Interactive Web Plotting for Python
Python CoffeeScript CSS TypeScript HTML JavaScript Other
Permalink
Failed to load latest commit information.
.github Remove wonky carriage return Mar 21, 2016
bin remove old bokeh-server completely (#5364) Oct 18, 2016
bokeh Drop jquery from core bokehjs (#5630) Jan 13, 2017
bokehjs Use div with display table instead of actual tables in tooltips (#5747) Jan 17, 2017
conda.recipe pin conda version to 4.2.15 (#5734) Jan 14, 2017
examples Drop jquery from core bokehjs (#5630) Jan 13, 2017
scripts pin conda version to 4.2.15 (#5734) Jan 14, 2017
sphinx Drop jquery from core bokehjs (#5630) Jan 13, 2017
tests allow arrow heads to contribute clipping regions (#5690) Jan 11, 2017
.gitattributes add versioneer for version better automatic version number support Oct 10, 2013
.gitignore Refactor wheel_zoom_tool. Add zoom button tools #916 (#4841) Sep 22, 2016
.travis.yml Update .travis.yml (#5633) Dec 29, 2016
CHANGELOG release hiccup, adding missing CHANGELOG Jan 9, 2017
LICENSE.txt remove unicode in LICENSE.txt Oct 12, 2015
MAINTAINERS New release deploy script (#5363) Oct 18, 2016
MANIFEST.in Fixing missing modules, add the script entry point, load the yaml the… Oct 29, 2015
README.md use no-cached pip badge Dec 7, 2016
requirements.txt Passed requirements to install_requires inside setup.py, close #319 too. Feb 11, 2014
secrets.tar.enc Enable npm.org and pypi uploads. Jun 19, 2015
setup.cfg Updating versioneer to 0.17+ (#5622) Jan 11, 2017
setup.py Updating versioneer to 0.17+ (#5622) Jan 11, 2017
versioneer.py Updating versioneer to 0.17+ (#5622) Jan 11, 2017

README.md

Bokeh

Latest Release latest release
License Bokeh license
Build Status build status
Conda conda downloads
PyPI
Gitter
Twitter

Bokeh, a Python interactive visualization library, enables beautiful and meaningful visual presentation of data in modern web browsers. With Bokeh, you can quickly and easily create interactive plots, dashboards, and data applications.

Bokeh helps provide elegant, concise construction of novel graphics in the style of D3.js, while also delivering high-performance interactivity over very large or streaming datasets.

Interactive gallery

image anscombe stocks lorenz candlestick scatter splom
iris histogram periodic choropleth burtin streamline image_rgba
stacked quiver elements boxplot categorical unemployment les_mis

Installation

We recommend using the Anaconda Python distribution and conda to install Bokeh. Enter this command at a Bash or Windows command prompt:

conda install bokeh

This installs Bokeh and all needed dependencies.

To begin using Bokeh or to install using pip, follow the Quickstart documentation.

Documentation

Visit the Bokeh web page for information and full documentation.

Contribute to Bokeh

To contribute to Bokeh, please review the Developer Guide.

Follow us

Follow us on Twitter @bokehplots and on YouTube.