Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
----------------------------------------------------------------------------------
-- Engineer: Mike Field <hamster@snap.net.nz>
--
-- Create Date: 14:09:12 09/15/2013
-- Module Name: SDRAM_Controller - Behavioral
-- Description: Simple SDRAM controller for a Micron 48LC16M16A2-7E
-- or Micron 48LC4M16A2-7E @ 100MHz
-- Revision:
-- Revision 0.1 - Initial version
-- Revision 0.2 - Removed second clock signal that isn't needed.
-- Revision 0.3 - Added back-to-back reads and writes.
-- Revision 0.4 - Allow refeshes to be delayed till next PRECHARGE is issued,
-- Unless they get really, really delayed. If a delay occurs multiple
-- refreshes might get pushed out, but it will have avioded about
-- 50% of the refresh overhead
-- Revision 0.5 - Add more paramaters to the design, allowing it to work for both the
-- Papilio Pro and Logi-Pi
-- Revision 0.6 - Fixed bugs in back-to-back reads (thanks Scotty!)
--
-- Worst case performance (single accesses to different rows or banks) is:
-- Writes 16 cycles = 6,250,000 writes/sec = 25.0MB/s (excluding refresh overhead)
-- Reads 17 cycles = 5,882,352 reads/sec = 23.5MB/s (excluding refresh overhead)
--
-- For 1:1 mixed reads and writes into the same row it is around 88MB/s
-- For reads or wries to the same it is can be as high as 184MB/s
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- library UNISIM;
-- use UNISIM.VComponents.all;
use IEEE.NUMERIC_STD.ALL;
library ECP5U;
use ECP5U.components.all;
entity SDRAM_Controller is
generic (
sdram_address_width : natural;
sdram_column_bits : natural;
sdram_startup_cycles: natural;
cycles_per_refresh : natural;
delay_line_length : natural := 4; -- TH: configure data capture delay line length in clock cycles
hold_row_open : boolean := true; -- TH: Hold active row open after read/write until a refresh is needed
PLATFORM : string := "ECP5"
);
Port ( clk : in STD_LOGIC;
reset : in STD_LOGIC;
-- Interface to issue reads or write data
cmd_ready : out STD_LOGIC; -- '1' when a new command will be acted on
cmd_enable : in STD_LOGIC; -- Set to '1' to issue new command (only acted on when cmd_read = '1')
cmd_wr : in STD_LOGIC; -- Is this a write?
cmd_address : in STD_LOGIC_VECTOR(sdram_address_width-2 downto 0); -- address to read/write
cmd_byte_enable : in STD_LOGIC_VECTOR(3 downto 0); -- byte masks for the write command
cmd_data_in : in STD_LOGIC_VECTOR(31 downto 0); -- data for the write command
data_out : out STD_LOGIC_VECTOR(31 downto 0); -- word read from SDRAM
data_out_ready : out STD_LOGIC; -- is new data ready?
-- SDRAM signals
SDRAM_CLK : out STD_LOGIC;
SDRAM_CKE : out STD_LOGIC;
SDRAM_CS : out STD_LOGIC;
SDRAM_RAS : out STD_LOGIC;
SDRAM_CAS : out STD_LOGIC;
SDRAM_WE : out STD_LOGIC;
SDRAM_DQM : out STD_LOGIC_VECTOR( 1 downto 0);
SDRAM_ADDR : out STD_LOGIC_VECTOR(12 downto 0);
SDRAM_BA : out STD_LOGIC_VECTOR( 1 downto 0);
SDRAM_DATA : inout STD_LOGIC_VECTOR(15 downto 0));
end SDRAM_Controller;
architecture Behavioral of SDRAM_Controller is
-- From page 37 of MT48LC16M16A2 datasheet
-- Name (Function) CS# RAS# CAS# WE# DQM Addr Data
-- COMMAND INHIBIT (NOP) H X X X X X X
-- NO OPERATION (NOP) L H H H X X X
-- ACTIVE L L H H X Bank/row X
-- READ L H L H L/H Bank/col X
-- WRITE L H L L L/H Bank/col Valid
-- BURST TERMINATE L H H L X X Active
-- PRECHARGE L L H L X Code X
-- AUTO REFRESH L L L H X X X
-- LOAD MODE REGISTER L L L L X Op-code X
-- Write enable X X X X L X Active
-- Write inhibit X X X X H X High-Z
-- Here are the commands mapped to constants
constant CMD_UNSELECTED : std_logic_vector(3 downto 0) := "1000";
constant CMD_NOP : std_logic_vector(3 downto 0) := "0111";
constant CMD_ACTIVE : std_logic_vector(3 downto 0) := "0011";
constant CMD_READ : std_logic_vector(3 downto 0) := "0101";
constant CMD_WRITE : std_logic_vector(3 downto 0) := "0100";
constant CMD_TERMINATE : std_logic_vector(3 downto 0) := "0110";
constant CMD_PRECHARGE : std_logic_vector(3 downto 0) := "0010";
constant CMD_REFRESH : std_logic_vector(3 downto 0) := "0001";
constant CMD_LOAD_MODE_REG : std_logic_vector(3 downto 0) := "0000";
constant MODE_REG : std_logic_vector(12 downto 0) :=
-- Reserved, wr bust, OpMode, CAS Latency (2), Burst Type, Burst Length (2)
"000" & "0" & "00" & "010" & "0" & "001";
signal iob_command : std_logic_vector( 3 downto 0) := CMD_NOP;
signal iob_address : std_logic_vector(12 downto 0) := (others => '0');
signal iob_data : std_logic_vector(15 downto 0) := (others => '0');
signal iob_dqm : std_logic_vector( 1 downto 0) := (others => '0');
signal iob_cke : std_logic := '0';
signal iob_bank : std_logic_vector( 1 downto 0) := (others => '0');
attribute IOB: string;
attribute IOB of iob_command: signal is "true";
attribute IOB of iob_address: signal is "true";
attribute IOB of iob_dqm : signal is "true";
attribute IOB of iob_cke : signal is "true";
attribute IOB of iob_bank : signal is "true";
attribute IOB of iob_data : signal is "true";
signal iob_data_next : std_logic_vector(15 downto 0) := (others => '0');
signal captured_data : std_logic_vector(15 downto 0) := (others => '0');
signal captured_data_last : std_logic_vector(15 downto 0) := (others => '0');
signal sdram_din : std_logic_vector(15 downto 0);
attribute IOB of captured_data : signal is "true";
component gpio_pad is
Port ( I : in STD_LOGIC;
O : out STD_LOGIC;
T : in STD_LOGIC;
IO : inout STD_LOGIC);
end component;
type fsm_state is (s_startup,
s_idle_in_6, s_idle_in_5, s_idle_in_4, s_idle_in_3, s_idle_in_2, s_idle_in_1,
s_idle,
s_open_in_2, s_open_in_1,
s_write_1, s_write_2, s_write_3,
s_read_1, s_read_2, s_read_3, s_read_4,
s_active_idle, -- TH: Idle Wait with row active until a new transaction or refresh comes in
s_precharge
);
signal state : fsm_state := s_startup;
attribute FSM_ENCODING : string;
attribute FSM_ENCODING of state : signal is "ONE-HOT";
-- dual purpose counter, it counts up during the startup phase, then is used to trigger refreshes.
constant startup_refresh_max : unsigned(13 downto 0) := (others => '1');
signal startup_refresh_count : unsigned(13 downto 0) := startup_refresh_max-to_unsigned(sdram_startup_cycles,14);
-- logic to decide when to refresh
signal pending_refresh : std_logic := '0';
signal forcing_refresh : std_logic := '0';
-- The incoming address is split into these three values
signal addr_row : std_logic_vector(12 downto 0) := (others => '0');
signal addr_col : std_logic_vector(12 downto 0) := (others => '0');
signal addr_bank : std_logic_vector( 1 downto 0) := (others => '0');
signal dqm_sr : std_logic_vector( 3 downto 0) := (others => '1'); -- an extra two bits in case CAS=3
-- signals to hold the requested transaction before it is completed
signal save_wr : std_logic := '0';
signal save_row : std_logic_vector(12 downto 0);
signal save_bank : std_logic_vector( 1 downto 0);
signal save_col : std_logic_vector(12 downto 0);
signal save_data_in : std_logic_vector(31 downto 0);
signal save_byte_enable : std_logic_vector( 3 downto 0);
-- control when new transactions are accepted
signal ready_for_new : std_logic := '0';
signal got_transaction : std_logic := '0';
signal can_back_to_back : std_logic := '0';
-- signal to control the Hi-Z state of the DQ bus
signal iob_dq_hiz : std_logic := '1';
-- signals for when to read the data off of the bus
-- signal data_ready_delay : std_logic_vector( 4 downto 0);
--signal data_ready_delay : std_logic_vector( 3 downto 0);
-- TH: make this configurable
signal data_ready_delay : std_logic_vector( delay_line_length-1 downto 0);
-- bit indexes used when splitting the address into row/colum/bank.
constant start_of_col : natural := 0;
constant end_of_col : natural := sdram_column_bits-2;
constant start_of_bank : natural := sdram_column_bits-1;
constant end_of_bank : natural := sdram_column_bits;
constant start_of_row : natural := sdram_column_bits+1;
constant end_of_row : natural := sdram_address_width-2;
constant prefresh_cmd : natural := 10;
begin
-- Indicate the need to refresh when the counter is 2048,
-- Force a refresh when the counter is 4096 - (if a refresh is forced,
-- multiple refresshes will be forced until the counter is below 2048
pending_refresh <= startup_refresh_count(11);
forcing_refresh <= startup_refresh_count(12);
-- tell the outside world when we can accept a new transaction;
cmd_ready <= ready_for_new;
----------------------------------------------------------------------------
-- Seperate the address into row / bank / address
----------------------------------------------------------------------------
addr_row(end_of_row-start_of_row downto 0) <= cmd_address(end_of_row downto start_of_row); -- 12:0 <= 20:9
addr_bank <= cmd_address(end_of_bank downto start_of_bank); -- 1:0 <= 8:7
addr_col(sdram_column_bits-1 downto 0) <= cmd_address(end_of_col downto start_of_col) & '0'; -- 7:0 <= 6:0 & '0'
-----------------------------------------------------------
-- Forward the SDRAM clock to the SDRAM chip - 180 degress
-- out of phase with the control signals (ensuring setup and holdup
-----------------------------------------------------------
-- sdram_clk_forward : ODDR2
-- generic map(DDR_ALIGNMENT => "NONE", INIT => '0', SRTYPE => "SYNC")
-- port map (Q => sdram_clk, C0 => clk, C1 => not clk, CE => '1', R => '0', S => '0', D0 => '0', D1 => '1');
sdram_clk_forward : ODDRX1F -- for ECP5
port map (Q => sdram_clk, sclk => clk, rst => '0', D0 => '0', D1 => '1');
-----------------------------------------------
--!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
--!! Ensure that all outputs are registered. !!
--!! Check the pinout report to be sure !!
--!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-----------------------------------------------
sdram_cke <= iob_cke;
sdram_CS <= iob_command(3);
sdram_RAS <= iob_command(2);
sdram_CAS <= iob_command(1);
sdram_WE <= iob_command(0);
sdram_dqm <= iob_dqm;
sdram_ba <= iob_bank;
sdram_addr <= iob_address;
---------------------------------------------------------------
-- Explicitly set up the tristate I/O buffers on the DQ signals
---------------------------------------------------------------
iob_dq_g: for i in 0 to 15 generate
begin
iob_dq_iob: gpio_pad
--generic map (DRIVE => 12, IOSTANDARD => "LVTTL", SLEW => "FAST")
port map ( O => sdram_din(i), IO => sdram_data(i), I => iob_data(i), T => iob_dq_hiz);
end generate;
capture_proc: process(clk)
begin
if rising_edge(clk) then
captured_data <= sdram_din;
end if;
end process;
main_proc: process(clk)
begin
if rising_edge(clk) then
captured_data_last <= captured_data;
------------------------------------------------
-- Default state is to do nothing
------------------------------------------------
iob_command <= CMD_NOP;
iob_address <= (others => '0');
iob_bank <= (others => '0');
------------------------------------------------
-- countdown for initialisation & refresh
------------------------------------------------
startup_refresh_count <= startup_refresh_count+1;
-------------------------------------------------------------------
-- It we are ready for a new tranasction and one is being presented
-- then accept it. Also remember what we are reading or writing,
-- and if it can be back-to-backed with the last transaction
-------------------------------------------------------------------
if ready_for_new = '1' and cmd_enable = '1' then
if save_bank = addr_bank and save_row = addr_row then
can_back_to_back <= '1';
else
can_back_to_back <= '0';
end if;
save_row <= addr_row;
save_bank <= addr_bank;
save_col <= addr_col;
save_wr <= cmd_wr;
save_data_in <= cmd_data_in;
save_byte_enable <= cmd_byte_enable;
got_transaction <= '1';
ready_for_new <= '0';
end if;
------------------------------------------------
-- Handle the data coming back from the
-- SDRAM for the Read transaction
------------------------------------------------
data_out_ready <= '0';
if data_ready_delay(0) = '1' then
data_out <= captured_data & captured_data_last;
data_out_ready <= '1';
end if;
----------------------------------------------------------------------------
-- update shift registers used to choose when to present data to/from memory
----------------------------------------------------------------------------
data_ready_delay <= '0' & data_ready_delay(data_ready_delay'high downto 1);
iob_dqm <= dqm_sr(1 downto 0);
dqm_sr <= "11" & dqm_sr(dqm_sr'high downto 2);
case state is
when s_startup =>
------------------------------------------------------------------------
-- This is the initial startup state, where we wait for at least 100us
-- before starting the start sequence
--
-- The initialisation is sequence is
-- * de-assert SDRAM_CKE
-- * 100us wait,
-- * assert SDRAM_CKE
-- * wait at least one cycle,
-- * PRECHARGE
-- * wait 2 cycles
-- * REFRESH,
-- * tREF wait
-- * REFRESH,
-- * tREF wait
-- * LOAD_MODE_REG
-- * 2 cycles wait
------------------------------------------------------------------------
iob_CKE <= '1';
-- All the commands during the startup are NOPS, except these
if startup_refresh_count = startup_refresh_max-31 then
-- ensure all rows are closed
iob_command <= CMD_PRECHARGE;
iob_address(prefresh_cmd) <= '1'; -- all banks
iob_bank <= (others => '0');
elsif startup_refresh_count = startup_refresh_max-23 then
-- these refreshes need to be at least tREF (66ns) apart
iob_command <= CMD_REFRESH;
elsif startup_refresh_count = startup_refresh_max-15 then
iob_command <= CMD_REFRESH;
elsif startup_refresh_count = startup_refresh_max-7 then
-- Now load the mode register
iob_command <= CMD_LOAD_MODE_REG;
iob_address <= MODE_REG;
end if;
------------------------------------------------------
-- if startup is coomplete then go into idle mode,
-- get prepared to accept a new command, and schedule
-- the first refresh cycle
------------------------------------------------------
if startup_refresh_count = 0 then
state <= s_idle;
ready_for_new <= '1';
got_transaction <= '0';
startup_refresh_count <= to_unsigned(2048 - cycles_per_refresh+1,14);
end if;
when s_idle_in_6 => state <= s_idle_in_5;
when s_idle_in_5 => state <= s_idle_in_4;
when s_idle_in_4 => state <= s_idle_in_3;
when s_idle_in_3 => state <= s_idle_in_2;
when s_idle_in_2 => state <= s_idle_in_1;
when s_idle_in_1 => state <= s_idle;
when s_idle =>
-- Priority is to issue a refresh if one is outstanding
if pending_refresh = '1' or forcing_refresh = '1' then
------------------------------------------------------------------------
-- Start the refresh cycle.
-- This tasks tRFC (66ns), so 6 idle cycles are needed @ 100MHz
------------------------------------------------------------------------
state <= s_idle_in_6;
iob_command <= CMD_REFRESH;
startup_refresh_count <= startup_refresh_count - cycles_per_refresh+1;
elsif got_transaction = '1' then
--------------------------------
-- Start the read or write cycle.
-- First task is to open the row
--------------------------------
state <= s_open_in_2;
iob_command <= CMD_ACTIVE;
iob_address <= save_row;
iob_bank <= save_bank;
end if;
--------------------------------------------
-- Opening the row ready for reads or writes
--------------------------------------------
when s_open_in_2 => state <= s_open_in_1;
when s_open_in_1 =>
-- still waiting for row to open
if save_wr = '1' then
state <= s_write_1;
iob_dq_hiz <= '0';
iob_data <= save_data_in(15 downto 0); -- get the DQ bus out of HiZ early
else
iob_dq_hiz <= '1';
state <= s_read_1;
end if;
-- we will be ready for a new transaction next cycle!
ready_for_new <= '1';
got_transaction <= '0';
----------------------------------
-- Processing the read transaction
----------------------------------
when s_read_1 =>
state <= s_read_2;
iob_command <= CMD_READ;
iob_address <= save_col;
iob_bank <= save_bank;
iob_address(prefresh_cmd) <= '0'; -- A10 actually matters - it selects auto precharge
-- Schedule reading the data values off the bus
data_ready_delay(data_ready_delay'high) <= '1';
-- Set the data masks to read all bytes
iob_dqm <= (others => '0');
dqm_sr(1 downto 0) <= (others => '0');
when s_read_2 =>
state <= s_read_3;
if forcing_refresh = '0' and got_transaction = '1' and can_back_to_back = '1' then
if save_wr = '0' then
state <= s_read_1;
ready_for_new <= '1'; -- we will be ready for a new transaction next cycle!
got_transaction <= '0';
end if;
end if;
when s_read_3 =>
state <= s_read_4;
if forcing_refresh = '0' and got_transaction = '1' and can_back_to_back = '1' then
if save_wr = '0' then
state <= s_read_1;
ready_for_new <= '1'; -- we will be ready for a new transaction next cycle!
got_transaction <= '0';
end if;
end if;
when s_read_4 =>
-- can we do back-to-back read?
if forcing_refresh = '0' and got_transaction = '1' and can_back_to_back = '1' then
if save_wr = '0' then
state <= s_read_1;
ready_for_new <= '1'; -- we will be ready for a new transaction next cycle!
got_transaction <= '0';
else
state <= s_open_in_2; -- we have to wait for the read data to come back before we swutch the bus into HiZ
end if;
else
if hold_row_open then --NEW TH: Go in into s_active_ilde state
state <= s_active_idle;
else
state <= s_precharge;
end if;
end if;
------------------------------------------------------------------
-- Processing the write transaction
-------------------------------------------------------------------
when s_write_1 =>
state <= s_write_2;
iob_command <= CMD_WRITE;
iob_address <= save_col;
iob_address(prefresh_cmd) <= '0'; -- A10 actually matters - it selects auto precharge
iob_bank <= save_bank;
iob_dqm <= NOT save_byte_enable(1 downto 0);
dqm_sr(1 downto 0) <= NOT save_byte_enable(3 downto 2);
iob_data <= save_data_in(15 downto 0);
iob_data_next <= save_data_in(31 downto 16);
when s_write_2 =>
state <= s_write_3;
iob_data <= iob_data_next;
-- can we do a back-to-back write?
if forcing_refresh = '0' and got_transaction = '1' and can_back_to_back = '1' then
if save_wr = '1' then
-- back-to-back write?
state <= s_write_1;
ready_for_new <= '1';
got_transaction <= '0';
end if;
-- Although it looks right in simulation you can't go write-to-read
-- here due to bus contention, as iob_dq_hiz takes a few ns.
end if;
when s_write_3 => -- must wait tRDL, hence the extra idle state
-- back to back transaction?
if forcing_refresh = '0' and got_transaction = '1' and can_back_to_back = '1' then
if save_wr = '1' then
-- back-to-back write?
state <= s_write_1;
ready_for_new <= '1';
got_transaction <= '0';
else
-- write-to-read switch?
state <= s_read_1;
iob_dq_hiz <= '1';
ready_for_new <= '1'; -- we will be ready for a new transaction next cycle!
got_transaction <= '0';
end if;
else
iob_dq_hiz <= '1';
if hold_row_open then --NEW TH: Go in into s_active_ilde state
state <= s_active_idle;
else
state <= s_precharge;
end if;
end if;
-------------------------------------------------------------------
-- Closing the row off (this closes all banks)
-------------------------------------------------------------------
when s_precharge =>
state <= s_idle_in_3;
iob_command <= CMD_PRECHARGE;
iob_address(prefresh_cmd) <= '1'; -- A10 actually matters - it selects all banks or just one
-------------------------------------------------------------------
-- TH: Wait with open row
-------------------------------------------------------------------
when s_active_idle =>
if forcing_refresh='1' or pending_refresh='1' or
(got_transaction='1' and can_back_to_back='0') then
-- when either refresh is needed or next transaction is in a different row
-- go to precharge
state <= s_precharge;
elsif got_transaction='1' then -- Transaction in same row
if save_wr='1' then
state <= s_write_1;
iob_dq_hiz <= '0';
iob_data <= save_data_in(15 downto 0); -- get the DQ bus out of HiZ early
else
state <= s_read_1;
iob_dq_hiz <= '1';
end if;
ready_for_new <= '1'; -- we will be ready for a new transaction next cycle!
got_transaction <= '0';
end if;
-------------------------------------------------------------------
-- We should never get here, but if we do then reset the memory
-------------------------------------------------------------------
when others =>
state <= s_startup;
ready_for_new <= '0';
startup_refresh_count <= startup_refresh_max-to_unsigned(sdram_startup_cycles,14);
end case;
if reset = '1' then -- Sync reset
state <= s_startup;
ready_for_new <= '0';
startup_refresh_count <= startup_refresh_max-to_unsigned(sdram_startup_cycles,14);
end if;
end if;
end process;
end Behavioral;