises the columns of continuous date (gap filled),
the delinear-nonlinear-trended time series (Res;), the seasonal
model (S;), and the final residuals (r;); and (4) GNSS_DIR_
AllParameters.txt, which comprises all parameters involved in cal-
culating the 95% CI. Users who need to process a massive number
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of GNSS files with the sole purpose of getting site velocities and
their 95% CI may set “output” and “pltshow” as off.

Fig. 1 illustrates the ACF versus the time lag for the residual
time series (r;) of the vertical displacements (UD) at GNSS station
MRHK. ACF is used to determine the effective sample size (N f)
in this module. MRHK is a continuous GNSS station located in
Katy, Texas, where moderate land subsidence (~1.5 to 2 cm/year)
is ongoing (Agudelo et al. 2020).

Fig. 2 illustrates the decomposition plot of GNSS time series
at MRHK (UD component). Fig. 2(a) is the linear component;
Fig. 2(b) is the nonlinear component; Fig. 2(c) is the seasonal com-
ponent; and Fig. 2(d) is the residuals. The final site velocity and its
95% CI are marked in Fig. 2(a). For the UD component, the calcu-
lated site velocity is —17.21 4+ 0.56 mm/year over the observation
period from 2014 to 2021. Wang (2022) also provides empirical
formulas for projecting the 95% CI of site velocities solely depend-
ing on the length of the observation period (7') in years. The for-
mulas are developed based on 9,700 globally distributed GNSS
stations, representing an average 95% CI for the datasets with a
similar year range. The global datasets show that 95%CI = 1.8/T
for the horizontal components (NS and EW) and 95%CI = 5.2/
T'% for the vertical component (UD). The projected 95% CI is
in millimeters per year (mm/year). A comparison of the calculated
95% CI value and the projected one is also marked in Fig. 2(a).
For the UD component of MRHK, the projected 95% CI is
0.43 mm/year, which is slightly smaller than the calculated one,
0.56 mm/year. The comparison suggests that this site is slightly
noisier than the global average. This site is located in an area
experiencing long-term groundwater pumping (Wang et al. 2022).
The fluctuations of groundwater levels caused significant irregular
ground surface oscillations; as a consequence, the calculated 95%
Cl is larger than the global average. The estimates of SE;, and SE,.
are marked in Fig. 2(a). The estimates of by; and by are marked in
Figs. 2(b and c), respectively. The seasonal model [Eq. (4)] for this
site is marked in Fig. 2(c). The peak-to-trough amplitude of the
seasonal movements is also marked in Fig. 2(c). The root mean
squares (RMS) of the delinear-trended time series, de-nonlinear-
trended time series, and the residuals are marked in Figs. 2(b—d),
respectively. There are two data gaps in late 2015 and late 2016,
as shown in Figs. 2(a and b). These gaps were filled before deter-
mining the seasonal coefficients. Figs. 2(c and d) depict the sea-
sonal and residual time series that gaps have been filled.
Visually, there is no remarkable difference between the filled
and the original portions.

ACF: MRHK(UD)

0 200 400 600 800 1000
Time-lag (Days)

Fig. 1. Example of autocorrelation function (ACF) versus time-lag plot
output from the Python module.
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Decomposition of GNSS-Derived Daily Displacement Time Series: MRHK(UD)
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Fig. 2. Example of the decomposition plot output from the Python module: (a) displacements and linear component; (b) nonlinear component;

(c) seasonal component; and (d) residuals.

Conclusions and Impacts

The Python module was developed to make it easier for the geodesy
education, research, and engineering communities to calculate the
uncertainty (95% CI) of GNSS-derived site velocities. The module
is versatile, easy to install, and simple to use. We have tested the
module on computers with different operating systems (Microsoft
Windows, Apple macOS, Linux). An example Python program
for calling the module is provided in this article. The module is
released under the GNU Public License (version 3). The source
code is hosted on GitHub (Cornelison and Wang 2021a). Python
wheels are provided on the Python Package Index (PyPi) website
for easy installation with the Package Installer for Python (pip),
using “pip install GNSS_Vel_95CI” (Cornelison and Wang 2021b).

The module outputs both the calculated (site specific) and pro-
jected (global average) 95% CI estimates, as shown in Fig. 2(a).
If the calculated 95% CI is significantly larger than the project
one, this site is likely noisy or experienced significant nonlinear
motions. Thus, the module shows promise for automatically sorting
well-behaved and poorly behaved GNSS datasets from large GNSS
networks. We have used this module for quality control (QC) of the
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Houston GNSS Network (HoustonNet) data (Wang et al. 2022).
The module also outputs the ACF and the decomposition results,
which are fundamental for GNSS data analysis. With the presented
module, researchers and engineers are able to focus on the appli-
cation of GNSS time series, rather than spend excessive time on
coding and data processing. As of spring 2022, the module has
been used by the second author, G. Wang, in his geodesy classes
at the University of Houston, where it was found to be a useful tool
in introducing students to computer programming and facilitating
large GNSS dataset analysis on their laptops. Considering the broad
applications of GNSS time series in science and engineering and
the popularity of Python as a programming language, the module
has the potential for broad applications in education, earth sciences,
and civil engineering.

Data Availability Statement

All data, models, or code that support the findings of this study are
available from the corresponding author (gwang@uh.edu) upon
reasonable request. The source code generated or used during
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the study is available in an online GitHub repository, https://github
.com/bob-Github-2020/GNSS_Vel_95CI. The module can be in-
stalled on users’ computers through the Package Installer for
Python (https://pypi.org/project/ GNSS-VEL-95CI), using “pip in-
stall GNSS_Vel_95CTI".
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